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Simple Summary: There has been an exponential rise in the availability of artificial intelligence systems
in endoscopy in recent years. As a result, maintaining an informed understanding of the utility and
efficacy of existing systems has become increasingly complex. This review aims to summarise the
expanse of research in this area to guide proceduralists in making informed decisions regarding the use
of artificial intelligence in colonoscopy. It focuses primarily on the application of artificial intelligence
for the detection and characterisation of colorectal polyps in order to improve the efficacy of colorectal
cancer screening and prevention.

Abstract: Colorectal cancer remains a leading cause of cancer-related morbidity and mortality
worldwide, despite the widespread uptake of population surveillance strategies. This is in part due to
the persistent development of ‘interval colorectal cancers’, where patients develop colorectal cancer
despite appropriate surveillance intervals, implying pre-malignant polyps were not resected at a prior
colonoscopy. Multiple techniques have been developed to improve the sensitivity and accuracy of
lesion detection and characterisation in an effort to improve the efficacy of colorectal cancer screening,
thereby reducing the incidence of interval colorectal cancers. This article presents a comprehensive
review of the transformative role of artificial intelligence (AI), which has recently emerged as one
such solution for improving the quality of screening and surveillance colonoscopy. Firstly, AI-driven
algorithms demonstrate remarkable potential in addressing the challenge of overlooked polyps,
particularly polyp subtypes infamous for escaping human detection because of their inconspicuous
appearance. Secondly, AI empowers gastroenterologists without exhaustive training in advanced
mucosal imaging to characterise polyps with accuracy similar to that of expert interventionalists,
reducing the dependence on pathologic evaluation and guiding appropriate resection techniques or
referrals for more complex resections. AI in colonoscopy holds the potential to advance the detection
and characterisation of polyps, addressing current limitations and improving patient outcomes. The
integration of AI technologies into routine colonoscopy represents a promising step towards more
effective colorectal cancer screening and prevention.

Keywords: colonoscopy; artificial intelligence; polyp; adenoma; colorectal cancer

1. Introduction

In the context of modern healthcare, the integration of artificial intelligence (AI) has
emerged as a transformative force, revolutionising various aspects of medical practice [1].
One promising application lies in the domain of colorectal cancer (CRC), where AI holds
the potential to enhance the accuracy and efficiency of polyp detection and characterisation
during colonoscopy—a pivotal procedure for early diagnosis and prevention. This review
article delves into the dynamic intersection of AI and CRC management, with a specific
focus on its application for polyp detection and characterisation during colonoscopy.
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CRC accounts for more than 10% of cancer diagnoses and more than 9% of cancer-
related mortality worldwide, necessitating effective screening and diagnostic strategies
to curb its impact [2]. There is now compelling evidence that the implementation of pop-
ulation CRC screening in developed countries has led to a considerable reduction in its
incidence and mortality [3,4]. Colonoscopy serves as the gold standard for both the detec-
tion and prevention of CRC, yet its efficacy is contingent on the skill and vigilance of the
endoscopist [5]. Despite advances in endoscopic technology and improvement in adenoma
detection, adenoma miss rates still remain as high as 26% in tandem colonoscopy studies [6].
Miss rates are particularly high for sessile serrated lesions (SSLs) (27%), proximal advanced
adenomas (14%), and flat adenomas (34%) [6]. The integration of AI into colonoscopy holds
the promise of augmenting human expertise, potentially reducing the miss rates of these
inconspicuous polyps and thereby improving patient outcomes.

Drawing upon a plethora of studies, this review aims to dissect the methodologies and
technological advancements that underpin AI-driven polyp detection and characterisation
systems, with a particular focus on more recent real-world experiences with AI. By explor-
ing the evolution, challenges, and outcomes associated with these technologies, we strive
to provide insights into their potential to reshape CRC management paradigms. While this
is not a formal systematic review, it has been based largely on a structured examination of
published literature from Pubmed and Embase, with abstracts screened for relevance and
reference lists reviewed for additional relevant studies.

2. Artificial Intelligence in Colonoscopy

Research in the field of AI-assisted colonoscopy has expanded exponentially in the
last 5 years, with a wide range of AI systems now commercially available (Table 1). As a
result, understanding the efficacy and accuracy of these individual systems has become
increasingly complex while there are limited data available for direct comparison and no
form of standardisation exists. Nevertheless, proponents of AI argue that the sophistication
of deep learning and the vast datasets on which these systems are trained result in consistent
accuracy at a high level. In the absence of standardisation, this review seeks to analyse the
efficacy of the commercially available systems and the accuracy of this assertion.

Table 1. Commercially available artificial intelligence systems in colonoscopy.

Name Company Technique Commercial Approval

EndoBRAIN Cybernet Systems
Corporation (Tokyo, Japan) CADx 2018

GI Genius Medtronic (Dublin, Ireland) CADe 2019

EndoBRAIN-EYE Cybernet Systems
Corporation (Tokyo, Japan) CADe 2020

DISCOVERY Pentax Medical Company
(Tokyo, Japan) CADe 2020

ENDO-AID Olympus Corporation
(Tokyo, Japan) CADe 2020

CAD EYE Fujifilm (Tokyo, Japan) CADe,
CADx 2020

Wise Vision NEC Corporation
(Tokyo, Japan) CADe 2020

EndoScreener Wision A.I. (Shanghai, China) CADe 2021

Machine learning involves the development of an algorithm based on a training dataset
in order to predict the same pattern in unseen data. Initially, AI systems in endoscopy
involved the manual introduction of polyp features to the machine learning algorithm for
the program to recognise polyps; however, the accuracy of AI systems has catapulted with
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the introduction of deep learning. Deep learning is a type of machine learning characterised
by self-learning, in that the program extracts data and recognises key features across
multiple layers without any requirement for human input. It involves neural networks,
imitating the complex interconnected networks of the human brain in order to analyse
multiple increasingly complex layers of images. Convolutional neural networks (CNNs)
are based on the principle of the visual cortex of the human brain for image processing.
Using multiple filters, the CNN extracts key features from multiple versions of the same
image before pooling layers to provide a final classification as the output based on learned
polyp features. The key advantage of these systems is that the more data that is fed into
the system, the more sophisticated the algorithm becomes, as the system is capable of
continued independent learning. CNNs are a popular method for image recognition as
they offer efficient performance, allowing for use in real-time video applications [7,8].

The number of AI systems developed or in development for upper and lower gastroin-
testinal endoscopy has expanded exponentially in recent years. Computer-aided detection
(CADe) systems recognise characteristic features in order to discern the presence of a polyp
within a still image or video. More recently, these systems have been integrated into real-
time colonoscopy, alerting proceduralists to the presence of a polyp either with a coloured
box around the entire display or a box around the polyp itself. Computer-aided diagnosis
(CADx) systems are able to distinguish between polyp types and degrees of dysplasia,
from benign hyperplastic polyps to advanced cancers, providing a real-time diagnosis to
the proceduralist.

3. Polyp Detection

Since 2016, researchers have published deep learning algorithms for polyp detection
(CADe) that have been tested in pre-clinical applications, such as polyp detection in still
images or videos [9]. Only 3 years later, the first randomised controlled trials (RCTs)
comparing CADe with existing standards were published [10]. Since then, there has been
a vast amount of research published on real-time CADe systems, with strong support
for their efficacy in polyp detection. Of the 15 RCTs reviewed here, 10 demonstrated
a statistically significant increase in adenoma detection, although baseline and CADe
adenoma detection rates (ADRs) are highly varied because of differing populations and
study designs (Table 2) [10–24]. Although overall lesion detection is generally improved,
many of these systems have been criticised for a lack of impact on the detection of advanced
adenomas of heightened clinical significance. Many argue that these larger polyps are less
likely to be missed by endoscopists, making the implementation of CADe systems less
pivotal. While it may be true that larger polyps are less likely to be missed by endoscopists,
the lack of demonstrable impact of CADe systems for advanced adenomas may simply
reflect their reduced prevalence and, hence, the larger numbers required to adequately
power these studies. For example, in the largest RCT by Xu et al., including 3059 patients,
there was a statically significant increase in advanced adenoma (>10 mm, villous component
or high-grade dysplasia) detection in the CADe group versus the control group (6.6% vs.
4.9%, p = 0.041) [12].

Table 2. Randomised controlled trials comparing artificial-intelligence-aided colonoscopy with
control groups for adenoma detection.

Author, Year CADe System Control Patients (n) ADR
(AI vs. Control)

Advanced ADR
(AI vs. Control)

Nakashima et al.,
2023 [11] CAD EYE HD-WLI 415 59.4% vs. 47.6%

(p = 0.018)
7.2% vs. 7.7%

(p = 1)

Xu et al., 2023 [12] Eagle-Eye HD-WLI 3059 39.9% vs. 32.4%
(p < 0.001)

6.6% vs. 4.9%
(p = 0.041)

Wang et al.,
2023 [13] EndoScreener HD-WLI with

second observer 1261 25.8% vs. 24.0%
(p = 0.464)

0.314% vs. 0.39%
(p = 0.562)
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Table 2. Cont.

Author, Year CADe System Control Patients (n) ADR
(AI vs. Control)

Advanced ADR
(AI vs. Control)

Wei et al., 2023 [14] EndoVigilant HD-WLI 769 35.9% vs. 37.2%
(p = 0.774) N/A

Ahmad et al.,
2022 [15] GI Genius HD-WLI 658 71.4% vs. 65.4%

(p = 0.09) N/A

Gimeno-Garcia
et al., 2022 [16] ENDO-AID HD-WLI 370 55.1% vs. 43.8%

(p = 0.029)
11.6% vs. 12.1%

(p = 0.89)

Repici et al.,
2022 [17] GI Genius HD-WLI 660 53.3% vs. 44.5%

(p < 0.02)
12.7% vs. 12.7%

(p = 0.956)

Rondonotti et al.,
2022 [18] CAD EYE HD-WLI 800

53.6% vs. 45.3%
(RR 1.18, 95% CI

1.03–1.36)

18.5% vs. 15.9%
(RR 1.03, 95% CI

0.96–1.09)

Shaukat et al.,
2022 [19] SKOUT HD-WLI 1359 47.8% vs. 43.9%

(p = 0.065) N/A

Luo et al., 2021 [20] Xiamen Innovision HD-WLI 150 PDR 38.7% vs. 34.0%
(p < 0.001) N/A

Xu et al., 2021 [21] N/A HD-WLI 2352 PDR 38.8% vs. 36.2%
(p = 0.183) N/A

Liu P et al.,
2020 [22] EndoScreener HD-WLI 790 29.01% vs. 20.91%

(p = 0.009)
1.43% vs. 3.92%

(p = 0.607)

Liu W et al.,
2020 [23]

Henan Xuanweitang
Medical Information

Technology Co.
HD-WLI 1026 39.1% vs. 23.89%

(p < 0.001)
2.88% vs. 6.45%

(p = 0.821)

Repici et al.,
2020 [24] GI-Genius HD-WLI 685

54.8% vs. 40.4%
(RR 1.30, 95%

1.14–1.45)

10.3% vs. 7.3%
(p = 0.769)

Wang et al.,
2019 [10] EndoScreener HD-WLI 1058 29.12% vs. 20.34%

(p < 0.001)
3.41% vs. 5.95%

(p = 0.803)

In an effort to synthesise the expanse of research in this area, multiple meta-analyses
have been published comparing CADe with high-definition white light imaging (HD-WLI)
control groups (Table 3). These studies have universally found an increase in ADR with
CADe, with a 1.43–1.78 times increase in ADR versus HD-WLI [25–35]. The most significant
difference has been in the detection of diminutive (<5 mm) adenomas. For larger polyps,
the results have been varied, with four of the seven meta-analyses specifically analysing
>10 mm adenomas finding a statistically significant improvement in detection. Interestingly,
in their 2021 meta-analysis, Zhang et al. actually reported a reduction in the detection of
advanced adenomas with CADe [34]. While this raises the possibility that the time and
concentration consumed by higher diminutive polyp detection with CADe may detract
from the detection of advanced lesions, this has not been borne out in other meta-analyses
and was not the case in the largest RCT to date [12]. Sessile serrated lesions (SSLs) are a
polyp subtype prone to being missed during colonoscopy because of their inconspicuous
nature, as they are generally flat and difficult to differentiate from surrounding normal
mucosa. For SSLs, RCTs have not been powered to demonstrate an effect as their incidence
is considerably lower compared with adenomas. However, three meta-analyses assessed
SSLs specifically, demonstrating a between 1.37- and 1.52-times increase in SSL detection
with CADe, though one of these did not reach statistical significance [25,30,33].
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Table 3. Meta-analyses comparing artificial-intelligence-aided colonoscopy with control groups for
adenoma detection.

Author, Year Studies
(n)

Patients
(n)

ADR (AI vs.
Control) ≤5 mm Adenomas ≥10 mm

Adenomas Notes

Huang et al.,
2022 [25] 10 6629 RR 1.43, p < 0.001 RR 1.71, p < 0.001 RR 1.73, p < 0.001 SSL per colonoscopy

RR 1.53, p < 0.001

Sivananthan
et al., 2022 [26] 7 5217 33.65% vs. 22.85%

0.691 adenomas per
colonoscopy vs.

0.373 (pooled effect
size 0.3, 95% CI

0.19–0.42)

N/A

91.7% higher
detection of

non-pedunculated
adenomas

Ashat et al.,
2021 [27] 6 5058

33.7% vs. 22.9%
(OR 1.76, 95% CI

1.55–2.00)

OR 2.07, 95% CI
1.81–2.36, p < 0.001

OR 1.79, 95% CI
1.27–2.53, p < 0.001

Barua et al.,
2021 [28] 5 4311

29.6% vs. 19.3%
(RR 1.52, 95% CI

1.31–1.77)

Mean difference,
0.15 (95% CI

0.12–0.28)

Mean difference
0.01, 95% CI

0.00–0.02)

Deliwala et al.,
2021 [29] 6 4996 OR 1.77 (95% CI

1.57–2.08)
OR 1.33 (95% CI

1.12–1.59)
OR 1.24 (95% CI

0.87–1.78)

Hassan et al.,
2021 [30] 5 4354

36.6% vs. 25.2%,
RR 1.44 (95% CI

1.27–1.62)

RR 1.69 (95% CI
1.48–1.84)

RR 1.46 (95% CI
1.04–2.06)

SSL per colonoscopy
RR 1.52 (95% CI

1.14–2.02)

Li et al.,
2021 [31] 5 4311 OR 1.75 (95% CI

1.52–2.01) N/A N/A

Nazarian et al.,
2021 [32] 8 5577 OR 1.53 (95% CI

1.32–1.77) N/A N/A

Spadaccini
et al., 2021 [33] 6 4996 OR 1.78 (95% CI

1.44–2.18) N/A OR 1.69 (95% CI
1.10–2.60)

No difference in SSL
detection, OR 1.37
(95% CI 0.65–2.88)

Zhang et al.,
2021 [34] 7 5427 OR 1.72 (95% CI

1.52–1.95)
OR 1.42 (95% CI

1.18–1.72)
OR 0.71 (95% CI

0.46–1.10)

Less advanced
adenomas (OR 0.70,

95% CI 0.50–0.97)
SSL OR 0.87 (95% CI

0.61–1.23)

Aziz et al.,
2020 [35] 3 2815

32.9% vs. 20.8%,
RR 1.58 (95% CI

1.39–1.80)
N/A N/A

N/A= variable not reported.

Overall, prospective studies into CADe for adenoma detection have been optimistic.
Although many studies have not shown improved advanced adenoma detection, multiple
meta-analyses and the largest RCT to date suggest that this is likely the case, and it has been
conclusively demonstrated to improve the detection of diminutive adenomas. However,
with the advent of commercially available CADe systems, data are now available in a real-
world context, which may have greater generalisability than those conducted in a clinical
trial setting. The largest of these, published by Ladabaum et al. in 2023, was a pragmatic
real-world retrospective study whereby data were collected following the implementation
of CADe in a single centre, compared with concurrent and historical controls [36]. In
this study, the introduction of CADe resulted in no statistically significant difference in
any detection metric, including ADR, adenomas per colonoscopy, or advanced adenoma
detection. This was further supported by Levy et al., who demonstrated a reduction in
ADR from 35.2% to 30.3% (p < 0.001) in their single-centre cohort study [37]. These studies
highlighted the potential pitfalls of the use of CADe, including less thorough mucosal
exposure due to a ‘false sense of security’ from the AI assistance; proceduralists dismissing
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lesions not highlighted by AI; and the cumulative effect of false positive detection and the
resulting increase in withdrawal time. However, in two other large real-world propensity
score-matched studies including a cumulative 2262 patients following the implementation
of CADe, its introduction resulted in a 1.32–1.59-times higher ADR when compared with
HD-WLI [38,39].

The differing results in these real-world implementation studies may relate in part to
differences in the impact of AI on expert referral centres with already high ADR versus
lower ADR proceduralists. Given the nature of the limited availability of CADe systems
thus far, few studies have examined their impact on low-ADR endoscopists. As can be
seen in Table 2, of the five studies not demonstrating a difference in ADR with CADe, only
one study had a baseline ADR of less than 36% [38,39]. In this study by Wang et al., the
control group included a second observer and was, therefore, not strictly a ‘standard of care’
control [13]. In one such study with a low baseline ADR, adenoma detection improved
from 19.9% to 26.4% with the introduction of CADe [38]. Interestingly, in this study,
proceduralists were stratified by experience, with experts defined as having performed
more than 1000 colonoscopies, rather than by ADR. In doing so, they found no improvement
in ADR in the ‘non-expert’ group. This raises the possibility that baseline ADR is of greater
significance than procedural experience when determining the impact of CADe. This was
also supported by Repici et al., who compared ADR with and without CADe across 660
colonoscopies performed by non-experts (<2000 colonoscopies) and found no correlation
between examiner experience and the impact of AI on ADR [17]. In contrast, although not
a controlled comparative study, Biscaglia et al. showed that with the assistance of CADe,
trainee endoscopists (200–400 previous colonoscopies) could achieve the same ADR on
tandem colonoscopy with expert, high-ADR endoscopists without AI assistance [40]. To the
best of our knowledge, no studies have been published to date with stratification between
endoscopists on baseline ADR in order to investigate this further.

While ADR is often used as a surrogate marker, the adenoma miss rate (AMR) is the
most direct correlate with the potential for bowel cancer development despite surveillance
colonoscopy. Few studies have directly examined the impact of CADe in this context.
AMR refers to the number of adenomas ‘missed’ during a colonoscopy, generally based
on tandem colonoscopy studies where an immediate repeat procedure detects additional
adenomas. Three tandem colonoscopy studies (Table 4) have compared AMR for CADe
versus HD-WLI, with a significant reduction when using CADe [41–43]. The SSL miss rate
was higher in all three studies with HD-WLI, with two reaching statistical significance. In
addition, non-polypoid and right-sided adenomas, both of which are frequently missed at
colonoscopy, were less likely to be missed with the use of CADe. These are promising data
for the potential of CADe to standardise the quality of colonoscopy by reducing miss rates
for these more inconspicuous polyp subtypes.

Multiple previous studies have demonstrated the impact of fatigue on ADR, pre-
sumably because of a higher likelihood of human error. A 2009 retrospective study of
3619 colonoscopies found an ADR of 29.3% in the morning versus 25.3% in the afternoon
(p = 0.008) [44]. This was reinforced by a prospective study that found that 27% more polyps
were detected per patient during early morning cases, with an hour-by-hour decrease in
adenoma detection as the day progressed [45]. Given CADe aims to reduce the likelihood
of human error, two studies have assessed its role in preventing deterioration in ADR from
physician fatigue. Lu et al. undertook a post hoc analysis of two prospective RCTs compar-
ing CADe with HD-WLI, finding that while the ADR in morning sessions was higher in
the control group, there was no longer any statistically significant difference in the CADe
group [46]. In this cohort, the OR for adenoma detection during afternoon colonoscopy
with CADe assistance versus without was 3.81 (95% CI 2.1–6.91) [46]. Similarly, Ritcher et al.
performed a retrospective database analysis comparing ADR with CADe versus HD-WLI
over the course of a day, demonstrating that while there was a statistically significant trend
towards reduction in ADR throughout the day with HD-WLI (p = 0.015), this trend was no
longer present in the CADe-assisted group (p = 0.65) [47].
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Table 4. Tandem colonoscopies randomised to CADe or HD-WLI first.

Author, Year Patients
(n)

Adenoma Miss Rate
(CADe vs. HD-WLI)

SSL Miss Rate
(CADe vs. HD-WLI)

Non-Polypoid
Adenoma Miss Rate

Right Colon
Adenoma Miss Rate

Glissen-Brown
et al., 2022 [41] 234 20.12% vs. 31.25%

(p = 0.0247)
7.14% vs. 42.11%

(p = 0.0482)

17.65% for CADe vs.
22.22% for HD-WLI

(p = 0.5872)

Higher miss rate for
HD-WLI in the right

colon on multivariable
analysis (OR 1.7865,

p = 0.0436)

Wallace et al.,
2022 [42] 230 15.5% vs. 32.4%

(p < 0.001)
0% vs. 33.33%

(p = 0.455)

Lower miss rate with
CADe for

nonpolypoid
adenomas (OR 0.34,

p < 0.001)

18.3% with CADe vs.
32.53% with HD-WLI

(p = 0.004)

Kamba et al.,
2021 [43] 346 13.8% vs. 36.7%

(p < 0.001)
13% vs. 38.5%

(p = 0.0332)

13.38% for CADe vs.
45.26% for HD-WLI

(p < 0.001)

9.23% for CADe vs.
44.05% for HD-WLI

(p < 0.001)

3.1. Criticisms of CADe

The two main criticisms of CADe are the impact on procedure time and the high rates
of distracting false positive polyp identifications. In a 2022 ESGE position statement, the
overwhelming consensus was that, for the use of CADe to become widespread, it would
need to have an acceptable false-positive rate such that it does not significantly prolong
procedure times [48].

Despite initial concerns from image- and video-based studies, the actual rates of false
positives that have a meaningful impact on withdrawal time appear to be low, with 91%
of false positives lasting less than half a second [49]. In their post hoc analysis of an RCT,
Hassan et al. found that while overall false positive rates are high (27.3 per colonoscopy),
only 5.7% of false positives required an additional exploration time of 4.8 s per false
positive, adding a negligible 1% increase in total withdrawal time [50]. Nevertheless,
although the majority of false positives are short-lived, they still have a considerable impact
on proceduralist fatigue, with more than 80% of gastroenterologists reporting concerns
regarding excessive false positive alerts in a 2023 survey assessing one commercially
available CADe system [51]. These false positive alerts from CADe are most often related to
bubbles or faeces falsely identified as polyps. As a result, Tang et al. examined whether this
could be minimised using water exchange colonoscopy (where water is used rather than
CO2 insufflation during colonoscope insertion while, at the same time, fluid is suctioned
to clear the lumen) in order to clear the field of view of the mucosa. In their 2022 study,
they demonstrated a significant increase in the additional polyp detection rate with CADe
versus HD-WLI after water exchange colonoscopy (30.1% vs. 12.3%, p = 0.001), with a
lower rate of false positives related to faeces (p = 0.007) and bubbles (p = 0.001) due to
the clearer field upon colonoscope withdrawal [52]. Techniques such as water exchange
colonoscopy, therefore, stand to enhance the performance of CADe not only by improving
mucosal visualisation but also by reducing rates of distracting false positives.

Regarding withdrawal times, it remains difficult to assess the true mucosal inspection
time without this being impacted by the additional time spent on polyp assessment and
resection. Though studies generally pause a stopwatch at the time of polypectomy, there
are still delays when a polyp is found, for example, while the stopwatch is paused and
restarted on each occasion. The most accurate assessment is, therefore, in the withdrawal
time in patients where no polyps are found. Of the four meta-analyses from Table 3 directly
examining withdrawal time, no study found any significant difference in withdrawal time
in patients with no polyps, while three out of four found a slightly longer withdrawal time
(up to a mean of 0.46 min) overall with CADe [25,27,29,33]. In all likelihood, despite false
positives from CADe, the only meaningful difference in withdrawal times is in the impact
on polyp detection.
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3.2. Cost Effectiveness

There are controversies surrounding the cost-efficacy of implementing CADe-assisted
colonoscopy in screening programs. Initially, the increase in adenoma detection will result
in an increased healthcare burden because of requirements for pathological evaluation and
a shortening of surveillance intervals. However, eventually, the reduction in adenoma miss
rates may mean that surveillance guidelines are able to be adjusted, and there are significant
cost savings if advanced colorectal cancers are able to be prevented. In 2022, Mori et al.
investigated this further by performing a pooled analysis of RCTs, demonstrating that the
proportion of patients who were recommended more intensive surveillance according to
US guidelines increased from 8.4% in the control group to 11.3% in the CADe group (RR
1.35, 95% CI 1.16–1.57), which would place a significant burden on a strained healthcare
system [53]. However, Areia et al. developed a microsimulation model in a hypothetic
cohort to show that the implementation of CADe detection in a US population resulted
in a yearly additional prevention of 7194 colorectal cancer cases and 2089 related deaths,
with cost savings of USD 290 million [54]. This is aptly described in the World Endoscopy
Organisation position statement on AI in colonoscopy in 2023, which states the following:
‘In the short term, use of CADe is likely to increase health-care costs by detecting more
adenomas’, but ‘the increased cost by CADe could be balanced by savings in costs related
to cancer treatment due to CADe-related cancer prevention‘ [55].

3.3. Summary

CADe systems lead to improved adenoma detection, particularly for diminutive
adenomas and polyp subgroups more likely to be missed because of human error, including
non-polypoid adenomas, right-sided adenomas, and SSLs. While this has not yet been
consistently supported by ‘real-world’ studies, the existing retrospective studies introduce
forms of bias that may influence results. What has been demonstrated, however, is that,
with the support of CADe, regular endoscopists can achieve equivalent performance in
adenoma detection to expert high-ADR endoscopists in referral centres, standardising the
quality of service provision. Given the dramatic increase in demand for colonoscopy with
the implementation of population screening programs, not all patients will have access
to expert referral centres for colonoscopy. CADe systems, therefore, have the capacity to
make equality of healthcare provision a reality despite inevitable resource limitations. This
sentiment is echoed by the European Society of Gastrointestinal Endoscopy (ESGE) 2022
position paper on AI in gastrointestinal endoscopy, stating that ‘the task of AI is to lift the
less experienced to the level of experienced endoscopists rather than to further increase the
high ADR values of the high-detector experts’ [48]. In this way, CADe is clearly meeting
its objective.

4. Polyp Characterisation

In addition to lesion detection, the other primary focus of AI systems in colonoscopy
has been on the characterisation of polyps (computer-aided diagnosis—CADx). Although
expert interventional endoscopists with advanced mucosal imaging are able to achieve a
high degree of accuracy in histology prediction, this requires specialised training, experi-
ence, and time that may not be available in the general endoscopy setting [56]. Accurate
histology prediction is of particular importance in two commonly encountered settings
in colonoscopy. For diminutive (<5 mm) polyps, accurate prediction facilitates the safe
use of the ‘resect and discard’ and ‘do not resect’ strategies, as discussed below [57]. For
larger polyps, the prediction of histology guides appropriate referral pathways for non-
interventional endoscopists, either for endoscopic or surgical resection.

For overall histology prediction, multiple image-based studies and three meta-analyses
have demonstrated the superiority of CADx compared with non-expert endoscopists [58–68].
However, in each of these meta-analyses, CADx has been unable to outperform expert
endoscopists [58–60]. In addition, in existing real-time colonoscopy studies, CADx has not
been shown to significantly improve the sensitivity or specificity of overall histology predic-
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tion. Barua et al. compared CADx with non-expert endoscopists (1–5 years of colonoscopy
experience) across 518 patients with 892 polyps and demonstrated no significant difference
in sensitivity (90.4% vs. 88.4%) or specificity (85.9% vs. 83.1%) [69]. When compared with
expert endoscopists, Li et al. found CADx to be inferior in terms of both sensitivity (61.8%
vs. 70.3%, p < 0.001) and overall accuracy (71.6% vs. 75.2%, p = 0.023) [70].

4.1. Diminutive Polyps

Despite a degree of variability in the evidence described above, there are certain
circumstances where the accuracy of CADx has been more clearly established, including
for the diagnosis of diminutive polyps. In this context, accurate histology prediction
serves to avoid unnecessary and expensive pathologic evaluations. The Preservation and
Incorporation of Valuable Endoscopic Innovations (PIVI) initiative is a program from the
American Society for Gastrointestinal Endoscopy (ASGE) aiming to establish thresholds
for endoscopic technologies aimed at addressing important clinical questions and needs
in endoscopic diagnosis and intervention [57]. A key focus has been on two strategies
to reduce the burden of the histopathological analysis of diminutive colorectal polyps.
According to PIVI, diminutive polyps outside of the rectosigmoid colon should be resected
but do not require pathological analysis provided endoscopic imaging-based histology
prediction results in more than 90% agreement with pathology for surveillance intervals (the
‘resect and discard’ strategy). In addition, diminutive rectosigmoid polyps do not require
resection if the endoscopic appearance is of a hyperplastic polyp, provided endoscopic
imaging achieves a negative predictive value of more than 90% for adenomatous histology
(the ‘do not resect’ strategy). In this context, CADx has been able to comprehensively
surpass expectations.

Multiple image-based studies have shown CADx to be superior to non-expert endo-
scopists for diminutive polyps, with a 96–97% NPV and a sensitivity of 92.3–98.1% [71–75].
Once again, the accuracy of CADx has not outperformed expert endoscopists; however,
the widespread adoption of CADx would allow endoscopists of all levels of expertise
to employ the ‘do not resect’ or ‘resect and discard’ strategies, thereby improving the
cost-effectiveness of colonoscopic screening programs. This was assessed in real-time
colonoscopy by Rondonotti et al., including all patients with at least one diminutive rec-
tosigmoid polyp assessed by an endoscopist with CADx assistance [76]. An AI-assisted
high-confidence prediction was made in 92.3% of polyps, with NPVs of 91% and 97.4%
agreement with ESGE surveillance intervals. Although the initial AI-assisted accuracy was
significantly higher in expert (91.9%) versus non-expert (82.3%) endoscopists, there was a
significant trend over time in non-experts, such that, for the final 50 polyps, there was no
difference in NPV for non-experts (95.2%) versus experts (93.9%).

In fact, certain studies have argued that, for diminutive polyps, pathologic analysis
can be misleading, and CADx systems may even outperform the gold standard. In 2019,
Ponugoti et al. highlighted the significant discordance that exists between high-confidence
expert endoscopist histology prediction and pathologic evaluation for ≤3 mm polyps,
postulating that, for polyps of this size, there are frequently issues with processing and
retrieval [77]. Subsequently, Shahidi et al. examined the accuracy of CADx diagnoses of
644 ≤3 mm polyps, with a discrepancy between endoscopic and pathological diagnoses in
28.9% of lesions [78]. CADx agreed with expert endoscopists in 90.3% of discordant cases,
again highlighting the potential inaccuracy of pathology as the accepted gold standard for
polyps of this size.

Critics of CADx argue that the histological predictions of these systems are significantly
influenced by the dataset on which they are trained. For example, in datasets with an under-
representation of SSLs, the CADx system may be less likely to report a lesion as such. To
assess the consistency of these systems, Hassan et al. compared the histology predictions of
two CADx systems trained on differing datasets: CAD-EYE and GI-Genius [79]. They found
no difference in sensitivity or specificity for the two systems. For ≤5 mm rectosigmoid
polyps, the negative predictive value well surpassed the PIVI threshold for both the CAD-
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EYE (97%) and GI-Genius (97.7%) systems. Based on the ESGE surveillance guidelines,
there was 98.3% agreement with guideline-recommended surveillance intervals with both
systems. While datasets may impact the outputs of these systems, it is likely that the high
volume of polyp images in the training sets is such that the accuracy is more than adequate
to facilitate widespread use of the ‘resect and discard’ and ‘do not resect’ strategies.

4.2. Larger Polyps

For larger polyps, the potential benefit of CADx is in the identification of appropriate
resection strategies or appropriate referral in the case of non-interventional endoscopists.
Three studies have examined CADx specifically in larger polyps in comparison with
endoscopists. Luo et al. trained a CADx system and tested this on a 1634-image dataset
from 156 lesions with high-grade dysplasia or adenocarcinoma [80]. The polyps were
stratified by the CADx system into ‘P0’ with a submucosal invasion depth of less than
1000 µm and, therefore, endoscopically resectable or ‘P1’ where there was at least deep
submucosal invasion or more advanced cancer. In the testing set, the model had an overall
accuracy of 91.1%, a sensitivity of 91.2%, and a specificity of 91.0%, with no significant
difference in accuracy compared with experienced interventional endoscopists. When only
early adenocarcinomas were included in the analysis, the CADx model was superior to
experienced endoscopists (sensitivity 65.3% vs. 40.0%) for differentiating endoscopically
resectable lesions, suggesting there may be surface signatures on polyps even with deep
submucosal invasion that have not yet been identified by experts in advanced mucosal
imaging. Nemoto et al. analysed 1513 early adenocarcinomas, from intramucosal to
deep submucosal invasive cancer, comparing their CADx system with trainee and expert
endoscopists [81]. CADx showed high specificity at 94.4% for deep submucosal invasion,
although sensitivity was low at 59.8%. The AUROC was 85.1% and was equivalent to the
two experts (88.2% and 85.9%) and superior to the trainees (77%, p = 0.0076 and 66.2%,
p < 0.001). Yao et al. developed a CADx system trained on 339 large sessile polyps,
differentiating malignant from non-malignant polyps [82]. The overall accuracy was
90.4%, which was comparable to expert endoscopists and superior to both senior and
junior endoscopists [82]. In this study, with the assistance of CADx, the accuracy of junior
endoscopists improved from 75.4% to 85.3% (p = 0.002).

While CADx systems are yet to convincingly outperform expert endoscopists in
guiding resection strategies, the future of these systems may be in optimising appropriate
referrals to experts in endoscopic resection. Additionally, they may obviate the need for
a biopsy prior to referral. This is of particular importance as biopsies have been well
established as a strong predictor of failed en bloc endoscopic submucosal dissection for
colorectal polyps, increasing the odds of severe fibrosis by more than eight times [83].

For expert interventionalists, one role of CADx may be in combination with endocy-
toscopy systems. Endocytoscopy involves a device that can be either incorporated into
the endoscope or as a separate probe-based system, utilising a high-power fixed-focus
lens to achieve ultra-high magnification in excess of 450× [84]. This novel technology
allows for in vivo visualisations of tissue at the cellular level in real time, with accuracy
as high as 85.8–97% for detecting the depth of submucosal invasion [85–88]. However,
these systems require significant training and experience to interpret images. This technol-
ogy may become more accessible with the advent of AI systems, with EndoBRAIN and
EndoBRAIN-Plus now commercially available for the interpretation of endocytoscopic
images. Studies thus far have demonstrated a high degree of accuracy for endocytoscopy-
based CADx systems, with specificity of up to 97.3–98.9% for differentiating invasive cancer
from non-malignant adenoma [89,90]. Kudo et al. compared AI with both trainee and
expert endoscopists for endocytoscopic interpretation, with superior accuracy (98% vs. 69%
and 93.3%, p < 0.001), sensitivity (96.9% vs. 70.8% and 92.8%, p < 0.001), and specificity
(100% vs. 65.7% and 94.3%, p < 0.001) [91]. While these studies demonstrate some benefit for
even expert endoscopists in differentiating invasive cancers from non-malignant adenomas,
the eventual goal of CADx with endocytoscopy would be to differentiate between depths
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of submucosal invasion in order to assess suitability for endoscopic resection techniques, a
feat not able to be consistently achieved by even the most experienced interventionalists.

In addition, another area for further study that may impact expert endoscopists
would be in the assessment of resection margins. To date, no endoscopic systems have
been developed for this purpose; however, a recent study performed using hyperspectral
imaging on surgical specimens showed high accuracy (AUC 97%) for classifying the
components of resected tissue into cancer, adenomatous margins, and healthy mucosa [92].
While this is essentially a proof-of-concept study only, it has highlighted the potential for AI
to analyse the completeness of large resections and, therefore, theoretically reduce adenoma
recurrence rates.

4.3. Summary

CADx systems have been proven to be highly accurate in differentiating neoplastic
from non-neoplastic polyps, as well as in recognising invasive cancers. Similar to CADe,
these systems are yet to consistently outperform expert endoscopists. Nevertheless, their
future may be in the elevation of the accuracy of regular endoscopists to nearing that of
highly trained interventionalists in order to guide conservative strategies for diminutive
polyps and appropriate referral strategies for larger polyps requiring advanced resec-
tion techniques.

5. Conclusions

This review provides compelling evidence of the transformative potential of artificial
intelligence in the realm of polyp detection and characterisation during colonoscopy. The
key findings underscore two crucial aspects that significantly impact healthcare provision,
particularly in resource-constrained settings.

First and foremost, the evidence reviewed demonstrates that CADe enhances adenoma
detection in studies with low baseline ADR and increases the detection of inconspicuous
polyps more frequently missed by endoscopists. This outcome carries substantial implica-
tions for public health, as it promises to bolster the consistency of healthcare delivery. In
regions or communities where access to highly trained interventionalists may be limited,
AI can serve as a reliable and consistent ally in early polyp detection, potentially preventing
the progression of colorectal cancer and improving patient outcomes. This democratisation
of expertise through AI could bridge the gap in healthcare equality, ensuring that more indi-
viduals receive accurate and timely diagnoses, ultimately reducing the burden of colorectal
cancer on health systems.

Secondly, this manuscript highlights how AI can elevate the accuracy of polyp char-
acterisation when used by regular endoscopists to nearly that of highly trained expert
interventionalists. This development holds significant promise for overburdened health-
care systems worldwide, where access to specialist interventionalists is often limited. AI’s
ability to assist in precise polyp characterisation can help mitigate the risk of misdiagnoses,
reducing unnecessary treatments, and enhancing patient care quality. Moreover, by em-
powering non-experts with advanced AI tools, we can ensure that patients in underserved
regions receive comprehensive care, irrespective of the available expertise.

In a world where resource limitations persist and not everyone has access to highly
trained interventionalists, this manuscript’s findings underscore the profound public health
implications of AI in colonoscopy. AI’s capacity to augment both adenoma detection and
polyp characterisation in the hands of all proceduralists not only promises to enhance
healthcare consistency but also signifies a crucial step towards healthcare equity. As
we continue to harness the power of artificial intelligence in medicine, the potential to
democratise expertise and improve the overall health outcomes of diverse populations
becomes increasingly tangible and vital.
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