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Simple Summary: The investigation of chemotherapy combined with anti-angiogenesis has garnered
significant attention from researchers. The aim of this study is to provide a numerical model, the
first of its kind, considering more realistic phenomena in simulating drug delivery into a solid tumor
with a remodeled dynamic microvascular network affected by the anti-angiogenic agent, angiostatin.
This research aims to open a new horizon in understanding the efficiency of combination therapy
involving anti-angiogenesis and chemotherapy. Results show that, for improving drug delivery
with the aid of anti-angiogenesis, the uniformity of micro-vessel distribution, accompanied by the
modification in drug exposure schedule caused by the alterations in transport properties induced by
vascular normalization, is more effective than the suppression of the microvasculature. Therefore,
it can be concluded that the 39% enhancement in uniformity of drug delivery in R = 0.2 cm is a
result of the well-proportioned distribution of the capillary network in the second approach of
anti-angiogenic therapy.

Abstract: The present study develops a numerical model, which is the most complex one, in compari-
son to previous research to investigate drug delivery accompanied by the anti-angiogenesis effect.
This paper simulates intravascular blood flow and interstitial fluid flow using a dynamic model. The
model accounts for the non-Newtonian behavior of blood and incorporates the adaptation of the
diameter of a heterogeneous microvascular network derived from modeling the evolution of endothe-
lial cells toward a circular tumor sprouting from two-parent vessels, with and without imposing
the inhibitory effect of angiostatin on a modified discrete angiogenesis model. The average solute
exposure and its uniformity in solid tumors of different sizes are studied by numerically solving
the convection-diffusion equation. Three different methodologies are considered for simulating
anti-angiogenesis: modifying the capillary network, updating the transport properties, and consider-
ing both microvasculature and transport properties modifications. It is shown that anti-angiogenic
therapy decreases drug wash-out in the periphery of the tumor. Results show the decisive role of mi-
crovascular structure, particularly its distribution, and interstitial transport properties modifications
induced via vascular normalization on the quality of drug delivery, such that it is improved by 39%
in uniformity by the second approach in R = 0.2 cm.

Keywords: drug delivery; anti-angiogenesis; intravascular blood flow; interstitial fluid flow; dy-
namic model; heterogeneous microvascular network; angiostatin; convection-diffusion equation;
vascular normalization
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1. Introduction

Investigation of different methodologies to improve the quality of drug delivery and
the effectiveness of chemotherapy is of great interest among researchers [1,2]. Abnor-
mally tortuous tumor microvasculature generated via the angiogenesis process is one of
the main reasons for unsuccessful drug delivery [3,4]. Therefore, anti-angiogenesis, an
adjuvant treatment strategy [5], needs to be studied, especially by using mathematical
modeling [6]. The concept of anti-angiogenesis was introduced by Folkman [7] regard-
ing the prevention of capillaries’ sprouting into the tumor site. It has been reported in
clinical studies [8–10] and review papers [11–13] that anti-angiogenic drug administration
improves chemotherapeutic drug delivery, its efficiency, and its penetration depth.

The modeling of solid tumors involves multiple spatial and temporal scales of com-
plexity [14,15]. The formation of a tumor-induced capillary network in nanometers, in-
travascular blood flow in the micrometer dimension, blood flow distribution in the capillary
network in millimeters, and fluid flow and solute transport in tumor and normal tissues
on the scale of centimeters are all examples of multi-scale modeling of cancer-related
studies [16].

Mathematical and computational studies have made great strides in cancer modeling
to provide qualitative and quantitative comprehension of the complex dynamics of cancer.
Hadjicharalambous et al. [17] conducted a review of in silico studies that assessed tumor
perfusion, angiogenesis, drug delivery, and investigations leveraging clinical data. Jain and
his colleagues [18–20] conducted basic studies on drug delivery into solid tumors. They
considered tumor tissue as a porous medium and introduced high interstitial fluid pressure
(IFP) as one of the main barriers to effective drug delivery. In 2007, Jain et al. [21] studied
vascular normalization by modeling the interstitial fluid flow in a macroscopic model. They
showed that IFP decreased after vascular normalization. This model was improved to
consider solute transport analysis in a single tumor nodule [22] and a non-homogeneous
macroscopic model [23,24]. Time course of perfusion was introduced as a controlling factor
of normalization efficiency, which depends on tumor size, normalization intensity, and
concurrent therapeutic agents [23].

Mathematical modeling of angiogenesis should be considered for extracting the capil-
lary network to develop a microscopic analysis. Anderson and Chaplain [25,26] developed
a mathematical study on continuous and discrete models of angiogenesis, which is the base
of different study [27–29]. In our recent study [30,31], the mathematical model of angiogen-
esis was modified to consider the effect of proliferation and death of endothelial cells and
matrix-degrading enzymes. The morphology of a tumor-induced microvascular network
with two parent vessels was simulated under the inhibitory effect of an anti-angiogenic
agent, angiostatin.

Though the macroscopic view of the tumor microenvironment could provide a quali-
tative description of different phenomena of cancer, considering the microscopic capillary
network of the tumor is an important factor in achieving a more realistic illustration.
Stéphanou et al. [32] and McDougall et al. [33] investigated tumor-induced angiogenesis
via a mathematical model that simultaneously simulated blood flow and dynamic capillary
network progression by considering the non-Newtonian blood behavior and non-uniform
distribution of the hematocrit in the bifurcations. The objective of their research was to
develop a model to make tumor-induced angiogenesis more precise. Accordingly, they did
not consider transvascular flow and interstitial fluid flow. Alamer and Xu [34] studied the
effect of microvasculature on interstitial fluid flow and investigated vascular normalization
via capillary pruning. Their model had the limitation of not considering non-Newtonian
blood behavior and the adaptation of micro-vessel diameter in response to transmural
pressure and metabolic stimuli. Soltani and Chen [35] investigated interstitial fluid flow
distribution in relation to blood flow in a dynamic tumor-induced microvasculature from
one parent vessel by considering the non-continuous behavior of blood. Sefidgar et al. [16]
further developed the model of Soltani and Chen [35] to include solute transport analysis
to reflect drug distribution in the tumor site. Wu et al. [27] used a mathematical model of



Cancers 2023, 15, 5464 3 of 28

angiogenesis, which produces capillary networks originating from two distinct vessels of
arteriole and venule, to study blood flow and interstitial flow distribution by decreasing
the capillary network’s density to mimic the anti-angiogenic effect. In another study by
this group [36], the anti-angiogenic effect of angiostatin and endostatin in combination
with intravascular and interstitial flow is considered. The blood vessels in this study were
assumed to be dynamic based on the compliance method of Netti in the tumor tissue. In
another study [37], the anti-angiogenic effect of angiostatin on interstitial fluid flow behav-
ior was investigated in a rigid capillary network without considering the non-continuous
behavior of blood.

Ozturk et al. [38] investigated the effect of vascular normalization on liposome delivery
into a homogeneous solid tumor based on a study by Jain et al. [21] They found that
the efficiency of normalization in improving liposome delivery is a function of tumor
size. Stylianopoulos and Jain [39] investigated the effect of vascular normalization by
assuming a decrease in micro-vessels’ diameter and their pruning. They concluded that
normalization is more effective in microvasculature with more permeability and less
compressibility characteristics.

Steuperaert et al. [40] investigated intraperitoneal drug delivery using a macroscopic
model based on an actual image extracted via magnetic resonance imaging. They also
took into account interstitial transport properties, considering a non-uniform distribution.
Image processing techniques were used to develop a macroscopic model [41] of a brain
tumor to investigate the effect of administration of bevacizumab on drug delivery. Sweeney
et al. [42] studied anti-angiogenesis by applying the modifications to transport properties
in solid tumors with a microvasculature based on the real image.

To develop a comprehensive numerical microscopic model that simulates the effect
of anti-angiogenic adjuvant therapy on the quality of drug delivery, one should consider
multi-physics in a multi-scale context. This model should describe (a) the generation
of tumor-induced angiogenesis under the inhibitory effect of the anti-angiogenic agent,
angiostatin in this study; (b) intravascular blood flow in connection with interstitial fluid
flow in a dynamic microvasculature, taking into account the non-Newtonian behavior of
blood and adapting the micro-vessels’ diameter in response to hemodynamic and metabolic
stimuli; and (c) spatiotemporal solute transport into the tumor tissue. All of these aspects
are addressed in the present paper for the first time. Consideration of different tumor
sizes and vascular normalization approaches are other contributions of this paper. Three
approaches are observed for investigating anti-angiogenic therapy. In the first approach,
the microvasculature is updated under the influence of an anti-angiogenic agent without
considering modifications in transport properties. In the second approach, modifications
in transport properties experimentally induced via anti-angiogenesis are considered. The
third approach applies the model by combining the former two.

2. Materials and Methods
2.1. Computational Model Geometry

In this study, a circular tumor (with different radius sizes of R = 0.8 cm, R = 0.6 cm,
R = 0.4 cm, and R = 0.2 cm) surrounded by normal tissue (a rectangular domain of 2× 4 cm)
is considered. A parent vessel with ten sprouts is defined on the left side of the tumor, and
one parent vessel with five sprouts is located on the right side of the tumor. Figure 1 shows
an illustration of the computational field, which is rendered in a two-dimensional domain.
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Figure 1. Schematic view of the computational domain, coordinate origin, parent vessels, cut lines,
and boundaries.

2.2. Governing Equations

In this multi-scale study, angiogenesis and network formation under the influence of
an anti-angiogenic agent, blood flow distribution in microvascular networks, and interstitial
fluid flow and solute transport in tumor and normal tissues are mathematically modeled.
The following sections describe the equations that govern the physics of each phenomenon.

2.2.1. Angiogenesis and Anti-Angiogenesis

In this study, a tumor-induced microvascular network was simulated via a probabilistic
model of reinforced random walk, which was developed based on the discretized non-
dimensional governing equations of evolution of endothelial cells (ECs) in a discrete model.
Anderson and Chaplain [25,26] proposed this model by initially considering three main
mechanisms, i.e., random motility, chemotaxis, and haptotaxis, that control ECs’ migration
to the tumor site. This model was further developed in our recent study [30] to consider the
sprouting of two-parent vessels toward a circular tumor. Moreover, the proliferation and
death of ECs and the effect of matrix-degrading enzyme was considered. For simulating
the response of tumor-induced angiogenesis to the anti-angiogenic agent, the model was
modified to consider the effect of angiostatin. Then, different microvascular networks were
extracted in different tumor sizes. More details were provided in [30].

2.2.2. Intravascular Blood Flow

The model utilized in this study to simulate the apparent blood viscosity is based
on the work of Pries et al. [43,44]. They incorporated data from 18 studies on human
blood and integrated them with a parametric representation of apparent blood viscosity in
relation to plasma viscosity in order to define the apparent viscosity. The empirical equation
formulated by Pries and Secomb [45] was employed to characterize the distribution of
blood hematocrit in bifurcations. The dynamic microvascular model developed by Pries
and colleagues [46–48] was chosen to model the structural adaptation of micro-vessels.
In terms of accuracy, the Pries model was validated by comparison to the experimental
data. This model considers determinative factors in microcirculatory behavior, i.e., hema-
tocrit, viscosity, and micro-vessel diameter. Regarding its applicability, the Pries model
is considered to be quite versatile and is frequently employed in studies related to devel-
opmental remodeling. Many researchers regard it as the fundamental model for vascular
remodeling [49].
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A capillary network is analogous to an electronic circuit. Similar analyses for solving
electronic circuits in capillary networks can be used if the pressure and the volumetric flow
rate are set as equal to the electric potential and current, respectively. A pressure-dependent
linear equation system that allows for the calculation of pressure and flow is obtained
by considering the volumetric flow rate conservation at each node of the network. The
conservation of mass for each node, such as c, which is shown in Figure 2, can be written
as [16,35];

N

∑
k=1

Qk
cβk= 0 (1)

where the index k represents the adjacent nodes and N is the number of adjacent nodes,
which is 4 for a fully connected network in this manuscript. βk is zero or one, which
indicates the presence or absence of a connection between point c and its adjacent point k.
Qk

c is the net flow for each capillary, expressed in Equation (2).

Qk
c = Qk

B,c −Qk
t,c (2)
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Qk
B,c and Qk

t,c are the intravascular flow in each capillary and the transvascular flow
from or to the capillary wall, respectively, which are also shown in Figure 3.
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Since the Reynolds number of blood flow in the capillaries is less than 1 (laminar
regime), Poiseuille’s law can be used as follows [35]:

Qk
B,c =

π

128
∆PD4

Lµ
(3)
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where ∆P = Pc
B − Pk

B, D, L, and µ show the driving pressure, the diameter of the capillary,
the length of the capillary, and the blood viscosity, respectively.

The transvascular flow rate through the capillary wall is expressed by Starling’s model
as follows [50]:

Qk
t,c = πDLLp(PB − Pi − σs(πB − πi)) (4)

PB =
Pc

B+Pk
B

2 is considered as the average intravascular pressure between node c and

adjacent node k [35]. Pi is defined with the equation of Pi =
Pc

i +Pk
i

2 and represents the
average IFP between node c and adjacent node k [35]. Lp is the hydraulic conductivity of the
microvascular wall. σs shows the average osmotic reflection coefficient for plasma proteins.
πB and πi demonstrate the osmotic pressure of the plasma and the osmotic pressure of the
interstitial fluid, respectively [18].

Combining Equations (1)–(4) results in:

N

∑
k=1

(
π

128
∆PD4

Lµ
− πDLLp(PB − Pi − σs(πB − πi)))βk = 0 (5)

The transvascular flow rate depends on the intravascular and interstitial pressures.
The intravascular pressure is calculated by solving the mass conservation equation at each
network node (Equation (1)). Solving the equation’s governing fluid flow in the porous
medium yields the IFP around the capillary network. Equation (4) is a bridge between the
blood flow in the microvascular network and fluid flow in the surrounding tissue.

Blood Viscosity

Blood is a non-Newtonian fluid with four main components, namely, plasma, red
blood cells, white blood cells, and platelets. To use Poiseuille’s law, which is applicable to
Newtonian fluids, it is necessary to define the apparent blood viscosity. Blood suspension
characteristics have a significant effect on the dynamics of blood flow in capillaries. The
finite size of these suspended elements in capillaries causes a few important phenomena,
such as non-continuum behavior, variation of blood apparent viscosity with micro-vessel
diameter, and non-uniform distribution of hematocrit (volume percentage of red blood
cells in the blood) between branches of diverging microvascular bifurcations [16]. Pries
et al. [43,44] established the following empirical relationship for apparent blood viscosity
as a function of micro-vessel diameter and hematocrit for a range of micro-vessel radius
(from 2 µm to 300 µm):

µapp = µplasma.µrel (6)

in which µplasma shows the plasma viscosity with a constant value of 1.2× 10−3[Pa.s]. µrel
is the relative apparent viscosity, which is defined as follows:

µrel = [1 + (µ45 − 1)
(1−H)C

(1− 0.45)C − 1
(

D
D− 1.1

)
2
](

D
D− 1.1

)
2

(7)

µ45 denotes the relative apparent viscosity for a fixed value of hematocrit (H = 0.45).
D is the micro-vessel diameter. C is defined with the following function:

C = (0.8 + e−0.075D)(−1 +
1

1 + 10−11D12 ) +
1

1 + 10−11D12 (8)

Blood Hematocrit

Microvascular blood flow includes both cells and plasma, which is what is known as a
two-phase flow. A hematocrit of 100% can be found in one daughter vessel and none in
the other, as the component distribution is not proportional to the plasma distribution at
the branches [51]. It is found that the blood hematocrit distribution in bifurcations of the
microvascular network varies based on the study by Pries and Secomb [45]. The fractional
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flow of red blood cells into one daughter branch ( H2
H1

) is determined using the fractional

blood flow ( Q2
Q1

) as mentioned in [45]:
H2
H1

= 0 if Q2
Q1
≤ X0

logit H2
H1

= A + Blogit[(Q2
Q1
− X0)/(1− 2X0)] if X0 < Q2

Q1
< 1− X0

H2
H1

= 1 if 1− X0 ≤ Q2
Q1

(logitx = ln(
x

1− x
))

(9)
where A, B, X0 are phase separation characteristics and defined as follows:

A = −13.29(
((

D3
D2

)
2
−1)

((
D3
D2

)
2
+1)

) (1−H1)
D1

B = 1 + 6.98(1−H1)
D1

X0 = 0.964(1−H1)
D1

(10)

D1, D2, D3, H1, H2, and H3 are shown in Figure 4.
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Vessel Diameter Adaptation

The vascular structure in the human body is viscoelastic. In response to a force exerted
upon the vessel wall, dilation occurs, and when the force is released, the vessel tends
to shrink. Vascular dilation or contraction occurs as a result of exerted wall shear stress,
intravascular pressure, and metabolic mechanisms related to the blood hematocrit [16,35].
The change in diameter (∆D) for a time step (∆t) for each segment in the microvascular
network is assumed to be proportional to the stimulus term (Stot), vessel initial diameter
(D), and the time step [46–48]:

∆D = StotD∆t, Stot = Sh + Sm − ks (11)

in which Sh and Sm show the hemodynamic and metabolic stimuli, respectively. The
following equations are used to define Sh and Sm [46,47]:

Sh = log10(τw + τref)− kp log10 τe (12)
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Sm = km log10(
Qref
QBH

+ 1) (13)

where τw shows the wall shear stress in a capillary with the equation of
32QBµapp

πD3 . τref is a
positive constant value (0.103 [Pa]) which is considered when the wall shear stress has a
small value to avoid singular behavior. τe is the wall shear stress caused by blood pressure,
which is expressed by τe = 100− 86 exp

[
−5000(log10 (log10 PB)

5.4
]
. Qref is the largest

value of QB in the microvascular network. km and kp are positive constants with values of
0.07 [1/s] and 0.1 [1/s], respectively [16]. Shrinking tendency (ks) is another parameter that
represents the basal tendency of vessels to shrink in the absence of positive growth stimuli.
ks is considered to be 0.35 [1/s] in this study [16]. Soltani and Chen [35] and Sefidgar
et al. [16] described intravascular blood flow modeling in a dynamic network with more
details.

2.2.3. Interstitial Fluid Flow

Darcy’s law is a simplified form of the momentum equation, which can be applied for
defining the fluid flow behavior in biological tissues as porous media like the tumor and
normal tissues [23,52,53]:

→
Vi = −k∇Pi (14)

where
→
Vi, k, and Pi show the interstitial fluid velocity (IFV), interstitium hydraulic conduc-

tivity, and IFP, respectively.
The incompressible steady state form of continuity equation with source and sink

terms of biological tissues is expressed as follows [23,52]:

∇.
→
Vi = φB −φL (15)

φB shows the fluid flow rate per unit volume from or into the blood vessels. φB in
the computational domain is calculated using Starling’s law anywhere there is a capillary
network. Otherwise, φB is set at zero. φL demonstrates the fluid flow rate per unit volume
from the interstitial space into the lymph vessels. It is worth mentioning that in this study,
a uniform lymphatic system is considered only in the normal tissue [16]. Starling’s law is
used to evaluate φB. The general form of Equation (15) is as follows [16]:

∇.
→
Vi =

LpS
V

[PB − Pi − σs(πB − πi)]−
LpLSL

V
(Pi) (16)

S
V shows the surface area of the vessel wall per unit volume of tissue. LP, σs, πB,

and πi are the microvascular wall’s hydraulic conductivity, average osmotic reflection
coefficient for plasma proteins, plasma osmotic pressure, and interstitial fluid osmotic

pressure, respectively.
LpLSL

V is the product of hydraulic conductivity of the lymphatic
vessel wall and surface area of the lymphatic wall per unit volume of tissue.

Combining Equations (14) and (16) with a constant value for k results in:

−k∇2Pi =
LpS
V

[PB − Pi − σs(πB − πi)]−
LpLSL

V
(Pi) (17)

2.2.4. Solute Transport

Two transport mechanisms of convection and diffusion are considered in this study
for describing drug delivery into the solid tumor as a porous medium [54]. Fick’s second
law is used to show mass conservation as follow [23]:

∂Ci

∂t
+∇·

→
J = 0 (18)
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where Ci and
→
J are solute concentration and solute mass flux, respectively.

Fick’s first law controls solute transport induced via the diffusion mechanism. More-
over, solute transport induced via the convection mechanism is obtained by multiplying
the IFV by the solute concentration [16].

→
J = −Deff∇Ci +

→
ViCi (19)

where Deff shows the coefficient of the diffusion mechanism. By considering the source
and sink terms of biological tissues and assuming a constant value for Deff, the following
equation shows the governing equation of solute transport [16,55].

∂Ci

∂t
= Deff∇2Ci −∇·(

→
ViCi) +ϕB −ϕL (20)

ϕB shows the solute transport rate per unit volume from the blood vessels into the
interstitial tissue. The following equation indicates ϕB based on the model proposed by
Patlak [56]:

ϕB = φB(1− σf)Cp +
PS
V

(CP −Ci)
Pe

ePe − 1
(21)

where σf, CP, and P show the filtration reflection coefficient, plasma solute concentration,
and the coefficient of micro-vessel permeability, respectively. Pe shows the Peclet number
with an equation of φB(1−σf)V

PS .
ϕL is the solute transport rate per unit volume from the interstitium to the lymphatic

vessels, which are considered just in the normal tissue in the present study [16], with the
following equation:

ϕL = φLCi (22)

2.3. Numerical Simulation Explanation

To clarify the numerical model applied in the present study, boundary and initial
conditions, numerical modeling process, grid-independent solution, and parameter values
are described in the following sections.

2.3.1. Boundary and Initial Conditions

In intravascular blood flow analysis, the blood pressure in the inlet and outlet of parent
vessels is considered to be 25 mmHg and 10 mmHg [16].

In the interstitial fluid flow analysis, the IFP in the outer boundaries of normal tissue
is considered to have a value of 0 Pa, which is the surrounding pressure in the present
study [23]. For the boundary between tumor and normal tissues, the IFP and IFV are
continuous, as follows:

Pi|R− = Pi|R+

−kt∇Pi|R− = −kn∇Pi|R+
(23)

where R− and R+ represent the radius of the tumor edge at the tumor and normal tissues,
respectively. kt and kn show the hydraulic conductivity of the tumor and normal tissues,
respectively [23].

In the solute transport analysis, an open boundary condition is applied in the normal
tissue boundaries with an equation of −n.∇Ci = 0. n depicts the normal vector. The
continuity of solute concentration and its flux are considered in the inner boundary between
the tumor and normal tissues [23]:

Ci|R− = Ci|R+

(Deff
t∇Ci +

→
ViCi)

∣∣∣∣R− = (Deff
n∇Ci +

→
ViCi)

∣∣∣∣
R+

(24)

The initial values of 0 mmHg and 10 mmHg are considered for IFP and blood intravas-
cular pressure, respectively. An initial value of 12 µm is considered for the capillary vessel
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diameter. The initial value for solute concentration is considered equal to 0 mol/m3. The
bolus injection is modeled with the equation CP(t) = C0e−t/τ. C0 shows the maximum
amount of concentration in the plasma, which is 1 mol/m3 in this study. τ shows the time
constant.

2.3.2. Numerical Modeling Process

In this study, after considering the initial guesses, intravascular blood pressure (IBP)
in each node is achieved by numerically solving the discretized form of Equation (5) via
an iterative computational method. The obtained value for the intravascular pressure is
used in the discretized form of Equation (17) for calculating the IFP. Intravascular flow
and subsequently the stimuli of vessel diameter adaptation are found by determining the
amount of intravascular pressure, so the structure of the capillary network is reconstructed.
Hematocrit and blood viscosity are also updated. The updated values of capillary diameter
and blood viscosity are used to calculate the IBP and subsequently the IFP. This iterative
process continues until convergence is achieved. The relative error for this set of equations
is defined as XN−XO

XO
, in which X shows PB, Pi, and D. N and O depict the current step and

previous step, respectively. The numerical solution of the equations continues until the
relative error becomes less than 10−6. The obtained value for IBP is used to calculate the
solute concentration in connection to the IFP (Equation (21)) by using the finite element
method with a precision of 10−6 for the residual convergence criterion. Figure 5 shows the
flowchart of the simulation procedure.

2.3.3. Grid Independent Solution

The independence of results from the grid size is checked in different tumor sizes for
both fluid flow and solute transport analyses. IFP, IFV, and Ci are evaluated by generating
coarse grids and by making denser grids. This process continues until the difference
between the two last results becomes negligible.

2.3.4. Parameters Value

Different values are considered for parameters of the interstitial fluid flow and solute
transport analyses in different tissue types based on previous research [16,18,23,55,57–59].
The descriptions of all parameters are presented in Table 1. LP in tumor and normal tissues
is considered based on previous calculations [60] and research [16,23,61]. k is considered
in the present study based on our previous works [16,23,61] for normal and tumor tissues.
S
V has a value of 70 1

cm and 200 1
cm in normal and tumor tissues, respectively [23]. σs was

obtained for normal tissue to be equal to 0.91 [62]. σs is calculated using the spherical
solute–cylindrical pore model for tumor and normalized tissues based on the previous
studies [21,23]. πB and πi are considered to have the same values as our previous study [23].
In the present study, PL and LPLSL

V are assumed just in the normal tissue, and their values are
considered based on the work of Pishko et al. [57]. Deff and P for tumor and normal tissues
are considered based on [23] for F(ab′)2. σf for different tissues is calculated by using

σf = [1− (1− Solute radius
Pore radius )

2
]
2

[63,64]. It is worth mentioning that vascular pore radius
was considered to be 0.75µm and 4.45 nm in tumor and normal tissues, respectively. A
reduction of one-fifth in pore radius was applied due to the normalization induced by
the anti-angiogenic therapy [23]. S

V decreases by 42% after the anti-angiogenic therapy. A
68% reduction in vascular permeability (P S

V ) occurs after normalization. Deff and k are
considered to be the same as before treatment. A 5-fold decrease in LP was measured after
the anti-angiogenic treatment. More information can be found at [23].
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Table 1. Interstitial fluid flow and solute transport properties for tumor, normalized, and normal
tissues.

Parameter Description Normal
Tissue

Normalized
Tissue

Tumor
Tissue Reference(s)

Lp ( cm
s mmHg )

Hydraulic conductivity of the
microvascular wall 3.6× 10−8 5.6× 10−8 2.8× 10−7 [23,55,61,65]

k ( cm2

s mmHg )
Hydraulic conductivity of

the interstitium 8.53× 10−9 4.13× 10−8 4.13× 10−8 [16,23,55,61]

S
V ( cm2

cm3 )
Surface area of vessel wall per

unit volume of tissue 70 116 200 [23]

πB(mmHg) Osmotic pressure of the plasma 20 19.2 19.8 [23]

πi(mmHg) Osmotic pressure of the
interstitial fluid 10 15.1 17.3 [23]

σs
Average osmotic reflection

coefficient for plasma proteins 0.91 2.1× 10−3 8.7× 10−5 [23]

PL(mmHg) Hydrostatic pressure of
the lymphatics 0 - - [57]

LPLSL
V ( 1

s mmHg )

Product of hydraulic conductivity
of the lymphatic wall and surface

area of lymphatic wall per unit
volume of tissue

1.33× 10−5 - - [57]

σf
Osmotic filtration

reflection coefficient 0.9 2.06× 10−3 8.41× 10−5 [23]

Deff(
cm2

s ) Effective diffusion coefficient 0.16× 10−8 2× 10−8 2× 10−8 [58]

P( cm
s )

Micro-vessel
permeability coefficient 2.2× 10−8 9.54× 10−8 17.3× 10−8 [23]

τ(hr) Drug time constant 6.06 6.06 6.06 [18]

3. Validation

As the present study involves complex multi-scale and multi-physics modeling, it
is not possible to validate it experimentally. Moreover, the present study addresses var-
ious complications, which contribute to its progressive nature. Therefore, to verify the
present model, various phenomena from the case studies in the literature [16,28,66] are
duplicated in this study. In the first stage, angiogenesis is modeled under the influence
of endostatin, another anti-angiogenic agent, based on the study by Tee and DiStefano
III [28], by administering a continuous injection with a dose of 20 mg/kg/day. As reported
in our previous study [30], capillary growth toward the tumor was halted in this case study,
which is consistent with the literature [28]. Experimental research has demonstrated a
reduction in tumor microvascular density following anti-angiogenic therapy. For instance,
Soto-Pantoja et al. [67] conducted an in vivo study, revealing a 50% decrease in vessel
density in human A549 lung tumor xenografts subcutaneously implanted in mice following
angiostatin injection. Similarly, a decrease in blood vessel density was observed in estab-
lished ovarian cancer in mice after angiostatin treatment [68]. To verify the interstitial fluid
flow behavior, the physical conditions of the experimental work by Boucher et al. [66] are
imposed on the present study’s model, and the results show good agreement between the
two research studies, as shown in Figure 6a. In the third stage, the average drug exposure is
determined in R = 0.4 cm, considering the same methodology as described in the previous
study [16], while taking into account the microvasculature of the present research. The
comparison is shown in Figure 6b. Upon comparing the results, it is evident that the solute
accumulation process over time aligns well with the literature [16]. However, a discrepancy
arises due to the variation in computational domains. Sefidgar et al. [16] considered a single
parent vessel sprouting toward half of a circular tumor, leading to a different capillary
network structure.
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Figure 6. Comparison between results of the present model and literature [16,66]. (a) A comparison
between the results of the interstitial fluid pressure distribution in the present study and the work
of Boucher et al. [66]. (b) A comparison between the results of the average solute exposure in the
present study and the work of Sefidgar et al. [16].

4. Results and Discussion

Drug delivery into solid tumors with different sizes and remodeled dynamic networks
are investigated numerically in this study. The effect of the anti-angiogenic adjuvant treat-
ment on the quality of drug delivery is studied here. Three cases are considered to study
this effect. In case one, modification in response to the inhibitory effect of angiostatin
and consequently updated tumor-induced microvascular network is considered without
any change in the interstitial transport properties. In the second case, only modifications
in transport properties are considered. In the third case, both modifications in the mi-
crovascular network and transport properties in response to the anti-angiogenic therapy
are considered.

Interstitial fluid flow is carried out to find out the IFP and IFV distributions. Solute
transport analysis is considered to evaluate the concentration of the therapeutic agent
delivered into the tumor site. Two parameters of non-dimensional average solute exposure
(NDASE) and non-dimensional average solute distribution non-uniformity (NDASDNU)
are introduced based on our previous research [23] as indicators of the quality of drug
delivery into the tumor.

As different tumor sizes are considered, the final time for each geometry is defined
such that the average amount of solute in the tumor site reaches one percent of its maximum
value after considering vascular normalization modification (case 3). This time is equal
to 820,210 s, 709,150 s, 511,750 s, and 646,160 s in tumors with R = 0.8 cm, R = 0.6 cm,
R = 0.4 cm, and R = 0.2 cm, respectively.

4.1. Fluid Flow Analysis

Investigating the interstitial fluid flow is significant because high IFP in the tumor
site, its sudden decrease, and consequently the sudden increase of IFV at the tumor margin
were introduced as a main barrier for qualified drug delivery in the literature [18–21,69].
Therefore, interstitial fluid flow analysis in connection with intravascular blood flow is
performed. Figures 7–9 demonstrate the non-dimensional distribution of IBP, IFP, and IFV
(relative to their maximum value) in different case studies of the present research.
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Figure 7 shows the non-dimensional IBP contour in different tumor sizes and states.
It can be seen that the distribution of IBP is dependent on the microvascular network
morphology in the first order and on the transport properties next.

Figures 8 and 10 show the non-dimensional contour of IFP and IFP distribution along
cut lines shown in Figure 1. According to these figures, the IFP in the tumor site is more
than the surrounding normal tissue. There are three main reasons for this phenomenon:
higher density of the microvascular network, more leakage of the capillaries, and lack
of an efficient lymphatic system in the tumor site. It is obvious that IFP does not have
a uniform distribution in the tumor site as what is in the macroscopic analysis. Because
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there is non-uniform distribution of the blood vessels and consequently non-uniform fluid
flow sources (φB in Equation (15)). These results improve the visualization of the tumor
microenvironment behavior and bring a more realistic view of that.

Cancers 2023, 15, x FOR PEER REVIEW 15 of 30 
 

 

Tumor size 
Without anti-angiogenic 

therapy 

With anti-angiogenic 

therapy, case 1 

With anti-angiogenic 

therapy, case 2 

With anti-angiogenic 

therapy, case 3 

 

=R 0.8cm  

    

R 0.6cm=  

    

R 0.4cm=  

    

R 0.2cm=  

    

Figure 8. Non-dimensional IFP contour in different tumor sizes and states. 

Tumor size 
Without anti-angiogenic 

therapy 

With anti-angiogenic 

therapy, case 1 

With anti-angiogenic 

therapy, case 2 

With anti-angiogenic 

therapy, case 3 

 

=R 0.8cm  

    

R 0.6cm=  

    

R 0.4cm=  

    

R 0.2cm=  

    

Figure 9. Non-dimensional IFV contour in different tumor sizes and states. 

Figure 7 shows the non-dimensional IBP contour in different tumor sizes and states. 

It can be seen that the distribution of IBP is dependent on the microvascular network 

morphology in the first order and on the transport properties next. 

Figures 8 and 10 show the non-dimensional contour of IFP and IFP distribution along 

cut lines shown in Figure 1. According to these figures, the IFP in the tumor site is more 

than the surrounding normal tissue. There are three main reasons for this phenomenon: 

higher density of the microvascular network, more leakage of the capillaries, and lack of 

an efficient lymphatic system in the tumor site. It is obvious that IFP does not have a 

uniform distribution in the tumor site as what is in the macroscopic analysis. Because 

there is non-uniform distribution of the blood vessels and consequently non-uniform fluid 

flow sources ( B  in Equation (15)). These results improve the visualization of the tumor 

microenvironment behavior and bring a more realistic view of that. 

Figure 9. Non-dimensional IFV contour in different tumor sizes and states.

The value of the IFP in the tumor area before anti-angiogenic therapy in different
tumor sizes studied in this research is in accordance with an experimental study by Butcher
and Jain [70], who reported the tumor pressure range from 586 to 4200 Pa. In comparison
to our previous study [23], the IFP has a higher value in the tumor site before considering
the anti-angiogenic therapy. This result is in accordance with our previous research [16].

By comparing the IFP distribution before considering anti-angiogenesis and consider-
ing it by case 1 in Figures 8 and 10, the significant effect of micro-vessels feeding the tumor
is demonstrated. IFP distribution in R = 0.8 cm and R = 0.6 cm in Figures 8 and 10 shows
that even though the density of micro-vessels is reduced by 24% and 13%, respectively [30],
in response to the inhibitory effect of angiostatin, the maximum amount of IFP occurs in
approach 1 of considering anti-angiogenesis. This result shows that the interstitial fluid
flow behavior is more dependent on the structure of the microvascular network than on its
density. This behavior changes in R = 0.2 cm by pruning severely micro-vessels, such that
IFP has its maximum value in the case without considering the anti-angiogenic therapy.

It has been demonstrated preclinically [71] that anti-angiogenic therapy leads to the
establishment of a pressure gradient across vasculature, as depicted in Figures 8 and 10. It is
evident that various approaches to modeling anti-angiogenesis result in the development of
a pressure gradient between the microvasculature wall and its periphery. Another observa-
tion in the present study is the reduction of IFP induced by anti-angiogenic therapy, which
has been reported in different experimental trials [71–74]. The IFP in tumors implanted
subcutaneously in mice with an approximatively equivalent radius of 4 mm decreases ~50%
after treatment with the anti-angiogenic agent EGCG [75]. The reduction in the average
amount of IFP in the tumor with R = 0.4 cm is close to this value (~45%). However, this
close agreement may be interpreted qualitatively rather than quantitatively, as different
algorithms were utilized between the two studies.

Figures 9 and 11 show the contour of IFV and its distribution along cut lines. In
dissimilarity with macroscopic studies, IFV has a non-uniform distribution in tumor tissue.
IFV has a non-zero value in some parts of tumor tissue, as IFV is proportional to the IFP
gradient (Darcy’s law). Non-uniform IFP distribution, and consequently the existence of
pressure gradient in the tumor site, results in non-zero IFV inside the tumor.
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Figure 10. IFP distribution along horizontal and vertical cut lines in different tumor sizes.
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In Figure 11, in all tumor sizes, IFV along the horizontal line has its non-zero maximum
value at the tumor margin before considering the anti-angiogenic treatment because of
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the almost uniform distribution of IFP along this line. However, IFV has a non-zero value
not only in the tumor margin but also outside the dense region of micro-vessels along the
vertical line.

In addition to the discussion made about the effect of anti-angiogenesis case 1 on
interstitial fluid flow behavior, it is shown that other than R = 0.2 cm, in which anti-
angiogenesis induced via angiostatin application causes a 55% decrease in microvascular
network density [30], this approach (case 1) causes a pressure gradient in the inner areas
only along the vertical direction. The modification in IFV distribution in R = 0.2 cm is
obvious. An intensive decrease in capillary density limits the source of flow, which is
responsible for the decrease in IFP and non-zero IFV inside the tumor along both horizontal
and vertical directions. Figure 10 shows that the second approach of anti-angiogenic
treatment causes a decrease in IFP in all tumor sizes. Moreover, this approach modifies
the steep pressure gradient in the tumor margin and shifts the pressure gradient to the
inner areas. In accordance with the modification in IFP with the second approach, IFV
behavior is also modified. The effect of normalization induced by the third approach on IFP
in R = 0.4 cm is shown in Figure 10 just by causing the IFP gradient, which causes non-zero
IFV in inner areas and a decrease in IFV at the tumor margin. By decreasing the tumor size,
the IFP decrease induced by the third approach of vascular normalization is increased.

4.2. Solute Transport Analysis

A single bolus injection, whose equation is described in Section 2.3.1, is considered
in this study, and the convection-diffusion equation is solved numerically to find the
concentration distribution of the therapeutic agent.

Figure 12 shows the non-dimensional solute concentration contour in R = 0.8 cm
at different post-injection times. This figure is dimensionless relative to its maximum
value. The non-uniform distribution of the solute is obvious, which is the result of the
tortuous structure of microvasculature. As shown in Figure 12, vascular normalization
modifies the drug wash-out phenomenon in the tumor periphery. This is evident from the
modification of the spatial distribution range toward the inner parts of the tumor (case 1),
and moreover a reduction in the amount of drug wash-out (cases 2 and 3) compared to the
pre-anti-angiogenic therapy.

By considering the modifications in transport properties (cases 2 and 3), while the
maximum amount of solute reaching the tumor site is decreased, the tumor is exposed
to the drug for a longer period of time. This behavior causes more uniformity of solute
distribution because the mechanism of diffusion in the interstitium has more time for
carrying solute to the sites with less or no density of micro-vessels. It is observed in
Figure 12 that the uniformity in the solute distribution in the entire tumor region at 72 h
post-injection is higher in cases 2 and 3 compared to the case without considering anti-
angiogenic therapy.

Figure 13 shows the distribution of solute along horizontal and vertical cut lines in
R = 0.8 cm at different post-injection times. It is obvious that the solute has a heterogeneous
distribution in the tumor region because of the heterogeneity in micro-vessels distribution
as the channels for transporting the therapeutic agents into the tumor. By comparing the
present study’s results with previous ones, which assumed a uniform distribution of blood
vessels in vital regions of tumors, it is obvious that considering a dynamic microvascular
network based on real phenomena is essential to have a more realistic view.

The solute concentration has its jumped wash-outed maximum value in the tumor
margin along the horizontal line before considering anti-angiogenesis treatment because
of a sudden increase in IFV profile in the margin (Figure 13a). The first approach of
anti-angiogenesis treatment cannot modify this behavior because it cannot modify the
IFP and IFV distribution in R = 0.8 cm along the horizontal line in Figures 10 and 11.
The solute concentration along the vertical line has its maximum value in the inner areas
of the tumor at early injection (1 h). Over time, the solute concentration starts to wash
out from the tumor boundaries because of the out-flow convective mechanism. Vascular



Cancers 2023, 15, 5464 19 of 28

normalization induced via anti-angiogenesis modifies this behavior at each post-injection
time (Figure 13b–d, vertical line).
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Figure 12. Non-dimensional solute concentration contour in R = 0.8 cm at different post-injection times.

The solute concentration increases fast before anti-angiogenic therapy. Then, the
concentration starts to decrease (as seen in Figure 13c) because of plasma clearance.
Vascular normalization, especially by the second and third approaches, makes a differ-
ence in the timing of drug delivery by modifying the transport properties (which is dis-
cussed in detail in our previous study [23]) or modifying both transport properties and
micro-vessels distribution.

It is shown in Figure 13 that at 24 h post-injection, drug exposure and uniformity
are improved by vascular normalization, especially by the second and third approaches.
This phenomenon is more obvious at 72 h post-injection. This behavior is related to (a)
the trade-off between P, S

V , and CP, which control the trans-vascular diffusion as the
dominant transport mechanism in areas with dens micro-vessels, and (b) modifications
in trans-vascular convection and interstitium convection transport mechanisms (via the
modifications in IFP, IFV, Lp, and S

V ), which play critical roles in drug delivery in areas
with lower micro-vessels density and tumor margins. In other words, by modifying
transport properties (case 2) and also the microvascular network morphology (case 3) due
to vascular normalization, the tumor exposure to the therapeutic agent occurs slowly, and
subsequently, plasma clearance does not occur fast like the untreated tumor. Therefore,
the tumor is exposed to the drug for a longer time (it is shown in Figure 14 that at 120 h
and 216 h post-injection, in contrast to the untreated tumor and the first approach used for
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anti-angiogenesis, the second and third approaches of vascular normalization cause the
presence of solute inside the tumor region long time after a single injection).
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Based on the aforementioned discussion, the type of therapeutic agent used in either
chemotherapy alone or in combination with anti-angiogenic treatment is another crucial
factor that governs the effectiveness of drug delivery and vascular normalization. In further
detail, the type of therapeutic agent through its molecular weight is a determinant of the
plasma clearance (which its rate is expressed by drug half-life [76]), osmotic filtration reflec-
tion coefficient, effective diffusion coefficient, and micro-vessel permeability coefficient [18].
For example, a therapeutic agent with a rapid plasma clearance half-life results in a faster
decrease in concentration within the tumor interstitium. Consequently, the interstitium has
a shorter window of exposure to it. Vascular normalization induced via anti-angiogenic
therapy reduces the excessive leakiness of the microvascular network [77,78] and may
improve the quality of drug delivery. As outlined in our prior study [23], vascular nor-
malization has the potential to improve clearance behavior by directly modifying the
parameters governing trans-vascular diffusion, trans-vascular convection, and interstitial
convection and indirectly influencing the interstitial diffusion transport mechanism. In
other words, modification of transport properties and microvascular network induced via
vascular normalization can cause an improvement in solute distribution via a regulated
process of drug entry into the interstitium and subsequent return to the plasma. Thus,
during a specific perfusion time frame, precise intensities of vascular normalization have
the potential to enhance the delivery of a specific therapeutic agent to a solid tumor with
predefined properties. More discussion can be found in [23]. Thus, it is important to study
effective parameters in drug delivery, with the specific plasma clearance half-life of the
therapeutic agent being one of them.
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It is observed that the first approach considered for anti-angiogenesis can decrease
drug wash-out (along the vertical axis) due to the modification in the distribution of blood
micro-vessels caused by the inhibitory effect of angiostatin. However, this approach cannot
improve the distribution of solute.

The values of two parameters, NDASE and NDASDNU, are determined for different
tumor sizes and under various vascular normalization approaches at different final time
durations. The results are reported in Table 2. In terms of both average drug exposure
and uniformity of drug exposure, the first approach considered to mimic anti-angiogenesis
does not yield a positive effect. Since the blood micro-vessels transfer drugs to the tumor
site, updating the micro-vessel distribution due to the inhibitory effect of angiostatin not
only leads to a reduction in microvascular density but also concentrates them in central
areas of the tumor. This, in turn, increases non-uniformity in drug distribution without
significantly altering exposure. The non-uniformity increases as the tumor size decreases
because of the increase in micro-vessel pruning due to the inhibitory effect of angiostatin.
This demonstrates that the heterogeneous distribution of micro-vessels results in a non-
uniform distribution of therapeutic agents at the tumor site, transported via trans-vascular
diffusion and convection mechanisms via blood vessel sources. On the contrary, it has
been demonstrated that a more uniform distribution of the microvascular network leads
to less non-uniformity in solute distribution, as demonstrated in R = 0.2 cm, even before
considering anti-angiogenesis in the present study. Clinical studies demonstrate that
tumor vessels exhibit significant heterogeneity in their distribution, diameter, density, and
serpentine shape. This leads to low and heterogeneous blood flow in tumor tissue. The
primary factors responsible are the mechanical forces generated via fluid and solid stress,
along with an excess of vessel permeability [79]. Thus, reengineering the abnormal and
heterogeneous microenvironment of solid tumors via approaches such as normalizing
tumor blood vessels and the extracellular matrix, and alleviating vessel compression is
conducted to overcome the challenges associated with cancer heterogeneity [39,77,78].
From another point of view, this behavior shows the determinative effect of the architecture
of the microvascular network, which can be affected by the anti-angiogenic agent. So,
the type of anti-angiogenic agent, as a controlling factor of pruning the micro-vessels and
consequently the uniformity of their distribution, is an important factor in reengineering
the microvascular distribution.

Table 2. Non-dimensional average solute exposure (NDASE) and non-dimensional average so-
lute distribution non-uniformity (NDASDNU) in different tumor sizes and vascular normalization
approaches. ↑ demonstrates the increase, and ↓ demonstrates the decrease.

Tumor Size
Without

Anti-Angiogenic
Therapy

With Anti-Angiogenic
Therapy, Case 1

With Anti-Angiogenic
Therapy, Case 2

With Anti-Angiogenic
Therapy, Case 3

R = 0.8 cm
NDASE: 0.02636 NDASE: 0.02697

(∼ 2.3% ↑ )
NDASE: 0.02653
(∼ 0.6485% ↑ )

NDASE: 0.02683
(∼ 1.78% ↑ )

NDASDNU: 0.020417 NDASDNU: 0.024195
(∼ 18.5% ↑ )

NDASDNU: 0.016544
(∼ 19% ↓ )

NDASDNU: 0.018968
(∼ 7.1% ↓ )

R = 0.6 cm
NDASE: 0.030992 NDASE: 0.031093

(∼ 0.32% ↑ )
NDASE: 0.030656

(∼ 1.1% ↓ )
NDASE: 0.030695

(∼ 0.96% ↓ )

NDASDNU: 0.018542 NDASDNU: 0.026972
(∼ 45.46% ↑ )

NDASDNU: 0.01533
(∼ 17.3% ↓ )

NDASDNU: 0.022049
(∼ 18.91% ↑ )

R = 0.4 cm
NDASE: 0.043371 NDASE: 0.042542

(∼ 1.9% ↓ )
NDASE: 0.042871

(∼ 1.15% ↓ )
NDASE: 0.041997

(∼ 3.16% ↓ )

NDASDNU: 0.015275 NDASDNU: 0.036058
(∼ 136% ↑ )

NDASDNU: 0.01312
(∼ 14.1% ↓ )

NDASDNU: 0.032458
(∼ 112.5% ↑ )

R = 0.2 cm
NDASE: 0.034 NDASE: 0.0351

(~3%↑)
NDASE: 0.03339

(∼ 1.9% ↓ )
NDASE: 0.034520

(∼ 1.4% ↑ )

NDASDNU: 0.007138 NDASDNU: 0.025436
(∼ 256% ↑ )

NDASDNU: 0.004374
(∼ 38.7% ↓ )

NDASDNU: 0.023
(∼ 223% ↑ )
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In addition to the microvasculature update, considering the modifications in transport
properties (case 3) modifies the non-uniformity caused by case 1. This is due to the earlier
discussion regarding prolonged tumor exposure to the therapeutic agent and improvements
in IFP and IFV induced by the second approach of anti-angiogenesis. In tumor size
R = 0.8 cm, where microvascular network density is decreased by 13% [30], and, of even
greater importance, micro-vessel morphology is modified to a more uniform distribution,
anti-angiogenesis via the third approach increases drug uniformity by 7%.

The results indicate that the second approach of anti-angiogenesis improves drug
distribution by 19%, 17.3%, 14.1%, and 38.7% in R = 0.8 cm, R = 0.6 cm, R = 0.4 cm,
and R = 0.2 cm, respectively, without causing a significant difference in average drug
exposure compared to before anti-angiogenesis. In this case, the microvascular network
suppression is not considered, instead transvascular diffusion and convection mechanisms
are improved in areas with a blood source due to the modification of IFP and IFV, as
demonstrated in Figures 10 and 11. Furthermore, the modification of IFV due to the
establishment of an IFP gradient in the inner areas of the tumor, achieved via the second
approach of anti-angiogenesis, improves the interstitial convection mechanism. All of
these factors contribute to a greater uniformity in the distribution of the therapeutic agent.
The average drug exposure does not change significantly because, although applying anti-
angiogenesis initially decreases drug exposure, it increases afterward. The experimental
evidence supports the notion that when used as an adjuvant treatment alongside basic
therapies such as chemotherapy and radiotherapy, antiangiogenic treatment can lead to a
more uniform distribution of therapeutic agents within the tumor [80,81].

The greatest increase in uniformity occurs in R = 0.2 cm. This is primarily because the
entire tumor site is supplied by blood micro-vessel sources, resulting in uniform delivery
via transvascular mechanisms. Furthermore, modifying the interstitial fluid flow improves
the role of interstitial convection in this size. This result highlights the strong dependency
of drug delivery on the microvascular network structure, or to be more precise, on the
distribution and density of micro-vessels.

The modification of solute distribution in different time windows varies depending
on the specific cases considered for anti-angiogenesis simulation in this study. However,
based on the results of NDASE and NDASDNU across different tumor sizes, the second
approach to anti-angiogenic therapy can be interpreted as the most effective method
for enhancing the quality of drug delivery in this current research. This illustrates the
significant impact of modifying transport properties via vascular normalization on the
response to the therapeutic agent. However, the decision regarding the effectiveness of
the adjuvant anti-angiogenic treatment strategy cannot be accurate without considering
the importance of the uniformity of the microvascular structure at the tumor site. This
is highly dependent on the type of anti-angiogenic agent. Therefore, in order to gain
a comprehensive understanding of the effectiveness of anti-angiogenic therapy, factors
beyond those previously discussed, such as tumor size, concurrent therapeutic agent
type, and time course of perfusion [23], the type of anti-angiogenic agent and its role in
normalizing the microenvironment are crucial.

Based on the results, it should be emphasized that different parameters of anti-
angiogenic agent type, concurrent therapeutic agent type, and tumor geometric and physi-
cal characteristics are determinative factors that specify the efficiency of anti-angiogenic
adjuvant therapy. Therefore, quantitative results obtained from the present study, such as
the percentage of improvement in drug delivery induced via anti-angiogenic therapy and
the proposal of the most effective approach to vascular normalization, are dependent on the
aforementioned factors. However, Qualitative findings from the present study emphasize
the crucial influence of microvascular network structure. This underscores the importance
of selecting the most appropriate anti-angiogenic strategy, one that optimizes the distri-
bution and density of the microvascular network and response of interstitial fluid flow
and solute transport properties to anti-angiogenic therapy, rather than merely suppressing
micro-vessels. These insights can potentially be applied to other types of tumors, where
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drug delivery can be simulated using the numerical model employed in this study. In other
words, the findings of the current research can open a new horizon on the dual function of
the tumor microvascular network and how to take advantage of anti-angiogenic adjuvant
treatment in improving the quality of drug delivery into the tumor.

It is important to mention that this study was not experimentally validated due to con-
straints related to available laboratory resources. To rely more quantitatively on the results
of the present study, the numerical model could be integrated into experimental studies.
There exists experimental research that assesses the combination therapy of chemotherapy
and anti-angiogenic therapy [8–10,82–84]. However, developing an experimental study
to investigate the details of tumor microvasculature considered in the current numerical
model could be achieved by examining the effect of anti-angiogenic therapy on drug de-
livery to tumor fragments or cells implanted in the rat cornea [85–87]. Furthermore, the
impact of anti-angiogenic agents on the quality of chemotherapy could be assessed in vivo
using a zebrafish model [88,89]. Another potential platform for examining the tumor, its
microvasculature, and methodologies for its therapy is via development in vitro using
microfluidic systems [90,91].

5. Conclusions

In this study, a multi-scale numerical model, ranging from cell to tissue level, is devel-
oped to explore the impact of vascular normalization on drug delivery within a dynamic
solid tumor microvasculature. This paper integrates mathematical models of intravascular
blood flow and interstitial fluid flow to compute IFP, IFV, and IBP. These values are then
applied to the convection-diffusion equation to simulate the solute distribution in different
tumor sizes while considering various vascular normalization approaches.

It is shown that the interstitial fluid and solute are distributed heterogeneously, a
result of the heterogeneous distribution of micro-vessels. The results demonstrate a high
dependency of IFP, IFV, and solute distributions on the microvasculature structure (distri-
bution and density). Consequently, the impact of vascular normalization on drug delivery
is greatly influenced by the microvascular structure.

The results demonstrate the effectiveness of all vascular normalization approaches
in correcting drug wash-out from the tumor margins. This is achieved by modifying
convection as the dominant transport mechanism of drug delivery in the tumor margin.

The results of the first approach to vascular normalization show that the inhibitory
effect of angiostatin in suppressing the microvasculature and reducing its density cannot
lead to an improvement in drug delivery to the tumor site in terms of both average drug
exposure and its uniformity. In other words, this paper illustrates the function of the tumor
capillary network as a double-edged sword. On one hand, it disrupts drug delivery; on
the other hand, it aids in delivering the drug to the tumor site. This is demonstrated using
a model that incorporates more realistic considerations in the present study for the first
time. Modifying the transport properties accompanied by the microvasculature reform
caused by vascular normalization in the third approach results in improving the outcomes
of the first approach by improving the drug delivery schedule via modifications in solute
transport mechanisms.

According to the results, it can be concluded that the effect of the anti-angiogenic agent
is vital in influencing drug delivery in combination therapy. This is because the distribution
and density of the microvascular network are highly dependent on the mechanism of action
of the anti-angiogenic agent. Therefore, choosing the most appropriate strategy for deriving
benefits from anti-angiogenic therapy is one of the most important factors in combination
therapy with chemotherapy and anti-angiogenic therapy.

The second approach to anti-angiogenic therapy results in an improvement in drug
distribution uniformity. This improvement is contingent on the microvascular distribution
and density within a specific tumor size, indicated as the uniformity of capillary distribution.
In other words, the benefit of drug delivery via anti-angiogenic adjuvant therapy, resulting
from modifications in transport properties that extend the tumor’s exposure to the drug,
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will be most pronounced when the tumor is supplied by a more uniformly distributed
capillary network. This scenario arises in R = 0.2 cm, as observed in the second approach
of anti-angiogenic therapy, considering the physics and conditions outlined in this paper,
resulting in a 39% increase in drug exposure uniformity.
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