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Simple Summary: This study aimed to develop an innovative non-linear statistical model to predict
clinical benefit in women with newly diagnosed breast cancer. A logistic generalized additive
model was chosen as an innovative statistical approach, as opposed to conventional techniques.
Clinical data, primary tumor (PT) features on baseline [18F]-fluorodeoxyglucose positron emission
tomography/computed tomography (FDG-PET/CT), and molecular subtype were considered for the
purpose of the investigations. In this retrospective study of 70 women, higher primary tumor volume
and metabolic parameters significantly compromised clinical benefit. A multivariate model for
clinical benefit, incorporating age, body mass index, T, M, PT total lesion glycolysis, and PT volume,
demonstrated excellent accuracy across the molecular subtypes. Our results emphasized the pivotal
role of baseline FDG-PET/CT in predicting treatment outcomes. However, careful consideration
is warranted when choosing the methodological approach for treatment outcome prediction, as
non-linear influences of predictive biomarkers on clinical benefit were unveiled.

Abstract: Objectives: We aimed to develop a novel non-linear statistical model integrating primary
tumor features on baseline [18F]-fluorodeoxyglucose positron emission tomography/computed
tomography (FDG-PET/CT), molecular subtype, and clinical data for treatment benefit prediction
in women with newly diagnosed breast cancer using innovative statistical techniques, as opposed
to conventional methodological approaches. Methods: In this single-center retrospective study, we
conducted a comprehensive assessment of women newly diagnosed with breast cancer who had
undergone a FDG-PET/CT scan for staging prior to treatment. Primary tumor (PT) volume, maximum
and mean standardized uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV),
and total lesion glycolysis (TLG) were measured on PET/CT. Clinical data including clinical staging
(TNM) but also PT anatomical site, histology, receptor status, proliferation index, and molecular
subtype were obtained from the medical records. Overall survival (OS), progression-free survival
(PFS), and clinical benefit (CB) were assessed as endpoints. A logistic generalized additive model
was chosen as the statistical approach to assess the impact of all listed variables on CB. Results:
70 women with newly diagnosed breast cancer (mean age 63.3 ± 15.4 years) were included. The most
common location of breast cancer was the upper outer quadrant (40.0%) in the left breast (52.9%). An
invasive ductal adenocarcinoma (88.6%) with a high tumor proliferation index (mean ki-67 expression
35.1 ± 24.5%) and molecular subtype B (51.4%) was by far the most detected breast tumor. Most PTs
displayed on hybrid imaging a greater volume (12.8 ± 30.4 cm3) with hypermetabolism (mean ± SD
of PT maximum SUVmax, SUVmean, MTV, and TLG, respectively: 8.1 ± 7.2, 4.9 ± 4.4, 12.7 ± 30.4,
and 47.4 ± 80.2). Higher PT volume (p < 0.01), SUVmax (p = 0.04), SUVmean (p = 0.03), and MTV
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(<0.01) significantly compromised CB. A considerable majority of patients survived throughout this
period (92.8%), while five women died (7.2%). In fact, the OS was 31.7 ± 14.2 months and PFS
was 30.2 ± 14.1 months. A multivariate prediction model for CB with excellent accuracy could be
developed using age, body mass index (BMI), T, M, PT TLG, and PT volume as predictive parameters.
PT volume and PT TLG demonstrated a significant influence on CB in lower ranges; however, beyond
a specific cutoff value (respectively, 29.52 cm3 for PT volume and 161.95 cm3 for PT TLG), their impact
on CB only reached negligible levels. Ultimately, the absence of distant metastasis M displayed a
strong positive impact on CB far ahead of the tumor size T (standardized average estimate 0.88 vs. 0.4).
Conclusions: Our results emphasized the pivotal role played by FDG-PET/CT prior to treatment in
forecasting treatment outcomes in women newly diagnosed with breast cancer. Nevertheless, careful
consideration is required when selecting the methodological approach, as our innovative statistical
techniques unveiled non-linear influences of predictive biomarkers on treatment benefit, highlighting
also the importance of early breast cancer diagnosis.

Keywords: PET/CT; FDG-PET/CT; breast cancer; clinical benefit; prediction model; generalized
additive model

1. Introduction

With an estimated 2.5 million new cases occurring in 2020, breast cancer has become
globally the most commonly diagnosed cancer, surpassing lung, colorectal, and prostate
cancers [1]. Among women, breast cancer is the leading cause of cancer-related mortality,
accountable for 14.7% of cancer-related deaths in women. However, striking disparities in
breast cancer incidence and mortality, influenced by socioeconomic factors and lifestyle
choices, have been observed, both across countries and within nations [2–5]. In western
countries, breast cancer mortality rates have witnessed a decline over recent decades, even
as incidence rates have risen [6]. This reduction in mortality has been attributed to notewor-
thy advancements in early diagnostic techniques, such as mammography, ultrasound, and
breast magnetic resonance imaging (MRI), alongside hybrid imaging, and the introduction
of more effective targeted systemic treatments [7].

An accurate assessment of disease extent is required for an effective management of
breast cancer [8]. The [18F]-fluorodeoxyglucose positron emission tomography/computed
tomography (FDG-PET/CT) has emerged as a valuable tool for identifying regional lymph
node involvement or distant metastasis but also for an appropriate follow-up, particularly
in cases of locally advanced breast cancer. Hence, FDG-PET/CT has been recommended in
numerous studies recently published for staging from stage IIB onwards (depending on the
histological subtype) and for assessing treatment response. Additionally, it may contribute
significantly to cases of suspected tumor recurrence [6,8–17].

Recent investigations have spotlighted the utility of baseline FDG-PET/CT for pre-
dicting outcomes in melanoma and non-small-cell lung cancer (NSCLC) patients [18–20].
In the context of breast cancer, there has also been a rising interest in recent literature in
using FDG-PET/CT as hybrid imaging to predict response to treatment, particularly in
the context of neoadjuvant systemic therapy [21–34]. Despite a significant heterogeneity
of variables defined as outcomes, most of the published models predicting treatment re-
sponse in breast cancer have predominantly relied on linear statistical approaches, such as
Cox proportional hazards analysis. This approach often fails to adequately consider the
possibility of non-linear influences of the predictive variables [28,30,31,33,35,36].

Hence, we opted for the use of cutting-edge statistical techniques, as opposed to
conventional methodological approaches, to develop a novel non-linear statistical model
integrating primary tumor features on baseline FDG-PET/CT, molecular subtype, and
clinical data for treatment benefit prediction in women with newly diagnosed breast cancer.
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2. Materials and Methods
2.1. Patient Selection

In the context of this single-center retrospective study, we conducted a comprehensive
assessment of female patients newly diagnosed with breast cancer between 1 January 2017
and 31 December 2021 at the Sankt Clara Hospital in Basel, Switzerland. Inclusion criteria
encompassed adult female patients with histopathologically confirmed breast cancer who
had undergone FDG-PET/CT scan for staging prior to any local or systemic treatment and
had provided their informed consent for the use of their data for research purposes.

2.2. Data Collection

The following clinical data were obtained from medical records, which included
decision reports from the interdisciplinary tumor board:

Data Category Specifics

Patient Demographics Age, Gender

Anthropometric Data Height, Weight, and Body Mass Index (BMI)

Primary Tumor Characteristics Anatomical site and histology

Receptor Status

Estrogen receptor (ER) expression, Progesterone
receptor (PR) expression, and Human Epidermal

Growth Factor Receptor-2 (Her-2)
expression/overexpression

Tumor Proliferation Index ki-67 expression

Molecular Subtype
Luminal A, Luminal B, HER-2 enriched, or

triple negative

Clinical Staging
TNM (8th edition American Joint Committee on

Cancer AJCC)

Three endpoints were assessed on the same date, 10 February 2023:

Endpoint Definition

Overall survival (OS)
The time from the date of diagnosis to death or the last

follow-up

Progression-free survival (PFS) The time from the date of diagnosis to disease progression

Clinical benefit (CB)
No death and no disease progression from the date of

diagnosis to the last follow-up

2.3. FDG-PET/CT Acquisition

Two PET/CT scanners were used in clinical routine within the considered time win-
dow: a PET/40-detector CT scanner (Biograph 40 TruePoint True V PET/CT, Siemens
Healthcare, Erlangen, Germany) from 1 January 2017 to July 2020, followed by a PET/64-
detector CT scanner (Discovery Molecular Insights (DMI) PET/CT, General Electrics (GE)
Healthcare (Waukesha, WI, USA) from August 2020 to 31 December 2021.

All PET/CT data used in this single-center retrospective study were acquired in
clinical routine and conducted in accordance with the department’s standard protocol.
The procedure entailed the intravenous administration of 18F-FDG after a minimum four-
hour fasting period. One hour later, a diagnostic CT scan was performed with dedicated
chest acquisition for attenuation correction and morphological characterization of lesions,
extending from the skull to the thighs, with the patient in supine position. Subsequent
to the CT scan, a static 3D PET acquisition was performed with the patient in identical
position. PET images were subsequently reconstructed using an ordered subset expectation
maximization (OSEM), with a threshold set at 42% of the maximum standardized uptake
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value (SUVmax) and a time-of-flight (TOF) correction. Iodinated contrast medium was
used in absence of renal impairment, allergy, or other contraindications. Details of the
injected activity and dose length product (DLP) were documented.

Both PET/CT scanners were regularly calibrated. An additional statistical analysis
was performed to investigate whether the use of two distinct PET/CT scanners influenced
the measurement of semiquantitative parameters.

2.4. Primary Tumor (PT) Segmentation on FDG-PET/CT

All of the enrolled PTs were retrospectively meticulously delineated prior to any
treatment. The delineation process was performed on co-registered PET- and CT-images,
facilitated by an advanced workstation (AW) version 4.7 provided by GE Healthcare, em-
ploying a manual three-dimensional contouring tool. Ensuring consistency, the delineation
process involved a careful manual alignment of tumor borders on both PET and CT images
before proceeding with any measurements. Subsequently, the following primary tumor
characteristics were recorded:

• Morphological features: volume, morphology (solid, inflammatory), and margin
(sharp, irregular, spiculated)

• Metabolic features: SUVmax, SUVmean, metabolic tumor volume (MTV), and total
lesion glycolysis (TLG)

2.5. Statistical Analysis

For the purpose of descriptive statistical analyses, the study cohort was dichotomized
into two groups: patients with CB versus patients without CB.

Continuous variables were summarized using mean values and their respective stan-
dard deviations (SD), while categorical variables were characterized through frequency
distributions. A t-test was performed to compare the means of continuous variables be-
tween women with CB versus women with no CB. Additionally, a chi-squared test was
applied to assess the distribution of categorical variables across these groups. The criterion
for statistical significance was set at p < 0.05.

Moreover, to explore the potential impact of utilizing two different PET/CT scan-
ners on the semiquantitative parameters measured, an analysis of variance (ANOVA)
was conducted.

Subsequently, a logistic generalized additive model (GAM) was chosen as the statistical
approach to assess the impact of all listed variables on the CB of treatment. This modeling
choice was made because of its efficacy in capturing complex, non-linear relationships
inherent in the data [36–38]. The determination of model parameters was conducted
through a meticulous stratified bootstrap procedure, ensuring that the statistical properties
of the stratified subsets aligned harmoniously with those of the original dataset. This
innovative statistical approach involved averaging parameter estimates across an extensive
set of simulations, surpassing 10,000 iterations. In doing so, the model’s parameters
could be refined and the model’s goodness of fit was estimated with great scrutiny. The
performance of the generated logistic GAM was evaluated first for the entire cohort and
afterwards with regards to the molecular subtypes using receiver operating characteristic
(ROC) curves. Lastly, Kaplan–Meier survival curves were generated by molecular subtype
to evaluate OS and PFS.

All statistical analyses were performed using R (version 4.1.1).

3. Results
3.1. Patient Selection

Out of a total of 491 adult women who were newly diagnosed with breast cancer
between 1 January 2017 and 31 December 2021, 140 women underwent FDG-PET/CT
for staging purposes. Half of these individuals had the imaging prior to any form of
local or systemic treatment, while the other half had already received a form of treatment.



Cancers 2023, 15, 5476 5 of 16

Ultimately, 70 adult women, satisfying our inclusion criteria and having provided their
informed consent, were included in the study (Figure 1).
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Figure 1. Flow chart of patient selection (N = 70) according to our inclusion and exclusion criteria.

3.2. Descriptive Statistics

Seventy women with a first diagnosis of breast cancer were included in this study,
with an average age of 63.3 ± 15.4 years and an average BMI of 26.5 ± 5.7 kg/m2. These
individuals underwent a FDG-PET/CT scan for staging, with an average blood glucose
level of 5.7 ± 0.9 mmol/L, an average injected activity of 304.8 ± 102.1 MBq, and an average
DLP of 833.6 ± 388.5 mGy·cm (See Table 1).

Table 1. Descriptive statistics of continuous variables for the entire cohort (N = 70); patients with CB
(55) vs. no CB (15).

N

All CB No CB

p-Value70 55 15

Mean SD Mean SD Mean SD

Age (years) 63.3 15.4 63.5 15.3 62.8 16.3 0.88

BMI (kg/m2) 26.5 5.7 26.2 5.7 27.7 5.7 0.36

Blood glucose (mmol/L) 5.7 0.9 5.7 0.9 6.0 1.1 0.33

Injected activity (MBq) 304.8 102.1 300.1 98.2 323.1 118.1 0.46

Total DLP (mGy·cm) 833.6 388.5 826.6 390.4 859.4 393.9 0.77

PT Volume 12.8 30.4 7.5 11.1 32.1 59.7 <0.01

PT SUVmax 8.1 7.2 9.0 7.8 4.7 2.4 0.04

PT SUVmean 4.9 4.4 5.5 4.7 2.8 1.5 0.03

PT MTV 12.7 30.4 7.5 10.9 32.0 60.0 <0.01

PT TLG 47.4 80.2 44.3 77.3 58.9 92.1 0.54

Ki-67 expression (%) 35.1 24.5 35.5 23.9 34.0 27.4 0.84

Observation time (months) 34.4 12.7 33.7 12.7 36.9 12.8 0.39

OS (months) 31.7 14.2 32.5 13.4 28.8 17.2 0.37

PFS (months) 30.2 14.1 32.5 13.4 21.4 13.4 <0.01

The most prevalent site of breast cancer occurrence was the upper outer quadrant
(40.0%), predominantly located in the left breast (52.9%). In the majority of cases, the
diagnosis revealed an invasive ductal adenocarcinoma (88.6%), characterized by a high
tumor proliferation index with a mean ki-67 index of 35.1 ± 24.5%. The predominant
molecular subtype identified was luminal subtype B (51.4%) (See Tables 1 and 2).
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Table 2. Descriptive statistics of categorical variables for the entire cohort (N = 70); patients with
CB (55) vs. no CB (15).

Clinical Data All CB No CB p-Value

Anatomical site
1.001 = right 33 (47.1%) 26 (42.3%) 7 (46.7%)

2 = left 37 (52.9%) 29 (52.7%) 8 (53.3%)

Quadrant

0.86

1 = central position 7 (10.0%) 5 (9.1%) 2 (13.3%)
2 = upper inner quadrant 11 (15.7%) 9 (16.4%) 2 (13.3%)
3 = lower inner quadrant 7 (10.0%) 6 (10.9%) 1 (6.8%)
4 = upper outer quadrant 28 (40.0%) 23 (41.8%) 5 (33.3%)
5 = lower outer quadrant 16 (22.9%) 11 (20.0%) 5 (33.3%)
9 = not further described 1 (1.4%) 1 (1.8%) 0

Histology PT

0.25

1 = invasive ductal adenocarcinoma 62 (88.6%) 50 (91.0%) 12 (80.0%)
2 = invasive lobular adenocarcinoma 5 (7.1%) 3 (5.4%) 2 (13.3%)

3 = invasive papillary adenocarcinoma 1 (1.4%) 0 (0.0%) 1 (6.7%)
4 = mucinous carcinoma 1 (1.4%) 1 (1.8%) 0 (0.0%)
5 = apocrine carcinoma 1 (1.4%) 1 (1.8%) 0 (0.0%)

Molecular subtype PT

0.33
A = Luminal A 13 (18.6%) 12 (21.8%) 1 (6.7%)
B = Luminal B 36 (51.4%) 26 (47.3%) 10 (66.7%)

H = Her-2 enriched 6 (8.6%) 4 (7.3%) 2 (13.3%)
N = triple negative 15 (21.4%) 13 (23.6%) 2 (13.3%)

T

0.17
1 21 (30.0%) 19 (34.5%) 2 (13.3%)
2 34 (48.6%) 27 (49.1%) 7 (46.7%)
3 2 (2.9%) 1 (1.8%) 1 (6.7%)
4 13 (18.6%) 8 (14.6%) 5 (33.3%)

N

0.54
0 19 (27.1%) 17 (30.8%) 2 (13.3%)
1 34 (48.6%) 26 (47.3%) 8 (53.3%)
2 6 (8.6%) 4 (7.3%) 2 (13.3%)
3 11 (15.7%) 8 (14.6%) 3 (20.1%)

M
<0.010 58 (82.3%) 51 (92.7%) 7 (46.7%)

1 12 (17.1%) 4 (7.3%) 8 (53.3%)

Hybrid Imaging All CB No CB p-Value

Margin PT

0.78
1 = sharp 10 (14.3%) 7 (12.7%) 3 (20.0%)

2 = irregular 55 (78.6%) 44 (80.0%) 11 (73.3%)
3 = spiculated 5 (7.1%) 4 (7.3%) 1 (6.7%)

Morphology PT
0.421 = solid 66 (94.3%) 53 (96.4%) 13 (86.7%)

2 = inflammatory 4 (5.7%) 2 (3.6%) 2 (13.3%)

Death
<0.010 = no 65 (92.8%) 55 (100.0%) 10 (66.7%)

1 = yes 5 (7.2%) 0 (0.0%) 5 (33.3%)

FDG-PET/CT was primarily performed at stage T2 (48.6%), N1 (48.6%), and M0
(82.3%), which corresponds to stage IIB (8th edition of the AJCC). On hybrid imaging, most
PTs showed solid morphology (94.3%), irregular margins (78.6%), larger volumes (mean
volume of 12.8 ± 30.4 cm3), and notable hypermetabolism (mean ± SD of PT SUVmax,
SUVmean, MTV, and TLG, respectively: 8.1 ± 7.2, 4.9 ± 4.4, 12.7 ± 30.4, and 47.4 ± 80.2)
(See Tables 1 and 2).
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The average follow-up duration for patients during this study was 34.4 ± 12.7 months.
The vast majority of patients survived throughout this period (92.8%), while five women
died (7.2%). The mean overall survival was 31.7 ± 14.2 months and the mean progression-
free survival was 30.2 ± 14.1 months (Table 1).

Hybrid imaging revealed significant disparities between patients experiencing CB
and those without CB. These differences encompassed the presence of distant metastases
(p < 0.01) an PT volume (p < 0.01), as well as PT metabolic features, respectively, PT SUVmax
(p = 0.04), SUVmean (p = 0.03), and MTV (p < 0.01). Additionally, substantial distinctions
were observed in PFS (p < 0.01) and mortality (p < 0.01) between these two groups (See
Tables 1 and 2).

Notably, our analysis yielded no significant disparities in the measured semiquantita-
tive parameters across both PET/CT scanners, as determined through ANOVA.

3.3. Prediction Model Development

The progressive inclusion of variables in the final model followed a structured five-
step protocol. First of all, correlation matrices were generated and deployed to identify
and separate strongly correlated variables, encompassing both continuous and categorical
ones. Subsequently, all continuous features underwent a standardization process to achieve
uniformity in their scales (Figure 2). The third pivotal step involved the use of a stratified
bootstrap strategy to split the dataset into distinct test and training subsets, facilitating
the meticulous choice of optimal hyperparameters for the number of splines and lambda
through an exhaustive grid search. Subsequently, as the fourth step, the model was
estimated within each bootstrap iteration (in total over 10,000 iterations), taking into
account the hyperparameters derived in the previous step. Finally, in the fifth and last step,
all parameters were harmoniously averaged to consolidate our findings.

This innovative statistical approach resulted in a multivariate prediction model for the
CB of treatment with the following standardized and harmoniously averaged predictive
parameters: age, BMI, T, M, PT TLG, and PT volume.

PT volume was the strongest continuous predictive biomarker, followed by PT TLG.
Our results captured a non-linear influence of continuous predictive biomarkers on CB.
In fact, PT volume and PT TLG demonstrated a significant influence on CB in lower
ranges. However, beyond a specific cutoff value (respectively, 29.52 cm3 for PT volume and
161.95 cm3 for PT TLG), their impact on CB approached negligible levels. When considered
independently, the remaining continuous predictive parameters (respectively, age and BMI)
exhibited a marginal effect on CB (Figure 2).

Among the categorical predictive biomarkers, the absence of distant metastasis on
hybrid imaging displayed the strongest positive impact on CB far ahead of the tumor size
T (standardized average estimate for 0.88 vs. 0.4) (Figure 3).

On the X-axis is the standardized parameter (for a better comparison among the
parameters) and on the Y-axis is the influence of the considered parameter on CB. Values
around 0.00 on the Y-axis indicate a negligible influence of the parameter on CB. PT
volume showed the strongest influence on CB, followed by PT TLG in lower ranges up to
a cutoff value of 29.52 cm3 and 161.95 cm3, respectively. Above this value, the respective
impact on CB approached negligible levels. When considered independently, the remaining
continuous parameters of the prediction model (e.g., age and BMI) exhibited a marginal
effect on CB.

Afterwards, over 10,000 stratified bootstrapping procedures were carried out to assess
the standardized average influence of each state of the categorical parameters on CB:
T1 = 0.4 vs. T > 1 = 0.016; M0 = 0.88 vs. M1 = −0.46.
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3.4. Performance of the Generated Prediction Model
3.4.1. For the Entire Cohort (N = 70)

In order to validate the accuracy of the developed multivariate prediction model for
CB, its goodness of fit was evaluated for the entire group of women newly diagnosed with
breast cancer. This evaluation involved the construction of a ROC curve, which captured an
excellent predictive power across the entire cohort (area under the curve AUC 0.86 ± 0.15;
Youden index 0.70) (Figure 4).

Cancers 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

Afterwards, over 10,000 stratified bootstrapping procedures were carried out to as-
sess the standardized average influence of each state of the categorical parameters on CB: 
T1 = 0.4 vs. T > 1 = 0.016; M0 = 0.88 vs. M1 = −0.46. 

3.4. Performance of the Generated Prediction Model 
3.4.1. For the Entire Cohort (N = 70) 

In order to validate the accuracy of the developed multivariate prediction model for 
CB, its goodness of fit was evaluated for the entire group of women newly diagnosed with 
breast cancer. This evaluation involved the construction of a ROC curve, which captured 
an excellent predictive power across the entire cohort (area under the curve AUC 0.86 ± 
0.15; Youden index 0.70) (Figure 4). 

 
Figure 4. Receiver operating characteristics curve of the generated multivariate prediction model 
for CB in women with first diagnosis of breast cancer. 

3.4.2. According to the Molecular Subgroups 
Furthermore, we scrutinized the performance of the generated prediction model in 

both high-risk and low-risk scenarios, taking into account the molecular subtype. An ex-
cellent average level of predictive accuracy was achieved across all subgroups, with the 
best performance in women with luminal A breast cancer, interestingly followed by 
women with triple-negative breast cancer (Figure 5). 

Figure 4. Receiver operating characteristics curve of the generated multivariate prediction model for
CB in women with first diagnosis of breast cancer.

3.4.2. According to the Molecular Subgroups

Furthermore, we scrutinized the performance of the generated prediction model in
both high-risk and low-risk scenarios, taking into account the molecular subtype. An
excellent average level of predictive accuracy was achieved across all subgroups, with the
best performance in women with luminal A breast cancer, interestingly followed by women
with triple-negative breast cancer (Figure 5).
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3.5. Survival Analysis

The mean ± SD of OS (in months) in women diagnosed with luminal A, luminal B,
Her2-amplified, and triple-negative breast cancer was, respectively, 34.8 ± 16.6, 31.2 ± 13.8,
21.6 ± 9.1, and 34.3 ± 14.0. Interestingly, upon conducting a chi-squared test with Bon-
ferroni correction, no statistically significant disparities in OS were discerned across these
molecular subtypes (Figure 6).
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The mean ± SD of PFS (in months) in women diagnosed with luminal A, luminal B,
Her2-amplified, and triple-negative breast cancer was 34.8 ± 16.6, 26.7 ± 12.6, 20.5 ± 9.3,
and 33.5 ± 15.4. Notably, no statistically significant differences were observed in PFS
among these molecular subtypes, as determined by a chi-squared test with Bonferroni
correction (Figure 7).
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It is important to observe that OS and PFS were not employed as endpoints for the
developed prediction model, attributable to constraints stemming from the sample size
and a comparatively low mortality rate. The survival analysis presented above using OS
and PFS as endpoints aimed primarily to assess potential differences across molecular
subgroups with regards to their survival but did not yield statistically significant outcomes
(Figures 6 and 7).

4. Discussion

We aimed to use cutting-edge statistical techniques, as opposed to conventional
methodological approaches, to develop a novel non-linear statistical model integrating
primary tumor features on baseline FDG-PET/CT, molecular subtype, and clinical data for
treatment benefit prediction in women with newly diagnosed breast cancer.

The descriptive statistical analysis of our cohort spotlighted at least three significant
insights, with some results aligning with established knowledge, while others warrant
further discussion.

Among the seventy predominantly older and overweighted Caucasian women in-
cluded in our study, invasive ductal adenocarcinoma emerged as the predominant breast
tumor histology. These tumors exhibited a high tumor proliferation index, were predom-
inantly classified as luminal molecular subtype B, and were most commonly located in
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the upper outer quadrant of the left breast. These observations were consistent with ex-
isting well-established knowledge in the field. Notably, the prevalence of invasive ductal
adenocarcinoma across our cohort reflected its global status as the most prevalent form of
invasive breast cancer. Moreover, our findings resonated with recent research highlight-
ing the significant role of age, diet, and weight in the genesis and progression of breast
tumors [12,39].

Secondly, the utilization of FDG-PET/CT for staging, primarily at stage IIB, aligned
with international recommendations for breast cancer staging [6,8–16].

Thirdly, significant differences were captured during pre-treatment FDG-PET/CT in
women with no CB, compared to women manifesting CB. In fact, higher metabolism and
volume of the primary tumor, as much as the presence of distant metastases on hybrid
imaging prior to any treatment, significantly compromised CB and were associated with
a higher mortality rate and shorter PFS in our cohort. The heightened metabolic activity
observed in the delineated primary tumors throughout our entire cohort was intriguing,
especially in light of the predominance of luminal tumors among the women included in
our study. Previous research has often indicated that tumoral uptake tends to be the highest
in Her-2 overexpressing tumors, followed by triple-negative tumors, with luminal breast
cancers generally exhibiting lower levels of uptake [10,11,40–42]. However, the elevated
metabolic activity we observed across the cohort may be attributed to the relatively high
proliferation index, particularly predominantly in cases of invasive ductal adenocarcinoma.
This aligned with recent investigations, such as the study by Groheux et al. which reported
that histological subtype and proliferation index exert an influence on tumoral uptake.
Specifically, invasive ductal adenocarcinoma and high proliferative breast cancers were
associated with greater tumoral uptake [11]. Overall, higher metabolism of breast cancers on
hybrid imaging prior to any treatment compromised the benefit of treatment, in accordance
with existing knowledge [43–47].

There has been a growing inclination in recent literature toward the use of FDG-
PET/CT as a non-invasive hybrid imaging tool for forecasting treatment response in women
with newly diagnosed breast cancer, especially in the context of neoadjuvant systemic
therapy [21–34]. A vast majority of the existing models for treatment response prediction
in breast cancer have traditionally leaned toward linear statistical methodologies, notably
the Cox proportional hazards analysis. This conventional approach tends to overlook the
possibility of non-linear influences of the predictive variables [28,30,31,33,35,36].

A logistic generalized additive model was chosen as an innovative statistical approach
to assess the impact of all listed variables on CB of treatment in our cohort. This modeling
choice was rooted in its multidisciplinary approach (with regards to the data incorporated
into the model) but above all, its efficacy in capturing complex, non-linear relationships
inherent in the data [37,38]. Consequently, we developed a multivariate prediction model
incorporating age, BMI, T, M, PT TLG, and PT volume as predictive biomarkers, with CB
as the primary endpoint. Several notable strengths of our developed prediction model
warrant attention.

First and foremost, our results unveiled a non-linear relationship between continuous
predictive biomarkers and CB. Specifically, PT volume and PT TLG exhibited a substantial
influence on CB within lower ranges. However, beyond specific cutoff values (29.52 cm3

for PT volume and 161.95 cm3 for PT TLG), their impact on CB diminished considerably.
This observation bears significant clinical relevance, emphasizing the predictive potential
of PT morphology and metabolic volume and the importance of early diagnosis across
various histological and molecular subtypes. Notably, breast cancers detected at an early
stage with lower volume and metabolic activity may not only be associated with improved
treatment benefits but also reduced healthcare costs [7,48].

Secondly, the predictive performance of our multivariate model was outstanding, not
only across the entire cohort but also in high-risk subgroups, such as Her-2 overexpressing
and triple-negative breast cancers [9,12,15,32].
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Lastly, while all variables detailed in Section 2 were initially considered in our mod-
eling approach, the most influential predictive biomarkers for clinical benefit in our final
prediction model were derived from FDG-PET/CT scans conducted prior to any treatment.
This underscored a pivotal role played by baseline FDG-PET/CT in forecasting treatment
outcomes for women newly diagnosed with breast cancer. In 2019, Phung et al. conducted
a comprehensive review comprising 54 model development studies in the context of breast
cancer. Most of these studies adopted a retrospective study design and had sample sizes
ranging from 70 to 433 patients [30]. However, the attempt to conduct a more detailed
comparison of our model with those previously reported in their review encountered
significant limitations. These limitations were primarily due to substantial heterogeneity
across the reviewed studies, particularly concerning the definition of outcome variables and
patient selection criteria (e.g., inclusion of patients before any local or systemic treatment,
variations in histological or molecular subtypes included). Additionally, while the majority
of the reviewed studies predominantly employed Cox proportional hazards regression
for model development, we chose to employ innovative statistical techniques, such as
generalized additive models (GAM).

Finally, the present study had inherent limitations, primarily related to its retrospective
nature and relatively modest sample size. However, these characteristics were consistent
with numerous model development studies in this field [30]. Despite these limitations, our
study has yielded valuable and statistically robust insights.

Furthermore, the use of two distinct PET/CT scanners during the follow-up period
did not have a significant impact on the measured semiquantitative parameters.

Lastly, no external validation of the presented prediction model could be conducted
given the single-center retrospective study design initially chosen. Further, multicenter in-
vestigations involving larger cohorts might be needed as external validation of our results.

5. Conclusions

Our results emphasized the pivotal role played by FDG-PET/CT prior to treatment in
forecasting treatment outcomes in women newly diagnosed with breast cancer. Neverthe-
less, careful consideration is required when selecting the methodological approach, as our
innovative statistical techniques unveiled non-linear influences of predictive biomarkers
on treatment benefit, highlighting also the importance of early breast cancer diagnosis.
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Abbreviations

FDG-PET/CT [18F]-fluorodeoxyglucose positron emission tomography/computed tomography
PT Primary Tumor
SUVmax Maximum Standardized Uptake Value
SUVmean Mean Standardized Uptake Value
MTV Metabolic Tumor Volume
TLG Total Lesion Glycolysis
OS Overall Survival
PFS Progression-Free Survival
CB Clinical Benefit
BMI Body Mass Index
MRI Magnetic Resonance Imaging
NSCLC Non-Small-Cell Lung Cancer
ER Estrogen Receptor
PR Progesterone Receptor
Her-2 Human Epidermal Growth Factor Receptor-2
AJCC American Joint Committee on Cancer
DMI Discovery Molecular Insights
GE General Electrics
OSEM Ordered Subset Expectation Maximization
TOF Time-of-Flight
DLP Dose Length Product
AW Advanced Workstation
SD Standard Deviation
ANOVA Analysis of Variance
GAM Generalized Additive Model
ROC Receiver Operating Characteristic
AUC Area Under the Curve
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