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Simple Summary: A mass spectrometry (MS) proteomics and molecular pathway study was applied
to serum samples of patients with ovarian serous carcinoma administered the FOLFOX-4 drug
combination protocol, before the second cycle of therapy. This exploratory study aimed at identifying
a protein panel that could be significantly modulated during two different collection time intervals
and associated with patient response to therapy. The label-free differential MS proteomic analysis of
14 serum samples was conducted and identified 291 shared expressed proteins; 12 proteins resulted
in being significantly associated with response to treatment and time of sample collection. The
network enrichment analysis performed through STRING and other bioinformatic tools provided a
metadata validation of the panel in which the identified proteins were related to resistant ovarian
cancers at the molecular level. We concluded that the discovered protein panel that guided the
identification of the associated molecular pathways could be further explored in a higher number
of patients. Considering the lack of biomarkers that can guide the selection of further therapeutic
approaches after drug resistance appearance, our study may suggest a new direction in the discovery
and validation of a protein panel as biomarkers for future clinical application.

Abstract: Ovarian cancer is a highly lethal gynecological malignancy. Drug resistance rapidly occurs,
and different therapeutic approaches are needed. So far, no biomarkers have been discovered
to predict early response to therapies in the case of multi-treated ovarian cancer patients. The
aim of our investigation was to identify a protein panel and the molecular pathways involved in
chemotherapy response through a combination of studying proteomics and network enrichment
analysis by considering a subset of samples from a clinical setting. Differential mass spectrometry
studies were performed on 14 serum samples from patients with heavily pretreated platinum-resistant
ovarian cancer who received the FOLFOX-4 regimen as a salvage therapy. The serum was analyzed
at baseline time (T0) before FOLFOX-4 treatment, and before the second cycle of treatment (T1), with
the aim of understanding if it was possible, after a first treatment cycle, to detect significant proteome
changes that could be associated with patients responses to therapy. A total of 291 shared expressed
proteins was identified and 12 proteins were finally selected between patients who attained partial
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response or no-response to chemotherapy when both response to therapy and time dependence
(TO, T1) were considered in the statistical analysis. The protein panel included APOL1, GSN, GFI1,
LCATL, MNA, LYVE1, ROR1, SHBG, SOD3, TEC, VPS18, and ZNF573. Using a bioinformatics
network enrichment approach and metanalysis study, relationships between serum and cellular
proteins were identified. An analysis of protein networks was conducted and identified at least
three biological processes with functional and therapeutic significance in ovarian cancer, including
lipoproteins metabolic process, structural component modulation in relation to cellular apoptosis and
autophagy, and cellular oxidative stress response. Five proteins were almost independent from the
network (LYVE1, ROR1, TEC, GFI1, and ZNF573). All proteins were associated with response to drug-
resistant ovarian cancer resistant and were mechanistically connected to the pathways associated
with cancer arrest. These results can be the basis for extending a biomarker discovery process to a
clinical trial, as an early predictive tool of chemo-response to FOLFOX-4 of heavily treated ovarian
cancer patients and for supporting the oncologist to continue or to interrupt the therapy.

Keywords: ovarian cancer; FOLFOX-4; mass spectrometry proteomics; serum samples; time lapse
detection; network enrichment analysis; cancer molecular pathways; protein panel

1. Introduction

Ovarian cancer is the most lethal gynecological malignancy, and despite the relatively
high response rate to first-line standard chemotherapy, most patients develop recurrent
disease [1]. Treatment is performed with carboplatin in combination with paclitaxel, and
then other chemotherapeutic drugs are used such as topotecan and gemcitabine as second
line therapy, as well as pegylated liposomal doxorubicin hydrochloride (PLDH), alone or
alongside platinum drugs [2]. More recently, antiangiogenetic drugs or PARP inhibitors
have entered into clinical trials and therapy [3]. Patients who progress or relapse within 6
months after the end of the treatment have been reported to have the worst outcomes [4].
Therefore, these patients often undergo multiple chemotherapy courses to try to achieve
long-term remission and an acceptable quality of life. This approach raises the risk of
cumulative toxicity and/or absence of response. For this reason, new, effective, and
less toxic therapies for patients with recurrent and persistent disease are needed. Some
in vitro studies have indicated a potential synergy between oxaliplatin and 5-fluorouracil
(5-FU)/leucovorin (FOLFOX-4) [5,6]. While oxaliplatin is an alkylating agent, 5-FU is
the prodrug of the widely used inhibitor of thymidylate synthase (TS), namely 5-fluoro-
deoxyuridine-5'-monophosphate, (FAUMP) and it is incorporated in mRNA, thus, affecting
DNA and protein synthesis [7]. Leucovorin, i.e., folinic acid, has been reported to favor
TS inhibition and subsequent DN A-directed effects, because this folate analog is readily
converted into 5,10-methylenetetrahydrofolate, the TS cofactor needed for ternary-complex
formation [8,9]. This combination represents a standard regimen in the management of
some advanced tumors such as colorectal (CRC), gastric, and breast cancers [10-13], and
more recently, as salvage treatment in refractory or resistant ovarian cancer [14].

Circulating biomarkers detected in the serum of ovarian cancer patients are involved
in either the cause of a malignancy or a systemic response to a malignancy. These factors
may originate from several sources including the tumor itself, the surrounding stroma, or
systemic tissues involved in the host response. It is unclear how circulating biomolecules
are biochemically related to their respective producing sources and how their expression
change is associated with cancers. In general, the overlap between the expression of proteins
in cancer cells and in serum is limited. In the case of ovarian cancer, a tissue-derived effect
in serum has been suggested [15]. Investigations of chemotherapy mechanisms and the
discovery of the factors responsible for chemotherapy response and resistance may provide
a selection of alternative therapeutic options or chemo-sensitizing agents [16,17]. Several
techniques, including MALDI-TOF MS, ESI-TOF MS, and associated bioinformatics analysis,
have been proposed to investigate proteome changes during cancer treatment [18-24]. Almost
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all the available studies have been performed on samples collected before treatments, and
only a few investigations have been run on samples collected and analyzed sometime after
treatment and compared with data before treatment to correlate the changes in protein
levels with patients responses [18,19]. We wonder if we could apply a similar approach to
a difficult case, such as in serum samples derived from heavily pretreated ovarian serous
carcinomas patients observed in a routine clinical practice [14]. In this study, the chosen
patients were resistant to platinum drugs and had undergone chemotherapy with different
drug combinations, and then the FOLFOX-4 regimen as a salvage therapy. According to our
methodology, we started with an experimental approach for a serum sample MS analysis by
considering the differentially expressed proteins (DEP) between T0 and T1 in two groups
of patients, i.e., nonresponders (NR) and partial responders (PR), and an association of the
protein changes with patients’ responses was found. Finally, we compared the experimental
results with the results of a metadata analysis, which supported the biological significance
of the experimental finding. We considered that the protein panel identified was a useful
suggestion for performing a biomarker discovery on a larger number of patients. The
overall approach is described in Figure 1.
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Figure 1. Workflow of the protein identification process in ovarian cancer serum samples performed
through label free differential mass spectrometry analysis and integration with the bioinformatic
analysis.

2. Materials and Methods
2.1. Experimental Design

The current study is a retrospective translational analysis of serum samples from
patients who received FOLFOX-4 as salvage chemotherapy for the treatment of recurrent
ovarian carcinoma (OC). The medical scientific committee of the IRST Istituto Scientifico
Romagnolo per lo Studio e la Cura dei Tumori approved the study (protocol # 5108/V.3) [14].
All the patients shared the following characteristics from baseline serum collection (T0) to T1
collection: (i) no progression of the disease after the first cycle of FOLFOX-4 administration
(T1); (ii) no adverse effect reported after T1; (iii) distinction between PR and NR was
assessed according to the guidelines [25,26], with a follow-up evaluation 6 months after
the FOLFOX-4 cycle. The details are reported in Supplementary Materials S1 and Table S1.
The MS translational study consisted of collecting two serum samples from the patients,
in which the baseline sample was before treatment at TO and the second sample was
before the second cycle of treatment (T1). We selected 7 patients who shared a similar
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pharmacological treatment and, overall, evaluated 14 serum samples. According to our
methodology, we started with the experimental approach to serum sample MS analysis,
and then we statistically reduced the number of proteins that resulted in being significantly
differentially expressed to a panel of 12 proteins. On the resulting protein panel, we
performed a bioinformatic analysis through network enrichment proteomic tools (see
Section 2.5 below).

2.2. Serum Immunodepletion of Albumin and IgG’s

A ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit (Sigma-Aldrich) was
employed to remove albumin and IgG from the collected serum samples and to enrich
the samples with low abundant proteins (LAPs). First, the storage solution was removed,
and the columns were equilibrated, as reported by the vendor. Then, 50 uL of serum
samples were diluted with equilibration buffer and loaded onto the wet columns with
10 min incubation to promote binding between albumin/IgG and the resin.

To maximize the recovery of the unbound protein fractions (i.e., LAPs), the columns
were washed with 125 pL of equilibration buffer and centrifuged for 60 s. The obtained
aliquot contained the majority (>95%) of the LAPs (checked by SDS-page). To collect the
remaining trace amounts of unbound proteins from the column, 0.4 mL of ProteoPrep
immunoaffinity equilibration buffer were added and centrifuged at 8000 x g for 60 s. The
obtained LAP fractions were quantified with a Bradford assay on 96-wells plate.

2.3. Protein Digestion via Filter-Aided Sample Preparation (FASP)

First, 0.2 mg of LAPs were incubated with 20 uL of 0.1 M dithiothreitol (DTT, Sigma-
Aldrich, St Louis, MO, USA), 0.2% Protease Max trypsin enhancer (Promega, Madison,
WI, USA) in 50 mM ammonium bicarbonate (ABC, Sigma-Aldrich) on Microcon YM-
30 (Millipore, Burlington, MA, USA) filters at 55 °C for 30 min, and centrifuged at
14,000x g for 15 min. Then, 200 uL of UA buffer (8 M urea in 0.1 M Tris/HCI, pH 8.5)
and 100 pL of 50 uM iodoacetamide IAA (Sigma-Aldrich, St Louis, MO, USA) were added,
in two steps, to reduce disulfides and alkylate cysteines, followed by centrifugation at
14,000 x g for 15 min. The samples were digested overnight with 4 puL of 1 mg/mL trypsin
solution (Promega Corporation, Madison, WI, USA) in ABC at 37 °C, 250 rpm.

After adding 40 uL ABC, FASP filters were centrifuged again at 14,000 x g for 30 min to
collect hydrolyzed peptides. Finally, the samples were acidified with CF3COOH, desalted
with C18 SPE cartridge (7 mm x 3 mL, 3M Empore, Maplewood, MN, USA), and dried
down (Speedvac, Eppendorf, Hamburg, Germany). The samples were stored at —80 °C
until MS analysis.

2.4. LC-MS/MS Label-Free Quantification

The MS analysis was performed with an nLC coupled online with Impact HD™ URH-
TOF (Bruker Daltonics GmbH, Bemen, Germany). The samples were resuspended in mobile
phase, quantified by NanoDrop assay, and analyzed using an ultra-high resolution (UHR)
Impact HD™ QTOF mass spectrometer, at the University of Milano Bicocca, Monza. Each
sample was injected three times and separated with a Dionex nRSLC (Rapid Separation LC
nano, ThermoScientific, Sunnyvale, California, USA) before on-line desalting. A multistep
gradient ranging from 4 to 98% acetonitrile in 240 min at a flow rate of 300 nL/min was
applied [24]. Peptides were analyzed in data-dependent acquisition (DDA) mode and both
an internal mass calibration segment (Na Formate, 15 min length, before the beginning of
the gradient and the injection of the actual samples) and a 1221.9906 m/z lock mass, during
the proper sample analysis, were employed in each run to retain mass accuracy.

Raw spectral data from DataAnalysisTM v.4.0 Sp4 (Bruker Daltonics, Germany, GmbH,
Bemen, Germany) were processed with the Mascot search engine, through Mascot Daemon.
Database matching was restricted to human SwissProt (October 2019, 561,356 sequences and
201,858,328 residues) [27]. The searching parameters were set as follows: trypsin as enzyme,
carbamidomethyl (C) as fixed modifications, oxidation (M) as variable modification, 20 ppm
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mass tolerance for MS! and 0.05 Da for fragments. An automatic decoy database search for
FDR calculation and a built-in percolator algorithm for rescoring peptide-spectrum matches
were applied [28]. The Progenesis QI for proteomics v. 2.0 (Nonlinear Dynamics, Newcastle,
England) platform was used for label-free data elaboration and the determination of
the normalized relative abundances of identified proteins and peptides [29]. Briefly, the
alignment process was conducted based on the ion intensity maps of all imported runs.
To compensate for between-run variation in LC separation, and to maximize the overlay
across the data, alignment scores above 60% were accepted per each run. All matched
proteins were used for total ion current (TIC) normalization. The Mascot software search
engine was used for protein identification, setting the “search parameters” software option
as described above. Only non-conflicting peptides were selected for determining the fold
change to prevent the overlapping of trends derived from different proteins that share the
same peptides.

The results were validated with an UHPLC coupled to an Orbitrap Q-Exactive equipped
with a micro-ESI (Thermo Fisher Scientific, Waltham, MA, USA). Two samples (F10 and
F12) at TO were processed as described in Sections 2.3 and 2.4 and analyzed in replicate.
Inclusion lists of 3—4 unique peptides per each DEP were generated with PeptideAtlas [30]
and included in a target list of the software (XCalibur, Thermo Fisher). Peptides were sepa-
rated with 180 min gradient in a C18 Hypersil Gold column, 100 x 2.1 mm, 1.9 pm column
(Thermo Fisher Scientific, Waltham, MA, USA) in ddMS? acquisition mode (Top8). Peak
lists were analyzed with Mascot Matrix for protein matching and Progenesis QI Proteomics
(Nonlinear Dynamics, Newcastle, UK) [31,32]. One-way ANOVA was employed to perform
the differential analysis. The MS parameters and statistical analysis of peptides/proteins
used for the semitargeted validation experiment are described in Supplementary Materials,
Tables 52 and S3.

2.5. Proteins Network Analysis

The STRING (www.string.org) [33] (accessed on 2 October 2021) protein—protein
interaction networks functional enrichment analysis was performed as follows: the input
proteins were the 12 selected proteins plus thymidylate synthase (TYMS) and dihydrofolate
reductase (DHFR). The addition of TYMS and DHEFR is justified by the fact that 5-FU
nucleotide targets TYMS and the TS cycle, and therefore, also affects DHFR concentrations.
Leucovorin counteracts DHFR activity of the dihydrofolic acid reduction effect. The analysis
settings adopted were the following: multiple proteins mode; interaction score in the range
0.400-0.700 (medium to high confidence), depending on the experiment’s objectives; all
selection criteria checked, excluding neighborhood; 1st shell max 10 interactions; 2nd shell max
50 interactions; confidence mode represented by the edge thickness related to the strength of
the confidence (the highest, the larger). Other specific parameters included: number of nodes,
73; number of edges, 409; average node degree, 9.86; average local clustering coefficient, 0.663:
expected number of edges, 174; PPI enrichment p-value <1.0 x 10~'°. We observed that by
changing the parameter settings, the global network did not change regarding the main
biological pathways present during the STRING enrichment process. The SOD-GPX redox
biological process was always present together with the vesicles and trafficking system and
the lipoprotein network.

2.5.1. Proteins Localization

Gene localization was analyzed according to UniProtKB [34] and the Compartment
Subcellular localization database, as well as cellular component ontologies visualized by
the Gene Ontology (GO) Consortium (GeneCards, https:/ /www.genecards.org, accessed
on 2 October 2021) [35]. Subcellular localizations from compartment localization data were
integrated from the literature manual curation, high-throughput microscopy-based screens,
predictions from primary sequence, and automatic text mining [36]. Unified confidence
scores of the localization evidence were assigned based on evidence type and source and
ranged from 1 (low confidence) to 5 (high confidence) [37]. The assumption was made
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that the proteins in the extracellular space could be present in the serum [38]. Original
content and additional information can be found at the Human Protein Atlas available at
www.proteinatlas.org [39] and GeneCards [35].

2.5.2. Local Networks

Local network interactions generated for each of the 12 proteins of the panel were
obtained through STRING upon elaboration of data from GeneCards databases, Reac-
tome (https:/ /reactome.org, accessed on 2 October 2021) [39], and Panther (http://www.
pantherdb.org, accessed on 2 October 2021) [40]. For each protein, the minimal number of
interactions were considered that could explain the connections among the serum protein,
the membrane protein, and at least one intracellular protein. Relevant interconnections are
based on a confidence score >0.700 and p-value <1 x 10716,

2.6. Statistical Methods

The sample size was chosen according to the availability of heavily treated OC patients
who agreed to participate in the study. Despite the low numerosity of the sample to
statistically validate a single biomarker (i.e., this study is intended to provide only a first
step into drug resistance circulating markers); the statistical approach adopted during
MS analysis and metadata integration have been shown to provide robust outcomes [21].
All the serum samples were treated in duplicate and analyzed in triplicate in LC-MS to
eliminate both biochemical and instrumental biases. Statistical analyses were conducted
using R language and environment for statistical computing (R Foundation for Statistical
Computing, Vienna, Austria). A type I error of 5% was taken as the limit for two-sided
p-value statistical significance and all confidence intervals (CI) were reported as 95% CI.
Differential protein abundance intended as fold change (FC) over time between patient
response stratification was analyzed by mean of a paired t-test. A volcano plot was
adopted to show the results of the FC analysis and to highlight which proteins had a
statistically significant behavior change. Response to treatment contribution over time
and its interaction with the different timepoints was investigated by mean of mixed-effect
analysis of variance (ANOVA).

3. Results
3.1. Study Design

First, we developed the MS study to identify the detectable proteins, their charac-
terization, and their chemical properties such as MW and abundance. Then, statistical
analyses were performed to identify the DEPs and selection criteria were applied to pass
from about 12,000 proteins detected overall during the MS experiments (observations)
down to 291. After subsequent selection steps that included time response (T0-T1) and PR
or NR group response, 12 proteins (protein panel) were finally identified and their biologi-
cal roles were described in the context of cancers/ovarian cancer pathology. Then, their
profiles were studied in terms of time and response and reported in an expression profile
representation. The second level of investigation was based on bioinformatic analysis of
the metabolic network of the 12 identified proteins to characterize their interconnections
in human cells and their localizations in cells, on cellular membranes and outside cells,
by database analysis (STRING, GeneCards, Reactome and Panther). The process, first,
allowed the description of a global network, then a local network around each protein of
the panel was identified, and their intra-/extracellular localizations were characterized.
The third level was the annotation of the biological role of each of the selected proteins
in the cell response to FOLFOX-4, through metadata analysis and their connection with
ovarian cancer. The workflow design is reported in Figure 1.
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3.2. Protein Identification and Characterization (First Analysis Level)
3.2.1. Label-Free MS Proteomic Approach

Normalized protein abundance was the main parameter on which we analyzed 291
DEPs detected over two serum samples collected at TO and T1 for each of seven patients
(total 14 samples analyzed) and processed in three technical replicates, which resulted in a
total of 12,222 observations. Then, these proteins were analyzed to identify DEPs between
response groups. Firstly, we examined the differential protein abundance as fold change
(FC) over time between PR and NR and a paired t-test was applied considering an alfa error
<0.05 for statistical significance. The results from this analysis were reported by means of a
volcano plot (Figure 2a), and only a small subset of proteins (13/291) showed reproducible
statistically significant FC between the PR group versus NR group. The LCAT protein,
in Figure 2a, has no label because its FC is under lower threshold (FC = 0.9982). LCAT
(phosphatidylcholine-sterol acyltransferase) is indicated with the blue dot, which exceeds
the limit of p-value, but not that of FC. Ten out of fourteen DEPs showed a reduction of
logo,FC(T1/T0) in the PR group with respect to NR, confirming that downregulated proteins
outnumbered upregulated proteins (Table 1, right column). As expected, a confirmation
of DEPs identified (Table 1) that reported a statistically significant differential expression
between PR and NR groups at time TO and T1 was obtained also with the ANOVA test
(Table 2).

To confirm the identified protein list reported in Table 2, we applied a semitargeted
approach in which the proteotypic peptides of samples F10 and F12 at TO were analyzed
(Supplementary Materials S2 and Table S2, Table S3). The samples were selected because they
showed the largest differences in the protein profiles (raw AUC quantification of non-conflicting
peptides), as represented in the raw data report (doi.org/10.15490/fairdomhub.1.datafile.4074.1).
The sample analysis revealed the presence of the 12 proteins selected from this study
(Table 2). Data elaboration was robust and consistent with the primary label-free MS inves-
tigation reported in the manuscript. The results suggest that single proteotypic peptides
in the LC-MS/MS inclusion list can be used as a means to estimate the abundance of the
corresponding entire protein in serum samples (semitargeted approach). The description of the
work is reported in the in the raw data report (doi.org/10.15490/fairdomhub.1.datafile.4074.1)
associated with this manuscript (see data availability statement).

Table 1. Statistically significant DEPs between PR versus NR group at time TO and T1. Up- or
downregulation protein abundance was established by mean of a paired t-test. Statistically significant
p-values are reported together with the relative FC (proteins reported in Figure 2a showing p < 0.05).

PR Group NR Group

Protein 1log2(T1/T0) log2(T1/T0) t Test p-Value R:jglt{l/ll;]tli{on
Mean FC Mean FC
APOL1 —1.5447 0.5949 0.0156 Downregulation
CO8A —0.0363 —2.1393 0.0328 Upregulation
FA12 —0.2436 0.9692 0.028 Downregulation
FCGBP -0.79 1.3221 0.0023 Downregulation
GELS —0.5374 0.8473 0.0212 Downregulation
HABP2 —0.6816 1.2037 0.0244 Downregulation
IGHG1 —1.2833 0.8845 0.0105 Downregulation
IGM 0.6886 —0.504 0.0345 Upregulation
LCAT 0.8256 —0.1726 0.0345 Upregulation
LMNA —0.509 0.6646 0.0465 Downregulation
LYVE1 —1.8428 1.1198 0.0051 Downregulation
PGRP2 0.5958 —0.902 0.0079 Upregulation
ROR1 —0.5573 1.0462 0.0361 Downregulation
ZN573 —0.684 1.0665 0.0389 Downregulation
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Figure 2. (a) Volcano plot showing -log;(p-value) versus logy (FCr /FCnR). Horizontal lines indicate
0.05 (blue) and 0.01 (red) p-values. Proteins statistically significant (p < 0.05) and with a FC > 1
were reported alongside with their names. Protein in red dot fits the FC and statistical significance
criteria, blue dot fits only the statistical criteria, the green dot fits only the FC criteria, and the grey
dot does not fit either criteria. Proteins over the blue dashed line showing p < 0.05 are reported in
Table 1. Data for each protein were taken from the protein identification table of the MS analysis
elaboration. (Supplementary Materials doi.org/10.15490/fairdomhub.1.datafile.4074.1); (b) log,
protein abundance expression profile between T0 and T1 relative to the 10 proteins reported in Table 2.
SOD3 and VPS18, taken from Table S5a, are added as an example of non-intersecting proteins. The
red color is related to NR patients, while the black color is related to PR. When the red and black
lines intersect, it is intended that the contribution of the time in response status is relevant and,
consequently, the interaction between response and treatment as well. Data are elaborated from the
file named “Report progenesis _all rows_all data for biostatistics.doi.org/10.15490/fairdomhub.1.
datafile.4074.1.”
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Table 2. Proteins selected from those differentially expressed in Table S4 and ANOVA statistic for
time and response.

Interaction
Response to Treatment Timepoint Response x Timepoint
Proteins F Value p-Value F Value p-Value F Value p-Value
APOL1 0.06 0.8230 1.2 0.3241 12.92 0.0156
GELS 4.47 0.0881 15 0.2746 10.96 0.0212
GFI1 4.06 0.1001 0.27 0.6267 8.6 0.0325
LCAT 0.17 0.6939 222 0.1967 8.3 0.0345
LMNA 2.57 0.1699 0.54 0.4969 6.92 0.0465
LYVE1 0.07 0.8054 0.24 0.6471 22.65 0.0051
ROR1 0.3 0.6056 2.15 0.2024 10.51 0.0229
SHBG 0.01 0.9347 0.16 0.7064 6.74 0.0485
TEC 0.1 0.7751 9.81 0.0520 25.57 0.0149
ZNF573 0.05 0.8327 1.12 0.3380 8.41 0.0338

3.2.2. Protein Selection at T0-T1 Timepoints

Initially, we proceeded by statistically analyzing the DEP by means of a linear mixed-
effect analysis of variance (ANOVA) that allowed us to evaluate the independent contribu-
tion of time (TO-T1, timepoint) and response or their iterative effect on protein expression
(Supplementary Materials, Tables S4 and S5). Protein abundance in logy scale was chosen as
the dependent variable, while time and response to therapy were included as independent
covariates with a fixed effect. Lastly, the same study was conducted considering a random
effect. The results were interpreted as statistically significant when beta error was <0.20
and alfa error was <0.05.

Response to treatment has a statistically significant contribution on differential expres-
sion of five proteins (Table S5a), otherwise protein differential expression of a different
set of 27 proteins was identified as mainly driven independently by timepoint (Table S5b).
Lastly, 20 proteins demonstrated an iterative effect of treatment response and timepoint
on their differential expression (Table S5c). Table S5a shows proteins that are different
from those present in Table S5c. If we consider the baseline sample, the proteins associated
with patient outcome, and therefore, those which are potentially able to predict which
patients can respond to therapy or not, are different from those suggesting that the patients
are responding to therapy after the beginning of the same. Thus, the two protein panels
have a different meaning, with the latter being of more clinical interest. A time-dependent
ANOVA between NR and PR samples (TO0 vs. T1 timelapses) evidenced a list of significant
proteins (Table S5c¢), which was submitted to further analysis.

For the composition of the final panel, we progressed with the selection based on the
biological significance of the 20 proteins and their clinical relevance in cancer processes.
Then, during the network enrichment analysis process we added two proteins, SODE
(SOD3) and VPS18, as they were differentially expressed based on response to treatment
(Table S5a), and they played important roles in cellular pathways related to cancer pro-
tection from reactive oxygen intermediates (SOD3) and autophagy (VPS18), respectively,
(Table 3) [41].

3.2.3. Role of the Selected Proteins in Cancer Processes

A metadata investigation was performed to validate the proteins in the panel. The
up- or downregulation trend for each of the 12 proteins of the final panel at TO and T1, is
reported in Figure 2b. These trends are statistically significant and specifically influenced by
one or both variables (time and response) or by their interaction, which is the specific case
when they intersect. An intersection of the trends indicates that one of the two variables
influences the state of the other. In our case, the state of time (T0 and T1) influences the state
of the answer. Indeed, the group that had an overexpression at TO decreased at T1, and
vice versa. Only GSN, SOD3, and VPS18 proteins over 12 did not intersect. The biological
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properties of the 12 proteins of the panel are summarized in Table 3 and Table S6. The
biological roles of the 12 proteins and the variations of their expression with respect to
patient outcome and their roles in ovarian cancer are given below.

The lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) is a hyaluronic acid
receptor, which is selectively expressed in the endothelium of lymphatic capillaries [42].
Serum low LYVE-1 levels have been significantly associated with the occurrence of distant
metastases in some cancers [43]. LCAT and sex hormone-binding globulin (SHBG) have
been recorded as differentially expressed between PR and NR patients. SHBG is present in
serum and plasma (GeneCards). Although SHBG was not associated with overall risk of
ovarian cancer in one recent study [44], both LCAT and SHBG downregulation have been
reported to provide important information on the aggressiveness of the ovarian cancer [45].
This trend was also observed in our studies (Figure 2b), where both proteins decreased in
NR and increased in PR. It is worth noting that deregulated lamin-A /C (LMNA) expression
has been associated with nuclear shape, mechanical stability, and migration ability of cells
in ovarian cancer [46,47]. In our experiments, LMNA increased between T0 and T1 in NR
patients and decreased in PR patients (Figure 2b), therefore, the trend agreed with these
studies.

Two members of the tyrosine kinase family, non-receptor tyrosine-protein kinase Tec
(TEC) and receptor tyrosine kinase-like orphan receptor 1 (ROR1), were found differentially
expressed in PR with respect to NR, in baseline samples. TEC kinase, together with other
proteins, play a role in the intracellular signaling of both B and T lymphocytes, relevant
cells that contribute to the tumor microenvironment which is increasingly interested in
controlling cancer growth [48]. ROR1 overexpression has been associated with a poor
prognosis in several solid and hematological malignancies, including ovarian cancer [49,50]
and other malignancies [51]. The same trend was also observed for ROR1 that showed
higher expression at T1 in NR, while its expression was lower in PR (Figure 2b).

We observed lower gelsolin (GSN) levels in sensitive (PR) patients as compared with
their chemo-resistant counterparts (NR). GSN is considered to be one important determi-
nant for chemo-resistance, probably due to inhibition of the apoptosis pathways [52,53].
SOD3 (extracellular superoxide dismutase [Cu-Zn]) is the predominant antioxidant enzyme
secreted into the extracellular space, that affects drug delivery, and chemotherapeutic
effect on tumors [41,54]. It was selected because it significantly correlated with response to
treatment (Table S5b), but its level change was not correlated with time TO-T1. We observed
higher SOD3 levels in PR patients with respect to NR patients in samples before treatment
(Figure 2b), in agreement with the reported findings in the literature [54].

In our analysis, two zinc finger proteins were found to be differentially expressed be-
tween PR and NR patients: zinc finger protein (GFI1) and zinc finger protein 573 (ZNF573).
In both cases, the two proteins demonstrated a significant statistical effect of treatment
response and timepoint (Table S5¢) on their differential expression. The protein encoded by
ZNF573 decreased in PR, whereas increased in NR, at T1 time, suggesting a possible role
of this protein in the response to treatment. The function of ZNF573 is still undetermined,
and only a recent study has suggested that ZNF573 may be involved in cervical cancer
activating the cancer progression through the regulation of transcription or structural
integrity of cells [55].

We observed a similar trend for GFI1. Two recent studies reported that GFI1 has been
shown to favor the survival of myeloid cells in myeloproliferative disease [56] and tumor
maintenance in medulloblastoma [57].

Vacuolar protein sorting-associated protein 18 homolog (VPS18) was selected because
it was significantly correlated with response to treatment (Table S5b). It was found to be
overexpressed in PR with respect to NR in patients’ samples before treatment and was
slightly increased between T0 and T1 in both cases (Figure 2b). It is well known that VPS18
plays a key role in vesicle-mediated protein trafficking to lysosome including the endocytic
membrane transport and autophagic pathways [58,59].
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The role of apolipoproteins in cancer has not been explored deeply yet. In our analysis,
we found only apolipoprotein L1 (APOL1) differentially expressed between PR and NR
patients. APOL1 is a secreted high-density lipoprotein, which binds to apolipoprotein A-I.
It has been characterized as a novel Bcl-2 homology domain 3 (BH3)-only lipid binding
protein [60,61]. In our studies, APOL1 decreased at T1 in PR with respect to NR (Figure 2b).
Summarizing, the 12 proteins of the selected panel, considered to be relevant in the statisti-
cal analysis, are also confirmed to be relevant by metadata analysis. In fact, experiments in
the literature have suggested that the proteins of the panel and their trends have also been
similarly found in other ovarian cancer studies. In the next steps, we analyze how the 12
proteins are connected and which biological processes are involved using the enrichment
network analysis approach.

An RI cluster analysis with a zero inflated model was applied to the 12 DEPs to analyze
their behaviors both at TO only and with a differential model between T0 and T1. The most
significant clusters identified were APOL1 + GFI1 + LYVE1 (zI = 4.20) and LCAT + LMNA
(zI = 3.25) at baseline time only, whereas the cluster GFI1 + LCAT + LMNA was identified
with a T0-T1 analysis with a zI = 3.67. If a Q-test was applied to discard the outlier data
from proteomic triplicates (confidence interval >95%), the cluster APOL1 + GFI1 + LYVE1
emerged with a zI = 3.16. The results of the analysis are reported in Supplementary Material
57 and Table S7.

3.3. Enrichment of the Cellular Network of the Selected Protein Panel (Second Analysis Level)
Global Network Analysis

The serum proteins relate to membrane proteins, and intracellular proteins are con-
nected to each other through intracellular physical and functional networks. Therefore, it is
relevant to identify the meaning of these connections. As a starting point, we characterized
the panel of 12 proteins considering the overall metabolic network independently on the
proteins’ localization, (cytosol, membrane, or serum) applying a global network analysis
through STRING and GeneCards. This approach allowed the extraction of the necessary
information for further explanation of metabolic changes in response to treatment.

The first level of enrichment was the addition of thymidylate synthase (TYMS gene
encoding for TS protein) and dihydrofolate reductase (DHFR). TS and DHER represent the
main proteins of the TS cycle, and therefore, it is expected that 5-FU (FOLFOX-4) modulates
both [9,10,62]. Our MS experimental conditions did not allow identification of either TS and
DHER, as they are difficult to detect in differential proteomic experiments on tissue cancer
samples due to their nuclear compartmentalization and low physiological concentrations,
despite their recognized relevant role in cancer and drug resistance [62,63]. TYMS has also
been considered a potential prognostic biomarker of overall survival in patients with CRC,
where high TYMS levels predict for low overall survival [10].

The 12 selected proteins plus TS and DHFR were processed using STRING with their
annotation to highlight any common biological processes in which they are involved and
to identify their interconnections (Figure S1).

The UniProt entry names were used for the statistical over-representation test in
STRING [64]. An enrichment analysis was performed and resulted in up to 84 total proteins
divided in the first shell (12 proteins submitted plus TS and DHFR, colored spheres in
Figure S1) and 69 extra proteins almost all belonging to the second shell (white color in
Figure S1). Despite different attempts to connect all the 12 proteins plus TS and DHFR of
the panel during the enrichment process, a few of them remained unconnected, specifically,
GFI1 and ZNF573, at the level of enrichment selected. Three additional proteins, ROR1,
LYVE, and TEC, showed a very limited connection with only one protein of the global
network. The other proteins very well interconnected.

Then, we studied the biological processes using the gene ontology (GO) [37] analysis
of the pathways and biological processes and revealed that modulation of the cellular
metabolism by FOLFOX-4 results from the combination of multiple layers of regulation.
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The overall network is dominated by the cellular organization biological process (Figure 3,
red spheres).

Figure 3. Global network visualization based on STRING pathway enrichment analysis of the
12 DEP proteins + TYMS and DHFR showing the most extended biological process containing the
protein panel. Details are reported in the main text. Red spheres represent the cellular metabolism
organization biological process with the following STRING features: GO:0016043 and FDR 51/5163.

A detailed GO analysis showed that the four most relevant biological processes in-
volving the protein panel are related to vesicle trafficking process, lipoproteins associated
metabolic process, structural component modulation in relation to cellular apoptosis and
autophagy, and cellular oxidative stress response (Figure 4). These principal biological
processes were well connected to the purine metabolism and apoptotic process gener-
ated by STRING around the 5-FU and leucovorin targets, i.e., TYMS and the TS cycle
protein, DHFR.

Our analysis was based on protein modulations detected in the serum samples and
related to intracellular biological processes. With the aim to understand the interconnections
between serum and intracellular networks and how this is rationally associated with
cancer biology, we conducted a local network analysis (LnA), and then a localization
characterization of the proteins of the panel was performed, stemming from the global
network analysis of Figure 4.

LnA was performed through the identification of the minimal number of interactions
that each protein of the panel (Table 3) could establish with other interconnected proteins
previously identified in the global network. A total of nine networks reported in Figure 5
describe the serum-membrane-intracellular connections for all proteins of the panel. A
few local networks (1, 2, and 4) involve more than one protein of the panel. The function
of ZNF573 was not well known and its network (number 6) was identified using the
co-expression STRING analysis, and then only a few proteins were found connected
through co-expression and experimental analysis to TRIM28 (tripartite motif containing
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28, a protein coding gene), and then to CDC5L (cell division cycle 5-like, a DNA-binding
protein involved in cell cycle control) (Figure 5). The detailed local specific protein-centered
connections information is reported in Table S4. Some proteins are recurrently present in
the networks such as AKT1, which is present in four of nine networks reported in Figure 5
(3,5,7,8), while FOXO3, ACTA1, and APOAL1 are present in two of nine networks. It is
worth noting that AKT1, FOXO3, and APOA1 were not detected in the MS study, but are
relevant in ovarian cancer development (Table S8). The local network identified, reported
in Figure 5 are also found in the biological processes identified in the global network such
as cholesterol metabolic process (LCAT and APOL1), actin-filament based movement and
regulation (GSN, LMNA, and LCAT), endosome to lysosome transport and trafficking
(VPS18), and cellular response to oxidative stress (SOD3) (Figure 4).
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Figure 4. Global network visualization based on the STRING pathway enrichment analysis of the
14 selected proteins (12 + TYMS or TS and DHFR). The network shows the most relevant biological
process containing the protein panel. Details are reported in the main text. The STRING features
are the following: yellow spheres, actin-filament based movement and regulation (GO:0030048,
FDR 1.31 x 10~7,9/105); green spheres, cholesterol metabolic process (GO:FDR 2.3 x 10~3); violet
spheres, endosome to lysosome transport (GO:0008333, FDR 1.78 x 1078, 8/49); pink spheres, cellular
response to oxidative stress (GO:0034599, FDR 5.36 x 10710, 14/22); red spheres, pteridine-containing
compounds biological process (GO:0042558, FDR 9.37 x 10~'4,11/33). A detailed GO analysis shows
that the four most relevant biological processes involving the protein panel are related to vesicle
trafficking process, lipoproteins associated metabolic process, structural component modulation in
relation to cellular apoptosis and autophagy, and cellular oxidative stress response. The principal
biological processes are well connected to the purine metabolism and apoptotic process generated by
STRING around the 5-FU and leucovorin targets, i.e., TYMS and the TS cycle protein, DHFR.
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Figure 5. Local network interaction generated for each of the 12 proteins of the panel ob-
tained through STRING upon elaboration of data from Figure 3 and GeneCards databases. The
most relevant interconnections based on confidence feature (value of confidence >0.700 and
p < 1.0 x 1071¢) are also visualized in Figure 6. Each local network (1-9) shows the relevant protein
connections written in the bottom, and proteins of the MS panel are reported in bold. SOD3 and
VPS18, taken from Table S5a, are added as internal control proteins.

Localization of the proteins was achieved by GeneCards that adopted the Genome
Atlas information [65]. Figure 6 shows the results of the localization network analysis.
The protein connections are established between intracellular environment, plasmatic
membrane, and extracellular space on the basis of metadata analysis through the different
tools and database adopted. Some proteins are usually found in the serum such as SOD3,
GSN (not shown), APOL1, LYVE], and SHGB (Table 3). Some of them are related to their
membrane protein form (ROR1, APOL1, and LYVEL]) or to different proteins connected
with the local and global networks. The localization metadata agree with the features of
the protein of the selected protein panel.

Table 3. References of biological properties and main local interaction description of the panel of
12 proteins selected from those differentially expressed proteins. The network numbers from Figure 5
are reported in brackets. The proteins of the panel are indicated in bold.

Protein Code (Uniprot)

Protein Function References

Apolipoprotein A-I. Local network: APOL1-(CETP-LCAT-LPA-APOA1);

APOL1 APOA1-GSN-ACTA1; ACTA1-GSN-APOA1-CEPT-APOL1 (network 4). [66]
GSN Gelsolin. Local network: ACTA1-GSN-APOA1-CETP-APOL1 (network 4). [52,53]
Zinc finger protein Gfi-1; Transcription repressor essential for hematopoiesis.
GFI1 Local network: (BRCA1-AKT1-TP53-GFI1-HDAC1); [56,57]

(HDAC1-AKT1-FOXO3-BRCA1); (FOXO3-TP53-GFI1) (network 5).
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Table 3. Cont.

Protein Code (Uniprot)

Protein Function References

Phosphatidylcholine-sterol acyltransferase. Local network:

LCAT LCAT-LPA-APOA1-SHBG-IL6-AKT1; SHGB-IL6-LCAT-APOA1 (network 2). [44,45]
LMNA Prelamin-A/C. Local network: VCL-AKT1-LMNA-CDK1; VCL-LMNA-AKT1 [46,47]
(network 8).
Lymphatic vessel endothelial hyaluronic acid receptor 1.
LYVE1 Local network: LYVE1-STAB2-TMSB4X-AKT1-MTOR-FOXO3; [42,43]
LYVE1-STAB2-TMSB4X-ACTA1-AKT1 (network 7).
ROR1 Inactive tyrosine-protein kinase transmembrane receptor ROR1. [49-51]
Local network: ROR1-WNT5A-WAS-TEC (network 1).
SHBG Sex hormone-binding globulin. Local network: SHBG-IL6-LCAT-APOA1A1 [44,45]
(network 2).
SOD3 (SODE) Extracellular superoxide dismutase [Cu-Zn]. Local network: [41,54]
SOD1-SOD3- AKT1-MTOR; SOD1-SOD3-FOXO3-AKT1 (network 3) ’
TEC Tyrosine-protein kinase Tec. Local network: TEC-ITK-LAT-WAS-MAP4K1; [48]
ROR1-WNT5A-WAS-TEC (network 1).
Vacuolar protein sorting-associated protein 18 homolog. Local network:
VPs18 VPS18-VPS8-RAB-7A (network 9). 58,591
ZNF573 Zinc finger protein 573. Local network: ZNF573-TRIM28-CDC5L (network 6). [55]
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Figure 6. Local network connections for cytoplasmatic proteins (red), membrane proteins (blue), and
serum proteins (yellow and green). The selected proteins of the panel were considered: (A) Panel
proteins considered are ROR1, TEC, SHBG, LCAT, and APOL1; (B) panel proteins considered are
SOD3, LMNA, GFI1, LYVE1, and ZNF573. Yellow circles, panel proteins selected; light green circles,
relevant serum proteins for ovarian cancer in the network. Localization is based on GeneCards. The
proteins reported not belonging to the panel come from the STRING local network analysis and
GeneCards elaboration (Figure 5).
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3.4. Interaction between the 5-Fluorouracil Targeting Pathways and the Protein Set Identified in
Serum (Third Analysis Level)

We investigated how the TS protein target network and the associated replicative
pathway targeted by 5-FU could modulate or interact with the selected serum protein
panel by visual inspection of Figure 7. We followed the highest confident connections
path, starting from TYMS, DHFR, and TK1, tyrosine kinases which represent the main
proteins belonging to the pyrimidine synthesis, metabolism, and replication processes.
These proteins can interact with key proteins such as deoxyuridine triphosphatase (DUT)
and cyclin dependent kinase 1 (CDK1) that bridge the connections with other proteins
of the serum panel. The two main pathways identified are: TYMS-CDK1-LMNA-VCL-
ACTA1 (red nodes in Figure 7) and TYMS-DUT-PPARA-APOA1-LCAT (yellow nodes in
Figure 7). Other connections, however, are possible. The connections are supported by high
confidence (connection edges are 0.9), the pathways are short (small number of proteins
involved) and with at least two relevant nodes (colored spheres). It is worth noting that, in
Figure 5, LMNA is present in local network 8, ACTA1 is present in networks 4 and 7, while
LCAT is present in networks 2 and 4. AKT1 is present in networks 7 and 8 of Figure 5, and
represents one relevant connector between the protein panel as a whole and 5-FU related
proteins, as showed in Figure 6, where it is shown at the center of the global network, as a
highly interconnected node.
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Figure 7. Global network visualization based on STRING pathway enrichment analysis focused
on TYMS and DHFR. In the global network representation, the interaction pathway between the
TYMS-DHER protein network and the proteins of the panel identified through MS study are shown,
respectively, in red and yellow. The represented nodes are the closest connection possible for the
proteins of interest. The two main pathways identified are: TYMS-CDK1-LMNA-VCL-ACTAT1 (red
nodes) and TYMS-DUT-PPARA-APOA1-LCAT (yellow nodes). TYMS is half yellow /half red.
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4. Discussion

Over 12,000 proteins were detected in 14 serum samples, and a number reduction
was required to select a protein panel that could be significantly associated with patient
response to treatment and with the timepoint modulation. A valuable statistical analysis
was usefully applied, and we obtained 12 proteins that were properly evaluated using a
metadata analysis approach to understand their biological significance in ovarian cancer.
We were able to link each of the 12 proteins to response to treatment. One specific feature
of our study was the timepoint of sample collection, ranging from TO (baseline sample,
before treatment) to T1 (collected before the second cycle of treatment). From three to four
weeks after treatment, a change of the proteom in cancer cells is expected, this change can
be consistent with an early response to therapy, or no response [67-69].

To have a broader view of the overall connection pathways, first, we performed a
network enrichment analysis including the 12 proteins of the panel with the additional
FOLFOX-4 drugs target (TYMS and the TS cycle protein DHFR) as a part of a large metabolic
network, without considering protein localization. The second step was to analyze each
protein of the panel and its local network and set out whether each protein could be
interconnected with the intracellular and membrane proteins in a signal transduction
pathway. The global network analysis using the STRING system also included TYMS and
DHER as the major targets of 5-FU-derived drug and leucovorin, respectively (FOLFOX-4).
The protein—protein interaction study showed that those proteins could modulate, at least
in part, the serum proteins belonging to the panel identified through the proteomic study.
5-FU, by targeting TYMS and by decreasing its catalytic activity and protein levels, showed
an impact on the protein functions of its own network (other folate dependent proteins)
and was able to modulate LMNA and ACTA1 or LCAT. In this case, we consider that
5-FU directly modulates the cellular protein targets that are connected with those serum
proteins we have identified (LMNA and LCAT) (Figure 5) and ACTA1 cellular protein. It
is interesting to observe how, through the three above-mentioned proteins, many other
proteins of the panel can be connected. The metadata analysis on the 12 proteins of the panel
are consistent with the reported trend of each protein in cancer and specifically ovarian
cancer. This trend was consistent with the literature findings for all proteins identified
in the MS study, supporting the possible link between tumor tissue functions and the
circulating serum proteins [43,45,47,52,54,56,70-72].

Next, we cross-examined the networks of protein—protein interactions to highlight the
cancer-associated biological processes and the involvement with the treatment response.
ROR1 was connected to Wnt5a. ROR1 activates the ROR1/Akt/p65 pathway, which is
involved in inflammation and immune system [73] (Figure 5). Wnt5a overexpression has
been implicated in the aggressiveness of diverse tumor types and has been shown to pro-
mote cell invasion and metastasis. Recently, several studies have shown that non-canonical
Wnt signaling, such as canonical Wnt signaling, could induce cancer multidrug resistance
(MDR) in several cancers, although with distinct mechanisms [70]. Moreover, ovarian
cancer cell lines, characterized by high levels of Wnt5a expression, have shown lower
sensitivity to several drugs (paclitaxel, oxaliplatin, 5-FU, epirubicin, and etoposide) [74,75].
It is worth noting that ROR1, in our study, was found to be downregulated in PR patients
with respect to NR patients during the treatment (Table 2 and Figure 2b), in agreement with
the biological rationale. It is noteworthy that AKT1 can degrade prelamin A (LMNA) [46],
and that LMNA is involved in ovarian cancer [47]. In accordance with the above results,
we found a decrease in LMNA in our panel in partial responder patients (PR).

In cancer, it is well known that lipid and cholesterol homeostasis is often dysregulated.
Cancer cells increase lipid demand to facilitate proliferation and evasion from apoptosis.
APOLY1, a secreted high-density lipoprotein binds to apolipoprotein A-I (ApoA-I), (network
4, Figure 5) which in turn, activates lecithin cholesterol acyl transferase (LCAT) (network
2, Figure 5), leading to the maturation of HDL particles. APOL1 and LCAT were both
found to be differentially expressed in our analysis between PR and NR patients, during the
treatment (Figure 2b). ApoA-I, a major component of high-density lipoproteins (HDL), is a
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protein with multifunctional properties, involved in cholesterol trafficking, inflammation,
and immune response regulation [66]. Alterations of ApoA-I occur during the development
and progression of diverse types of cancer, and a recent discovery showed that ApoA-I was
involved in the anti-inflammatory and immune-modulatory mechanisms [66]. Altogether,
these results suggest that the complicated lipid and cholesterol homeostasis in cancer
cells, tightly regulated through APOL1, LCAT, and ApoA-I, deserve a deeper mechanistic
investigation. Investigating the role of these processes might contribute to the improvement
of cancer prevention and treatment.

The metadata analysis approach explained how many proteins of the selected panel
were well connected with intracellular/membrane proteins of cancer cells, which connec-
tion with 5-FU and leucovorin targets (TYMS and DHFR) and how they were integrated
with proteins known to have relevant roles in cancer development such as AKT1 and
FOXOs3.

5. Conclusions

Based on the presented proteomic study, we propose a novel serum protein signa-
ture, as a potential predictive response to FOLFOX-4 treatment in patients with heavily
pretreated ovarian serous carcinoma. Lipoproteins associated with the metabolic process,
structural component modulation in relation to cellular apoptosis and autophagy, and
cellular oxidative stress response were identified to be relevant proteins after the multi-
layer statistical analysis. Our findings were consistent with metadata analysis exploration
specifically connected with molecular pathways modulated in ovarian cancer. The results
were also supported by the successful network enrichment analysis of the proteins of the
final panel with TS and DHFR, a well-known target of FOLFOX-4 components. We noticed
that among the 12 final proteins, some were well integrated in the network (such as GSN,
LCAT, APOL1, and SHBG), while LYVE1, ROR1, TEC, GFI1, and ZNF573 displayed weak
or no interaction. This suggests a certain independent trend among the different proteins
of the panel.

Further analysis showed a metabolic connection between the serum proteins and
those belonging to membrane or intracellular networks, and how the proteins of the panel
belong to molecular pathways associated with cellular metabolism. The two-time collection
analysis of our study supports the concept of the relevance of monitoring circulating
proteins during patients’ treatments. The monitoring could also be extended to a higher
number of samples collected during therapy. We can conclude that the strategy adopted
was successful and the protein panel identified represents an interesting starting point to
translate the protein profiles into an exploitable tool for a discovery proteomic work in the
near future.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/cancers15020412/s1, S1. Patients’ characteristics. Table S1. Patients’ characteristics with
recurrent ovarian carcinoma included in the translational study. S2. Semitargeted MS analysis for the
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