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Simple Summary: The classification is performed later by an interactively learning Swin Transformer
block, the core unit for feature representation and long-range semantic information. In particular, the
proposed strategy improved significantly and was very resilient while dealing with small liver pieces,
discontinuous liver regions, and fuzzy liver boundaries. The experimental results confirm that the
proposed APESTNet is more effective in classifying liver tumours than the current state-of-the-art
models. Without compromising accuracy, the proposed method conserved resources. However, the
proposed method is prone to slight over-segmentation or under-segmentation errors when dealing
with lesions or tumours at the liver boundary. Therefore, our future work will concentrate on
completely utilizing the z-axis information in 3D to reduce errors.

Abstract: Diagnosis and treatment of hepatocellular carcinoma or metastases rely heavily on accurate
segmentation and classification of liver tumours. However, due to the liver tumor’s hazy borders and
wide range of possible shapes, sizes, and positions, accurate and automatic tumour segmentation
and classification remains a difficult challenge. With the advancement of computing, new models in
artificial intelligence have evolved. Following its success in Natural language processing (NLP), the
transformer paradigm has been adopted by the computer vision (CV) community of the NLP. While
there are already accepted approaches to classifying the liver, especially in clinical settings, there is
room for advancement in terms of their precision. This paper makes an effort to apply a novel model
for segmenting and classifying liver tumours built on deep learning. In order to accomplish this, the
created model follows a three-stage procedure consisting of (a) pre-processing, (b) liver segmentation,
and (c) classification. In the first phase, the collected Computed Tomography (CT) images undergo
three stages of pre-processing, including contrast improvement via histogram equalization and
noise reduction via the median filter. Next, an enhanced mask region-based convolutional neural
networks (Mask R-CNN) model is used to separate the liver from the CT abdominal image. To
prevent overfitting, the segmented picture is fed onto an Enhanced Swin Transformer Network with
Adversarial Propagation (APESTNet). The experimental results prove the superior performance of
the proposed perfect on a wide variety of CT images, as well as its efficiency and low sensitivity
to noise.

Keywords: adversarial propagation; liver tumor segmentation; classification; enhanced swin
transformer network; median filtering; computed tomography
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1. Introduction

The liver provides essential support for animals and vertebrates on this planet. Liver
disease is a potentially fatal condition with no warning signs in the human body. The
patient’s prognosis would greatly benefit from an early diagnosis of liver illness. The
incidence of liver tumours is high, making it one of the most lethal forms of cancer. Ra-
diologists face major challenges in the early analysis and accurate staging of liver cancer.
The United States reports that liver cancer ranks as the tenth foremost cause of cancer
overall, the fifth foremost cause of cancer death in men, and the ninth leading motive of
cancer [1,2]. When cancer is identified at an early stage, the rate of survival is significantly
higher. When looking for liver tumours, CT is one of the most important and effective
imaging methods [3,4]. Furthermore, CT provides entire liver pictures by contrast media
injection and “multi-phase sequential scans” [5]. Due to the complexity of the CT image,
manual segmentation adds significant time to the clinical workflow.

Segmentation is a crucial step in image processing and is also one of the more complex
procedures involved in this field [6,7]. Automatically separating the tumour location from
the liver is difficult due to factors including the liver’s varying size and shape among
patients. In addition, when compared to other linked organs, such as the stomach and
spleen, the liver’s intensity appears to be consistent throughout both high and low-contrast
images [8,9]. In addition, images with low contrast and an ambiguous lesion shape make
automatic segmentation of liver cancers challenging [10,11]. Issues with high susceptibility
to noisy outliers and over and under-segmentation can plague several image segmentation
methodologies such as active contrast segmentation, traditional segmentation technique,
watershed model, and region expansion, resulting in less accurate results in less time [12,13].

Because certain lesions, such as hemangioma and metastasis, look similar to the
liver, manual segmentation and organization of liver cuts from CT imageries is a lengthy
task, leading to confusion and less reliable results [14]. Consequently, there is an urgent
requirement for research into automated methods to aid radiotherapists in the diagnosis of
liver scratches from CT scans [15]. Figure 1 demonstrates how difficult it is to detect liver
regions with CT.
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Researchers have created a wide variety of sophisticated methods in recent decades
for autonomous liver segmentation. These methods may be loosely categorized into
three groups: intensity-based approaches, machine learning-based approaches, and deep
learning-based approaches. As a class, intensity-based tactics are known for their speedy
execution, and this is especially true of thresholding-based approaches [16,17], district
growth methods, and level-set methods. Most of these methods, however, are only semi-
automatic, leaving them vulnerable to noise and requiring human involvement with
complex stricture situations.

They allow for substantial gains in segmentation accuracy when used with ML-based
approaches [18–20]. Most machine learning (ML)-based devices, however, necessitate the
manual construction of specialized features, which significantly affects precision. CNN
and other deep learning-based methods have seen tremendous growth because of their
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sophisticated subsequent triumphs in a variety of areas, including target identification,
picture segmentation, and classification [21–23]. A Fully Convolutional Network (FCN) is
a popular deep learning-based technique that performs exceptionally well at classifying
images down to the pixel level. The accuracy of the deep learning-based methods is
significantly higher than that of existing ML-based methods [24]. There are, however,
constraints on both FCN and U-Net-based approaches. Both single network training and
cascade structure training employing the FCN-based method have a high failure rate
when it comes to producing reliable outcomes in the liver [17,25,26]. The fundamental
reason for this is that when evaluating the link among pixels, a reduction in the capacity to
notice subtle visual cues occurs [27]. While the U-Net-based method is effective, it refined
the feature map only after the U-Net convolution process was completed. Further, as the
network’s depth increases, the gradient vanishment problem becomes more easily triggered,
and the picture resolution rapidly decreases due to the network’s constant down-sampling
operation, which would negatively affect the regions [28]. Finally, the category imbalance
problem might lead to mistakes in areas and unclear liver boundaries. While a 3D network’s
learning effect would improve along with the z-axis information, in practice, this is difficult
to achieve due to memory constraints, making the choice of the slice number tricky [29].

In most cases requiring automatic liver segmentation, the aforementioned strategies
perform admirably. However, their accuracy and resilience remain insufficient when ap-
plied directly to clinical data, which severely limits their further use. The major contribution
of the research work is as mentioned below:

• Three steps are only included in this study such as pre-processing, segmentation,
and classification.

• Histogram Equalization and medium filtering are used for the improvement of the
input images.

• Enhanced Mask R-CNN is used to segment the liver tumor from the pre-processed
images. The research work introduces multistage optimization for deep learning
segmentation networks. The study used a multi-optimization training system by
utilizing stochastic gradient descent and adaptive moment estimation (Adam) with
preprocessed CT images in enhanced Mask-RCNN.

• APESTNet is introduced in this study for classification. Overfitting issues in the
Swin Transformer model are prevented by introducing Adversarial propagation in
the classifier.

The following paper is constructed as follows: Section 2 discusses the related works of
liver segmentation and classification. Section 3 presents a brief explanation of the proposed
model. The validation analysis of proposed segmentation and classification with existing
techniques are given in Section 4. Finally, the limitations and scientific contributions of the
work are described in Sections 5 and 6.

2. Related Works

Rela et al. [30] use an optimization-driven segmentation and classification perfect for
trying to apply a unique approach to analyzing and categorizing liver tumours. Five stages,
(a) pre-processing, (b) liver segmentation, (c) tumour segmentation, (d) feature extraction,
and (e) classification, are involved in the generated model’s execution of the task. The
acquired CT images are pre-processed in three steps, including contrast enhancement via
histogram equalization and noise filtering via the median filter. In the next step after image
preprocessing, CT abdominal images are segmented to isolate the liver using adaptive
thresholding to train the classifier using the tumour picture segmentation. Two deep
learning techniques, RNN and CNN, are utilized in the classification process. The CNN
receives the segmented image of the tumour, while the RNN receives the extracted features.
To further enhance the hidden neuron optimization, a hybrid classifier that has been further
refined is utilized. In addition, an enhanced meta-heuristic approach.

Liver area extraction from CT scan images was proposed by Ahmad et al. [31] using
a very lightweight CNN. In order to distinguish the liver from the background, the pro-
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posed CNN algorithm employs softmax across its three and two fully connected layers.
Using a random Gaussian distribution to seed weights, we were able to embed these
data while maintaining their semantic distances. Ga-CNN is the name of the proposed
network (Gaussian-weight initialization of CNN). The MICCAI SLiver’07, 3 Dircadb01, and
LiTS17 benchmark datasets are used in the experiments. Across all benchmark datasets,
experimental results demonstrate the superiority of the suggested technique.

Using generative adversarial networks (GANs) and Mask R-CNN, Wei et al. [32]
presented a technique for segmenting liver images. To begin, Mask R-CNN and GANs
were investigated further to improve pixel-wise classification, as most output images con-
tain noisy characteristics. To improve the segmentation performance, k-means clustering
was then utilized to lock the image aspect ratio and obtain additional crucial anchors.
Finally, we developed a GAN Mask R-CNN method, which outperformed state-of-the-art
alternatives and the Multi-Image Classification and Analysis Improvement (MICCAI) mea-
sures. The suggested approach also outperformed ten state-of-the-art algorithms on six
Boolean indications.

With its roots in the traditional U-Net, Wang et al. [33] presented a novel network
design dubbed SAR-U-Net. After each convolution in the U-Net encoder, a SE block is
presented to adaptively extract, hiding unimportant parts of the image and emphasizing
parts that are essential to the segmentation task at hand. Second, the ASPP is used to
acquire picture data at several scales and receptive fields by substituting the transition layer
and the output layer. Third, the typical convolution block is swapped out for the residual
structures to help with the gradient vanishment problem, and this causes the network to
improve accuracy from a much higher depth. Five widely-used measures, including the
Dice coefficient, VOE, RVD, ASD, and MSD, were employed in the LiTS17 database test.
The proposed technique was the most accurate when compared to other similar models.

In this study, Roy et al. [34] present a novel automatic method for segmenting and
classifying liver tumours. For classification purposes, the model employed a hybrid deep
learning-based Convolution Neural Network (HCNN) model hybrid. The classification
approach computes a multiclass categorization of the tumours discovered, while the
segmentation framework seeks to distinguish between normal and malignant liver tissue.
The focus of this study is on developing a method that eliminates the possibility of human
mistakes in the forecasting process. On the other hand, the suggested method has recall
values that are nearly as high as the best existing methods, and it delivers the highest
precision for lesion identification. On average, the suggested method properly categorizes
tumours in the liver as either hepatocellular carcinomas (HCC), malignant tumours other
than HCC, or benign tumours or cysts. This paper’s novelties lie in its implementation of
MSER to segment tumour lesions and its use of a hybrid CNN-based technique to classify
liver masses.

Hussain et al. [35] zeroes in on the Machine Learning (ML) techniques of multiclass
liver tumour classification using Random Forest (RF). There are four types of tumours
included in the dataset: hemangioma, cyst, hepatocellular carcinoma, and metastasis. The
photos were gray-scaled, and the contrast was enhanced using histogram equalization. The
Gabor filter was used to lessen the amount of background noise, and an image sharpening
technique was used to enhance what was already there. Employing texture, binary, his-
togram, and rotational, scalability, and translational (RST) methods, we were able to collect
55 features for each ROI, despite their varying pixel sizes. Twenty optimal features for
classification were extracted from the original set of 55 using the correlation-based feature
selection (CFS) method. The outcomes demonstrated that RF and RT were more accurate
(97.48% and 97.08%, respectively) than J48 and LMT. A more accurate diagnosis of liver
cancers will be possible with the aid of the revolutionary framework provided.

In order to categorize multi-organ 3D CT cancer, Kaur et al. [36] used a convolutional
neural network. The suggested method has been validated using a dataset consisting of
63503 CT scans of patients with liver cancer acquired from The Cancer Imaging Archive
(TCIA). This strategy uses a convolutional neural network (CNN) to classify CT pictures of
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liver cancer. Results for the classification have been calculated. When the data-enhanced
volume slices, the validation accuracy increases to 99.1% from the original volume slices’
accuracy of 98.7%. When compared to other volume slices, the test accuracy of the data-
augmented volume slice dataset is 93.1% higher on average. The primary benefit of this
effort will be in assisting the radiation therapist in narrowing their attention to a specific
region of the CT images.

Jeong et al. [37] offer an automated approach to segmenting the liver in CT scans and
estimating its volume using a deep learning-based segmentation system. The framework
was trained using data from 191 donors, and it showed promising results in four different
segmentation tasks: for the left lobe (0.789), the right lobe (0.869), the caudate lobe (0.955),
and the overall liver (0.899). Moreover, the R2 value for the volume estimate task was
as high as 0.980, 0.996, 0.953, and 0.996. The outcomes proved that this strategy delivers
precise and quantifiable liver segmentation outcomes, lowering the margin of error in liver
volume estimation.

Militello et al. [38] generate and validate a radiomic model with radiographic features
extracted from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
from a 1.5 T scanner. Images were acquired using an eight-channel breast coil in the axial
plane. The rationale behind this study is to demonstrate the feasibility of a radiomics-driven
model that can be integrated into clinical practice using only standard-of-care DCE-MRI
with the goal of reducing required image pre-processing.

The existing DL models didn’t focus on overfitting issues and generally used classifi-
cation techniques for classification and segmentation. This will decrease the classification
accuracy, and therefore, this research work focused on addressing the overfitting issue by
adding Adversarial Propagation to the Swin transformer model.

3. Materials and Methods

Radiologists currently perform a slice-by-slice examination of numerous CT scans to
segment liver tumours manually. Manual methods are more difficult and time-consuming.
Computer-assisted diagnosis relies on the segmented regions, and human segmentation
of images may compromise diagnostic accuracy. The main challenges of automatic liver
and liver tumour segmentation models are (a) low contrast between the liver tumour and
healthy tissue in CT images, (b) variable size, location, and shape of liver tumours, making
segmentation difficult; and (c) the liver is closely connected with the adjacent organs, and
the CT value of these organs will be similar to the livers.

“(a) Image pre-processing, (b) Liver and tumor segmentation, and (c) Classification”
are the three steps that make up the suggested liver tumour segmentation and classifica-
tion method. The CT images are first collected, then pre-processing techniques, such as
histogram equalization and median filtering are applied to them. Histogram equalization
is used to increase contrast, and median filtering is used to reduce noise in the final image.

3.1. Dataset and Implementation

The experiment makes use of the labeled training sets from the LiTS17 2 and SLiver073
datasets. There is a wide range of sampling techniques included in the 131–3 D abdominal
CT scan sets that make up the LiTS17-Training dataset. With an in-plane resolution of
0.55 mm × 1.0 mm and inter-slice spacing of 0.45 mm × 6.0 mm, CT images and labels
have a 512 × 512 pixel size. From a total of 131 datasets, 121 were chosen at random for
use in our experiment’s training phase, while the remaining 10 were employed in the
experiment’s testing phase. Additionally, all 20 datasets from the SLiver07-Training dataset
were used for evaluation. Each CT image in this dataset is 512 × 512 pixels in size.

During training, the learning rate (lr) starts at 0.001 and decreases by 0.005 per four
training iterations using the Formula (1):

lr = initial lr (epoch/step scope) (1)
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where early lr and step size are both constants. For this purpose, the tried-and-true
stochastic gradient descent (SGD) algorithm was employed.

It was empirically determined that a batch size of 4 was optimal for running the
suggested approach on our GPU with 11 GB of memory. Epoch is empirically chosen to
60 to guarantee efficient training, as this is the point around which the majority of the
training converges. All the tests are conducted on a workstation equipped with Ubuntu
(Canonical Ltd., London, UK).

3.2. Image Pre-Processing

The histogram equalization and median filtering method are used for preparing the
raw CT abdominal picture.

Histogram Equalization

It’s used as a preliminary processing step since it adjusts an image’s brightness to boost
its contrast. Let Inim be the input picture and define pixel value as the matrix of integer pixel
intensities between 0 and 1. The number of intensity values is represented by INV, with a
maximum value of 256 being the norm. Equation notation for the normalized histogram
NHS of InHE with a bin to possible intensity (2). In this case, HE = 0, 1, . . . , (INV − 1).
The equation for the histogram-normalized image is (3) [39]:

NHS =
Number o f pixels with density he

Total number o f pixels
(2)

InHE = f loor

(INV − 1)
Inim

(i,Q)

∑
he=0

NHS

 (3)

The term f loor() in the aforementioned equation rounds down to the next integer
value. Thus, a median filter is applied to further smooth out the histogram-equalized
image InHE. Filtering data by taking the middle value [39]: Restricting low- and high-
frequency pixels, as this filter does, removes noise from an image, making it easier to see
and appreciate its edges. If you want to eliminate the noise in your liver image, try using
a non-linear filter, such as median filtering. This filter’s primary function is to replace
noisy pixels with the image’s median pixel value, which is calculated by ranking each pixel
according to its grayscale value. When the median filter is applied to the input image, HE,
we achieved the resulting image MF, as shown in Equation (4).

InMF(x, y) = med
{

InHE(x− u, y− v)u, v ∈ H
}

(4)

The original image and the median filtered image are represented by InHE and InMF,
respectively, in Equation (4). As an added bonus, H represents a 2-dimensional mask.
Since this is the last step in the pre-processing phase, the resulting picture, InMF, is next
processed using liver segmentation.

3.3. Segmentation Using Enhanced M-RCNN

The state-of-the-art in instance picture segmentation is the mask-RCNN framework,
which the proposed method builds on. This framework has shown outstanding perfor-
mance in a number of image segmentation studies. Figure 2 depicts the major steps that
make up the proposed enhanced M-RCNN method: Backbone, Neck, DenseHead, and
ROIHead (Region of Interest Head).

(1) The Backbone converts the incoming image into a raw feature map. Here, we employ
a variant of ResNet-50-based on the design.

(2) The Neck joins the Spine to the Head. The original feature map is refined and
rearranged. It has a vertical corridor and horizontal branches. To produce a feature
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pyramid map of the same size as the raw feature map, the top-bottom route is used.
Convolutional add operations between two parallel pathways’ corresponding levels
characterize lateral linkages.

(3) Third, the Dense Head can be used to perform dense placements of feature maps. The
RPN examines each area and makes the best guess as to whether or not an object is
present. The RPN’s main benefit is that it doesn’t need to look at the real image itself.
Through the use of a fixed number of anchor boxes, the network performs a rapid
scan of the feature map.

(4) ROIHead (BBoxHead, MaskHead): Using ROIAlign, extract features that affect the
ROI from different feature maps while maintaining their precise spatial placements.
This section takes in ROI features and then predicts task-related outcomes based on
those features. At this point, you’ll be doing two things at once:

a. In the detection branch, the location of the bounding box (BBoxHead) is identified
and classified for intervertebral disc (IVD) detection.

b. In the segmentation node, the FCN created the IVD image segmentation.
b. MaskHead.
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Classification loss and mask loss are all summed together unweighted to form the
loss function. SGD optimization and the Adam optimization approaches are employed by
an enhanced M-RCNN. Training makes use of SGD and Adam optimization. To identify
global optimums, the SGD is effective and simple to utilize. When trying to find a local
optimum, SGD fails and becomes difficult to employ. When it comes to optimizing sparse
gradients in noisy situations, Adam optimization combines the best features of the adaptive
gradient and root mean square propagation to create an effective technique.

At its core, our feature extractor is a ResNet-50 that has been initialized using ImageNet-
trained weights. Xavier initialization is used for all other weights (such as the RPN). To ac-
complish our tasks, a system with a single graphics processing unit is employed. The initial
mask-RCNN used a batch size of 16. There are three distinct stages to the training process,
the first of which involves simply training the MaskHead and not the projected ResNet-50
backbone. Parts of the backbone [beginning at layer 4 (CN4)] and the prediction heads
(DenseHead and ROIHead) are fine-tuned in the second stage. The third and final stage
involves joint training of the model’s constituent parts (the “heads” and the “backbone”).
The study employs liver image data with SGD optimization with Adam optimization dur-
ing the third and final stage. Training is slowed to a crawl by setting alpha = 1.0 × 10 −6

(learning rate or step size), beta1 = 0.9, beta2 = 0.999, and epsilon = 1 × 10 −8.
Starting with the smallest feature map and working our way down to larger ones via

upscale operations, the study employs this top-bottom strategy to build final feature maps.
A feature map is produced in layer two of the diagram, and its use of 1 × 1 convolutions
reduces the total number of channels to 256. The up-sampled output from the previous



Cancers 2023, 15, 330 8 of 19

cycle is then combined with these components. The outputs of this procedure are fed into a
33-convolution layer with stride 2 to generate the last four feature maps (FP2, FP3, FP4, and
FP5). Max-pooling from FP5 yields FP6, which is considered the fifth feature map. Using
these five feature maps, RPN may create candidate object bounding boxes. However, when
associating with ROIs, only four feature maps (FP2, FP3, FP4, and FP5) are used.

A series of convolutional layers, followed by batch normalization and the ReLU
activation function, are standard fare in the original ResNet-50 architecture’s convolutional
blocks and identity blocks. To better deal with training data that is jumbled together, the
study employs group normalization and dropout regularization and makes many tweaks
to these methods. The enhanced M-RCNN makes use of high-definition training data.
Due to this, the study can only process a maximum of two photos at a time in a batch.
While a small batch size can lead to an inaccurate estimation of the batch statistics, a big
batch size is necessary for effective batch normalization. The model error may increase
dramatically if the batch size is decreased. In this case, dropout regularization is applied
after group normalization. To avoid model overfitting and boost the generalization effect,
regularization is a must in deep learning. To eliminate co-adaptation issues among the
hidden nodes of deep feedforward neural networks, the dropout regularization strategy
has been effectively used in several deep learning models.

Loss Functions

In enhanced M-RCNN, the loss is computed as a total of losses at each stage of the
model. The cost represents the weights that each stage of the model should have. For
classification and bounding box regression, the ROIAlign output is fed into the BBo × Head,
while for segmentation, the output is fed into the MaskHead. The output of the FCN layer is
sent into a softmax layer, which performs the classification utilizing all of the characteristics.
The MOM-RCNN loss function demonstrates the deviation between the predicted and
observed values. As a result, the study presents a single loss function for training the
bounded RCNN’s box refinement regression, class prediction classification, and mask
prediction generation. Mask prediction generation loss (Lmask) is only obtained from mask
prediction generation stages, while class prediction classification loss Lr,class and Lm,class
and bounding box refinement regression loss are obtained from both the RPN and mask
prediction generation stages. It is only necessary to specify the L mask once per class,
which eliminates output competition amongst masks. The resulting enhanced M-RCNN
loss function is defined as (5):

Lenhacned M−RCNN = Lr,class + Lm,class + Lr,box + Lm,box + Lmask (5)

where Lr,class: This is the monetary cost associated with an RPN’s mistaken identification
of anchor boxes (the presence/absence of an object). In cases where the final output model
is not picking up on many objects, this value should be high so that RPN can record it.
Lr,box: What this means is that the RPN is quite precise in its localization. When the object
is recognized, but its bounding box needs adjusting, this is what you utilize to fine-tune the
detection. Lm,class: This is the cost associated with misidentifying an item in the designated
area. In the likely scenario where the object is recognized from the image but incorrectly
labeled, this probability is high. Lm,box: To put it another way, this is the same as the “loss”
calculated when pinpointing the precise location of the boundary of the specifically named
class. It’s high if the object is properly classified, but localization is off. Lmask: Masks were
made based on the things that were detected. Therefore, this is related.

The class prediction organization error (Lr,class and Lm,class) is calculated by (6):

Lr,class =
1

Mclass
∑i − log[pr∗i pri + (1− pr∗i )(1− pri)] (6)
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where MM class is the total number of classes and pri is the likelihood that the ith region
of interest (ROI) contains a positive sample (liver). If the ROIs are comprised of positive
samples, then =1, and else it will be 0. Lm,class follows the same formula.

Regression loss Lr,class and Lm,class are calculated by plugging these two values into
an Equation (7):

Lr,box =
1

Mregress
∑

i
pr∗i S(transi, trans∗i ) (7)

S() is a smooth function where M regress is the sum of pixels in the feature map, transi
shows Lm,box follows the same formula. The loss L mask in mask prediction generation is
calculated by (8):

Lmask = −
1
n2 ∑

1≤x,y≤n

[
lblp

xy =
(
1− lblxy

)
log
(

1− lbl2
xy

)]
(8)

where the label value at position (x, y) is denoted by lblxy in the n by n region, and the
predicted value for the p-th class is denoted by lblp

xy.

3.4. Classification

Though the transformer was first developed for processing natural language se-
quences, its application to CNN for image processing is to consider the picture as a matrix
for convolution operation. Unfortunately, CNN is not well-suited for direct usage in pic-
ture feature extraction. That’s why patching techniques, such as patch embedding, patch
merging, and masking are used.

3.4.1. Patch Embedding

Patch partition is used to divide an RGB map into individual patches that do not
overlap. Here, the size of the patch is 4 × 4, which is multiplied by the RGB channels to
yield a total size, i.e., 4 × 4 × 3 = 48. To generate a feature matrix, we simply project the
refined patchwork to the required dimensions.

3.4.2. Patch Merging

After partitioning the obtained feature matrix into four 22 windows and merging their
respective positions, the resulting four feature matrices are concatenated.

3.4.3. Mask

When the pixels are subsequently relocated, the mask will only allow the window to
focus on the continuous portion, reducing the influence of ingesting. If you shift the matrix
to the right, the original window in the bottom right corner will be found. The size of the
shift is proportional to window size and may be calculated using the following formula.

s =
[w

2

]
(9)

for each given shift s, the window width w must be specified.
Because the region visible in the window to the right and below does not border the

section in the original matrix, it must be separated from it using the mask matrix. Both the
vertical and horizontal slicing areas are [0,-window size),[-window size,-shift size),[-shift
size]. The concept behind the window partition (function window partition) for the labeled
mask matrix is to equally split the window size into blocks of [H/w] rows [H/w] columns
and combine the dimensions for the number and the batch size. The original matrix mask
will be subdivided into smaller windows so that they can be individually counted as
window units.

In Figure 3, the overall design of the proposed SwinNet is seen. Encoder, bottleneck,
decoder, and skip links make up SwinNet. Swin Transformer blocks are Swin-fundamental
Unet’s building block [40]. The medical images are divided into 4 × 4 non-overlapping
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patches for the encoder to use in transforming the inputs into sequence embeddings. After
applying this partitioning strategy, the feature dimension of each patch is 4 × 4 × 3 = 48.
Furthermore, the dimensions of the projected features are embedded into an arbitrary
dimension using a linear embedding layer (represented as C). To create the hierarchical
feature representations, the modified patch tokens are fed into multiple Swin Transformer
blocks and patch merging layers. When it comes to downsampling and dimension expan-
sion, the patch merging layer is in charge, whereas the Swin Transformer block is in charge
of feature representation learning. We created a symmetric transformer-based decoder
after being inspired by U-Net [24]. The decoder uses a Swin Transformer block and a
patch-expanding layer. To compensate for the reduction in spatial detail brought on by
down-sampling, the encoder’s multiscale features are fused with the retrieved context
features via skip connections. A patch expanding layer, as opposed to a patch merging layer,
is purpose-built for up-sampling. Through an up-sampling ratio of 2, the patch expanding
layer converts 2D feature maps into 4D feature maps. The segmentation predictions at the
pixel level are generated by applying a linear projection layer to the up-sampled features,
and the input resolution of the feature maps is restored via a 4 up-sampling operation
carried out by the final patch expanding layer. Our breakdown of the blocks’ descriptions
would go as follows:
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3.4.4. Swin Transformer Block

In place of the standard multi-head self-attention (MSA) module, the swin transformer
block [41] is constructed using shifted windows. Identical transformer pairs, as depicted
in Figure 4. Each swin transformer block consists of LayerNorm (LN) layers, multi-head
self-attention modules, residual connections, and two-layer MLPs with GELU non-linearity.
A shifted window-based multi-head self-attention (SW-MSA) module is used in the first
transformer block, while a window-based multi-head self-attention (W-MSA) module is
used in the second. Continuous swin transformer blocks are created using this type of
window partitioning (10)–(13):

ẑl = W −MSA
(

LN
(

zl−1
))

+ zl−1 (10)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (11)

ẑl+1 = SW −MSA
(

LN
(

zl
))

+ zl (12)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (13)

where ẑl and zl stand for the results produced by the lth block’s SW-MSA module and the
lth block’s MLP module, respectively. Self-attention is calculated in the same way as in
earlier publications [42,43] (14):

Atention(Q, K, V) = So f tMax
(

QKT
√

d
+ B

)
V (14)

where Q, K, and V are the matrices in the space R(M2 d). The sum of patches in a window,
M2, and the measurement of the query, d, are both variables. Furthermore, B is populated
with numbers derived from the bias matrix B = R((2M− 1)(2M + 1)).
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3.4.5. Encoder

Tokenized inputs in C-dimensions at a resolution of H/4 W/4 are sent into two
successive Swin Transformer blocks in the encoder for representation learning with the
same feature dimension and resolution. At the same time, the patch merging layer will
double the feature dimension while halving the token count. In the encoder, this process
will be performed three times.

Integration layer for patches: The patch merging layer takes the input patches and
combines the four subsets into one. This type of processing will result in a 2× down
sampling of feature resolution. Moreover, a linear layer is applied to the concatenated
features in order to reduce the feature dimension by a factor of four, making it equal to the
original size of two.
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3.4.6. Bottleneck

Since Transformer cannot be converged [44], the bottleneck utilized to learn the deep
feature representation is made up of just two successive Swin Transformer blocks. Both the
feature size and resolution are maintained in the bottleneck.

3.4.7. Decoder

The symmetric decoder is constructed using the same Swin Transformer block that
was used in the encoder. Due to this, we up-sample the deep features collected by the
decoder using the patch expanding layer rather than the patch merging layer. When the
feature dimension is doubled.

Flare-up Expanding Layer: In order to raise the feature dimension from its initial value
of (W/32 H/328 C) by 2 prior to up-sampling the features. The input characteristics are
then rearrange-operated to increase their resolution by a factor of two and decrease their
dimension by a factor of four (from W/32 H/3216 C to W/16 H/164 C).

3.4.8. Skip Connection

To combine the encoder’s multi-scale characteristics with the up-sampled features, we
use skip connections, similar to how the U-Net does. As a means of mitigating the loss
of spatial information brought on by down-sampling, we join together both shallow and
deep features. After an up-sampling layer, a linear layer is applied, maintaining the same
dimensionality of the concatenated features as the up-sampled features. In this network,
overfitting is a major issue that must be resolved to attain high classification accuracy. For
this issue, adversarial propagation (AdvProp) [45] is used as an improved training scheme,
which is used as a separate auxiliary batch norm for the training samples.

4. Results and Discussion
4.1. Segmentation Results
Evaluation Metrics for Segmentation

Dice coefficient (DC), Volume overlap error (VOE), Relative volume error (RVD),
Average symmetric surface distance (ASD), and maximum surface distance (MSD) are the
five most widely used metrics for assessing liver segmentation (MSD). The meanings of the
five metrics are as follows, with A being the liver segmentation result and B representing
the ground truth:

Dice coefficient (DC): the resemblance between two sets, with a range of (0,1). Greater
values indicate more precise segmentation (15).

Dice(A, B) =
2|A ∩ B|
|A|+ |B| (15)

Volume Overlap Error (VOE): volumetric discrepancy between segmented and
raw data (16).

VOE = 1− |A ∩ B|
|A ∩ B| (16)

RVD: Whether the result is over-segmented is measured with this metric. Values closer
to 0 indicate more precise segmentation (17)–(19).

RVD(A, B) =
|B| − |A|
|A| (17)

ASD(A, B) =
1

|S(A)|+ |S(B)|

 ∑
pεS(A)

d(p, S(B)) + ∑
q∈S(B)

d(q, S(A))

 (18)

MSD(A, B) = max
{

max
p∈S(A)d(p, S(B)), max

q∈S(B)d(p, S(A))
}

(19)
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The dice measure of proposed enhanced M-RCNN achieved 0.957 on average results,
where the ASD is 1.544, 0.095 of VOE, 29.144 mm of MSD, and −0.0084 of RVD on average
results. A better Dice coefficient means better segmentation accuracy for an efficient
proposed model. Here, the proposed model achieved better Dice, which is proved in the
above Table 1. Table 2 presents the comparative analysis of the proposed segmentation
model with existing techniques on the second dataset.

Table 1. The results of proposed segmentation technique on 10 LiTS17-Training datasets.

Case Num VOE ASD (mm) MSD (mm) RVD Dice

1 0.103 1.568 28.453 −0.029 0.955
2 0.089 1.471 34.951 −0.033 0.963
3 0.100 1.382 31.259 −0.049 0.956
4 0.097 1.494 25.494 −0.048 0.968
5 0.114 1.797 28.315 −0.040 0.949
6 0.107 1.933 29.756 −0.038 0.953
7 0.094 1.229 30.657 0.034 0.960
8 0.073 0.955 39.421 0.043 0.961
9 0.086 1.673 34.598 0.036 0.954

10 0.090 1.863 28.534 0.040 0.952
Avg 0.095 1.544 29.144 −0.0084 0.957

Table 2. The results of a quantitative comparison with approaches on 20 Sliver07-Training datasets.

Methods Dice (%) VOE (%) RVD (%) ASD (mm) MSD (mm)

Adaptive Thresholding [30] 95.60 ± 3.41 8.23 ± 5.89 −2.38 ± 2.16 2.19 ± 0.38 36.69 ± 1.45
Ga-CNN [31] 96.94 ± 1.78 5.31 ± 3.48 −0.54 ± 2.24 1.95 ± 0.34 30.66 ± 2.03

GAN Mask R-CNN [32] 96.66 ± 2.19 6.38 ± 3.93 −1.29 ± 3.58 1.80 ± 0.38 28.30 ± 2.05
Proposed Enhanced

M-RCNN model 97.31 ± 1.49 5.37 ± 3.27 −1.08 ± 2.06 1.85 ± 0.30 27.45 ± 1.89

In Table 2, the experiments represent the Quantitative comparison with methods on
20 Sliver07-Training datasets. Here we have used different evaluations for the proposed
method. Based on the analysis, it is clearly proven that the proposed model achieved better
results than existing techniques. In the next section, the proposed classifier’s validation is
carried out, and the results are provided.

4.2. Classification Results
4.2.1. Performance Measure for Classification

Our ideal and comparable baseline projections are evaluated using a wide range of
indicators. An exhaustive list of evaluation criteria is provided below:

• Accuracy: On test samples, accuracy is referred to as “accuracy.”
• Precision: In the context of predictive value, precision refers to a positive value and is

the ratio of genuine positive models to the total number of false positive samples.
• Recall: Classifier performance can be evaluated using this metric. Alternatively known

as Sensitivity or True Positive Rate, which describes an organization model, Recall
discards a positive prediction if it’s not accurate.

• F1: Classification is an example of a machine learning task for which this measure is
well-known. It is the arithmetic mean of the estimates’ precision and recall.
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4.2.2. Validation Analysis Using 70% of Training Data–30% of Testing Data

In the above Table 3 represents the comparative Analysis of the Proposed Model. In
these evaluations, the proposed model achieves better performance than other models,
such as the proposed model accuracy of 95.62%, F-1 measure of 94.53%, precision of 98.32%,
and recall of 94.62%, respectively. However, the existing techniques achieved nearly 92% to
94% accuracy, 93% to 96% precision, 89% to 92% recall, and 87% to 92% F1-measure.

Table 3. Comparative Analysis of Proposed Model.

Model Accuracy Precision Recall F1

CNN-RNN [30] 80.10 87.21 80.15 80.43
Ga-CNN [31] 85.71 84.32 85.93 83.45

GAN-R-CNN [32] 92.10 92.43 92.15 91.68
SAR-U-Net [33] 92.46 93.48 92.44 91.81

HCNN [34] 89.52 90.21 89.54 89.03
RF [35] 94.53 96.61 92.52 92.24

CNN [36] 94.16 96.17 92.32 92.10
Proposed APESTNet 95.62 98.32 94.62 94.53

4.2.3. Validation Analysis Using 60% of Training Data–40% of Testing Data

In the Table 4, the results represent the Comparative Analysis of the Proposed Model.
In these evaluations, the proposed model data is split into 60–40% percentages, and the
performance achieves better performance than other models. For instance, the proposed
model has an accuracy of 94.32% and a recall of 93.24%, respectively. Here, data plays a
major role in the performance analysis, which is clearly proven in Figures 5–8.
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The Table 5 represents the Comparative Analysis of the Proposed Model. From
these validations, it proves that the performance of the proposed model achieves better
performance than other models. For instance, the proposed model training period is 390.33,
and the execution time is 0.01128 (s), respectively.
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Proposed APESTNet 94.32 99.95 93.24 96.02

Table 5. Comparison of the proposed model for different time executions.

Model Training Time (s) Testing Time (s) Execution Time (s)

CNN-RNN [30] 630.01 69.17 0.01233

Ga-CNN [31] 450.53 67.38 0.01369

GAN-R-CNN [32] 543.21 65.89 0.01369

SAR-U-Net [33] 577.66 63.71 0.01657

CNN [34] 480.23 60.41 0. 01309

RF [35] 583.42 59.78 0. 01297

CNN [36] 423.17 59.192 0. 01289

Proposed APESTNet 390.33 57.621 0.01128

5. Limitation

While the proposed methodology yielded some promising outcomes, there remains
room for improvement. The CT pictures are 3D, but the suggested method is built on a 2D
network; thus, it can easily lose crucial context information along the z-axis. In addition,
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the proposed technique may produce substantial mistakes around the boundary when the
liver margin has lesions or tumour abnormalities.

6. Conclusions

This research introduces a novel model called APESTNet to improve the classifi-
cation and categorization of liver tumours. The built-model consists of three phases:
pre-processing, segmentation, and classification. The acquired CT images were subjected
to histogram equalization and a median filtering technique before further analysis could be
performed. After the necessary steps were taken to prepare the data, a tumour was seg-
mented using an upgraded mask R-CNN model. The classification is then performed later
by an interactively learning Swin Transformer block, the core unit for feature representation
and long-range semantic information. In particular, the proposed strategy improved signif-
icantly and was very resilient while dealing with small liver pieces, discontinuous liver
regions, and fuzzy liver boundaries. The experimental results confirm that the proposed
APESTNet is more effective in classifying liver tumours than the current state-of-the-art
models. Without compromising accuracy, the proposed method conserved resources. How-
ever, the proposed method is prone to slight over-segmentation or under-segmentation
errors when dealing with lesions or tumours at the liver boundary. Therefore our future
work will concentrate on completely utilizing the z-axis information in 3D to reduce errors.
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