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1. Synthesis of mitochondrial derivatives
1.1. General Information

Synthetic pathways are based on protocols described by Biasutto et al.! All reagents and
solvents were purchased from commercial suppliers and used without further purification. Thin
layer chromatography (TLC) was performed using Merck Silica Gel F254, 0.20 mm thickness
and the visualization was accomplished by irradiation at 254 nm. All aqueous solutions were
prepared using distilled water. Saturated brine refers to an aqueous saturated sodium chloride
solution. All products were purified by column chromatography using silica gel 60 M (40-63
jam, 230-440 mesh). NMR spectra were recorded at room temperature using Bruker 300 MHz
spectrometer. Chemical shifts are reported relatively in d-scale as parts per million (ppm)
referenced to the residual solvent peak. Coupling constants J are given in Hertz (Hz) and the
following abbreviations were used for indicating signal multiplicity: *H NMR: s = singlet, d =
doublet, t = triplet, q = quartet, hept = heptet, m = multiplet and the respective combinations.
High resolution mass spectra were measured with Agilent 6540 UHD Q-TOF, spectrum
recorded at the highest resolution of 4 GH.

1.2. Synthesis and identification of mitQ7
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Scheme S1. Synthetic pathway for mitQ?7.

! Biasutto, L., Mattarei, A., Paradisi, C. (2021). Synthesis and Testing of Novel Isomeric Mitochondriotropic
Derivatives of Resveratrol and Quercetin . In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in
Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_9.
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3',4"-O-diphenylmethane quercetin

Ph,CCl,, DPE
—_—

182 °C, 2-3h

Quercetin (1.00 g, 3.31 mmol) and 1,1-dichlorodiphenylmethane (1.18 g, 4.96 mmol) were
dissolved in diphenyl ether (40 ml) and the reaction mixture was heated to 182 <C with stirring.
After 2 h, the mixture was cooled to room temperature, petroleum ether (50 ml) was added. The
dark yellow crude product was obtained by filtration and purified by silica gel column
chromatography (20-25% ethyl acetate in hexane as eluent) to give a product as a light yellow
solid with isolated yield: 78.0% (1.20 g, 2.58 mmol). *H NMR (300 MHz, CDCls3) § 11.77 (s,
1H), 7.83 — 7.75 (m, 2H), 7.65 — 7.55 (m, 4H), 7.47 — 7.36 (m, 6H), 7.02 (d, J = 8.6 Hz, 1H),
6.59 (s, 1H), 6.43 (d, J = 2.1 Hz, 1H), 6.30 (d, J = 2.1 Hz, 1H). The obtained spectral data are
consistent with the literature reports.>

3',4'"-O-diphenylmethane-3,7-diacetyl quercetin

o _—
O DCM, 0 -> 20 °C 7)/
|O |

(o
OH O OHO/go

3',4'-O-diphenylmethane quercetin (1.20 g, 2.58 mmol) was dissolved in 15 ml DCM and EtsN
(2.79 ml, 12.9 mmol) was added. The solution was cooled to 0<C and acetic anhydride (0.49
ml, 5.16 mmol) was added dropwise. The reaction mixture was allowed to warm up to room
temperature and it was stirred until starting material disappeared completely (monitored by
TLC, with petroleum ether/ethyl acetate 7:1 as eluent). After finishing, the reaction mixture was
diluted by DCM and extracted 3 times with 1N HCI. Organic phase was dried over anhydrous
MgSOas. After solvent evaporation, the crude product was recrystallized from ethyl
acetate/DCM/petroleum ether mixture to give pure 3'.4’-O-diphenylmethane-3,7-diacetyl
quercetin as pale yellow solid with isolated yield 61% (0.87 g, 1.57 mmol). *H NMR (300 MHz,
CDCl3) 6 12.21 (s, 1H), 7.65 — 7.54 (m, 4H), 7.49 — 7.37 (m, 8H), 7.00 (d, J = 8.3 Hz, 1H), 6.82
(d, J=2.0Hgz, 1H), 6.58 (d, J = 2.0 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 3H). The obtained spectral
data are consistent with the literature reports.®

2 Cao, Z., Chen, J., Zhu, D., Yang, Z., Teng, W., Liu, G., Liu, B., Tao, C. J. Chem. Res. 2018, Vol. 42, Issue 4,
189-193. https://doi.org/10.3184/174751918X15232706115112

3 CN104557891B Quercetin  derivative and  preparation method and application  thereof.
https://worldwide.espacenet.com/patent/search/family/053075061/publication/CN104557891B?9=pn%3DCN10
4557891B Current Patent Assignee: NANJING HUITELAI PHARMACEUTICAL - CN104557891, 2017, B.
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7-(4-O-chlorobutyl)-3',4'-O-diphenylmethane-3,5-diacetyl quercetin

;

o
O | DMEF, 1t O [
(0]

OHO/lO \nzo o/§o

3',4'-O-diphenylmethane-3,7-diacetyl quercetin (0.87 g, 1.57 mmol) and K2COs3 (0.24 g, 1.73
mmol) were dissolved in DMF (5 ml) and 1-bromo-4-chlorobutane (0.40 g, 2.36 mmol) was
added. The reaction mixture was stirred overnight in room temperature. After confirming by
TLC that all substrate had reacted, the reaction mixture was diluted with ethyl acetate (50 ml),
transfer into the separating funnel and washed 3 times with 25 ml of 1N HCI. Organic layer
was dried with anhydrous MgSOa. The crude product was purified by column chromatography
with elucidation by hexane:DCM:ethyl acetate (38:10:2) mixture to give 7-(4-O-chlorobutyl)-
3’,4'-O-diphenylmethane-3,5-diacetyl quercetin as off-white solid with isolated yield 63% (0.64
g, 0.99 mmol). *H NMR (300 MHz, CDCls) § 7.58 (ddd, J = 8.9, 4.0, 2.3 Hz, 4H), 7.47 — 7.34
(m, 8H), 6.98 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 2.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 4.08 (t, J
=5.5 Hz, 2H), 3.63 (t, J = 6.0 Hz, 2H), 2.42 (s, 3H), 2.32 (s, 3H), 1.99 (dd, J = 4.0, 1.8 Hz, 4H).
13C NMR (75 MHz, CDCl3) § 170.2, 169.8, 168.2, 163.0, 158.2, 154.7, 150.8, 149.7, 147.8,
139.8, 133.3, 129.6, 128.5, 126.4, 123.5, 123.5, 118.3, 111.1, 109.0, 108.8, 108.4, 99.4, 68.1,
44.6,29.2, 26.4, 21.3, 20.9.

7-(4-O-iodobutyl)-3",4'-O-diphenylmethane-3,5-diacetyl quercetin

Joge g g

Nal, acetone 0
_—

56 °C

(0]
O O

R

7-(4-O-chlorobutyl)-3’,4'-O-diphenylmethane-3,5-diacetyl quercetin (0.64 g, 0.99 mmol) and
Nal (4.45 g, 29.7 mmol) were dissolved in acetone (11.5 ml) and heat at reflux overnight. After
cooling, the reaction mixture was diluted with 100 ml of ethyl acetate, filtered through paper
filter directly into the separating funnel and washed 3 times with 50 ml of water. Organic layer
was dried with anhydrous MgSOa. The crude product was purified by column chromatography
with elucidation by hexane:ethyl acetate (8:2) mixture to give 7-(4-O-iodobutyl)-3',4'-O-
diphenylmethane-3,5-diacetyl quercetin as white solid with isolated yield 81% (0.59 g, 0.80
mmol). *H NMR (300 MHz, CDCl3) § 7.64 — 7.54 (m, 4H), 7.47 — 7.34 (m, 8H), 6.98 (d, J =
8.2 Hz, 1H), 6.79 (d, J = 2.4 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 4.07 (s, 2H), 3.26 (t, J = 6.5 Hz,
2H), 2.42 (s, 3H), 2.32 (s, 3H), 2.12 — 1.89 (m, 4H). *C NMR (75 MHz, CDCl3) § 170.2, 169.7,
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168.2, 163.0, 158.2, 154.7, 150.8, 149.7, 147.8, 139.8, 133.3, 129.6, 128.5, 126.4, 123.5, 123.5,
118.3, 111.1, 108.9, 108.8, 108.4, 99.4, 67.8, 30.0, 29.9, 21.3, 20.9, 6.0.

7-(4-O-butyl triphenylphosphonium)-3',4'-O-diphenylmethane-3,5-diacetyl quercetin iodide
O 0]

Yo o/(io

(0]
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- on
/ s
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\n,o o} Ao

110 °C

7-(4-O-iodobutyl)-3',4’-O-diphenylmethane-3,5-diacetyl quercetin (0.59 g, 0.80 mmol) and
PhsP (1.05 g, 4.0 mmol) were dissolved in toluene (15 ml) and heated at reflux for 2-3 days
with monitoring the reaction course by TLC. When all the substrate had reacted, the reaction
mixture was cooled and the solvent was evaporated under reduced pressure. The crude product
was purified by column chromatography with elucidation by DCM:methanol (96:4) mixture to
give 7-(4-O-butyl triphenylphosphonium)-3’,4’-O-diphenylmethane-3,5-diacetyl quercetin
iodide as yellow solid with isolated yield 96% (0.77 g, 0.77 mmol). *H NMR (300 MHz, CDCls)
6 7.89 —7.70 (m, 10H), 7.66 (dd, J = 7.2, 2.9 Hz, 6H), 7.56 (dd, J = 6.3, 2.6 Hz, 4H), 7.46 —
7.31 (m, 8H), 6.96 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 2.4 Hz, 1H), 6.45 (d, J = 2.4 Hz, 1H), 4.16
(t, J = 5.3 Hz, 2H), 3.79 (m, 2H), 2.38 (s, 3H), 2.33 — 2.21 (m, 5H), 1.92 — 1.76 (m, 2H). *C
NMR (75 MHz, CDClI3) 6 170.0, 169.6, 168.0, 162.7, 158.0, 154.5, 150.4, 149.6, 147.6, 139.6,
135.2,135.2, 133.7, 133.6, 133.0, 130.6, 130.5, 129.4, 128.4, 126.2, 123.5, 123.2,118.4, 118.1,
117.3, 110.8, 108.9, 108.8, 108.2, 99.4, 67.7, 29.6, 29.1, 28.9, 22.7, 22.0, 21.1, 20.7, 19.2.
HRMS (ESI) calcd for [M-17] Cs4H4409P 867.2723, found 867.2731.
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1.3. Synthesis and identification of mitQ3
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Scheme S2. Synthetic pathway for mitQ3.

3-(4-O-chlorobutyl)-3',4'-O-diphenylmethane quercetin

Br(CH,),Cl, K,CO; o

DMF, 1t

3',4'-O-diphenylmethane-3,7-diacetyl quercetin (1.20 g, 2.58 mmol) and K2CO3 (0.39 g, 2.84
mmol) were dissolved in DMF (8 ml) and 1-bromo-4-chlorobutane (0.66 g, 3.87 mmol) was
added. The reaction mixture was stirred overnight in room temperature. After confirming by
TLC that all substrate had reacted, the reaction mixture was diluted with ethyl acetate (100 ml),
transfer into the separating funnel and washed 3 times with 50 ml of 1N HCI. Organic layer
was dried with anhydrous MgSOa4. The crude product was purified by column chromatography
with elucidation by hexane:ethyl acetate (8:2) mixture to give 3-(4-O-chlorobutyl)-3',4’-O-
diphenylmethane quercetin as light yellow solid with isolated yield 33% (0.47 g, 0.85 mmol).
'H NMR (300 MHz, CDCls) § 12.60 (s, 1H), 7.82 — 7.51 (m, 6H), 7.51 — 7.30 (m, 7H), 6.99 (d,
J=8.3Hz, 1H),6.43 (d, J = 1.6 Hz, 1H), 6.33 (d, J = 1.8 Hz, 1H), 3.94 (t, J = 5.5 Hz, 2H), 3.46
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(t, J = 6.0 Hz, 2H), 1.94 — 1.71 (m, 4H). The obtained spectral data are consistent with the
literature reports.*

3-(4-O-chlorobutyl)-3",4'-O-diphenylmethane-5,7-diacetyl quercetin

Ac,0, Et;N

DCM, 0-20 °C

3-(4-O-chlorobutyl)-3’,4'-O-diphenylmethane quercetin (0.47 g, 0.85 mmol) was dissolved in
15 mlI DCM and EtsN (7.07 ml, 51 mmol) was added. The solution was cooled to 0<C and acetic
anhydride (2.57 ml, 27.2 mmol) was added dropwise. The reaction mixture was allowed to
warm up to room temperature and it was stirred until starting material disappeared completely
(monitored by TLC, with hexane:ethyl acetate 8:2 as eluent; the fully reacted reaction mixture
turned colorless). After finishing, the reaction mixture was diluted by DCM and extracted 3
times with 1N HCI. Organic phase was dried over anhydrous MgSQa4. After solvent evaporation,
the crude product in the form of colorless oil turned out to be sufficiently pure to be used in
next synthesis stage without further purification. Isolated yield: 95% (0.52 g, 0.81 mmol). *H
NMR (300 MHz, CDCls) 6 7.67 — 7.56 (m, 6H), 7.47 — 7.35 (m, 6H), 7.27 (d, J = 2.2 Hz, 1H),
7.00 (dd, J=8.1,0.5 Hz, 1H), 6.82 (d, J = 2.2 Hz, 1H), 3.94 (t, J = 5.9 Hz, 2H), 3.48 (t, J = 6.3
Hz, 2H), 2.46 (s, 3H), 2.33 (s, 3H), 1.96 — 1.74 (m, 4H). *C NMR (75 MHz, CDCls) § 173.2,
169.5, 168.1, 156.6, 155.1, 153.7, 150.3, 149.4, 147.5, 140.3, 139.8, 139.5, 129.6, 129.5, 128.5,
128.5,126.3,126.3,124.1,123.8,118.1, 115.2, 113.2, 108.9, 108.6, 71.7, 64.8, 44.8, 29.1, 27 .4,
21.3,21.2.

3-(4-O-iodobutyl)-3',4"-O-diphenylmethane-5,7-diacetyl quercetin

jl,ookH \Igoo\

Cl |

3-(4-O-chlorobutyl)-3’,4'-O-diphenylmethane-5,7-diacetyl quercetin (0.52 g, 0.81 mmol) and
Nal (3.65 g, 24.3 mmol) were dissolved in acetone (9.5 ml) and heat at reflux overnight. Next
day, small amount of solution was taken, evaporated under reduced pressure and measured by
IH NMR to calculate the reaction conversion (Rf of substrate and product are the same). If there

4 Mattarei, A., Biasutto, L., Marotta, E., De Marchi, U., Sassi, N., Garbisa, S., Zoratti, M., Paradisi, C. A
mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. ChemBioChem
2008, 9, 2633-2642 (10.1002/chic.200800162)

S-8



was no substrate traces on *H NMR spectrum, the reaction mixture was cooled, diluted with
100 ml of ethyl acetate, filtered through paper filter directly into the separating funnel and
washed 3 times with 50 ml of water. Organic layer was dried with anhydrous MgSOa. The crude
product was purified by column chromatography with elucidation by hexane:ethyl acetate (8:2)
mixture to give 3-(4-O-iodobutyl)-3’,4’-O-diphenylmethane-5,7-diacetyl quercetin as white
solid with isolated yield 44% (0.26 g, 0.36 mmol). *H NMR (300 MHz, CDCls) § 7.69 — 7.55
(m, 6H), 7.47 - 7.36 (m, 6H), 7.27 (d, J =2.2 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 2.2
Hz, 1H), 3.93 (t, J = 6.1 Hz, 2H), 3.11 (t, J = 6.7 Hz, 2H), 2.46 (s, 3H), 2.34 (s, 3H), 1.97 - 1.83
(m, 2H), 1.82 — 1.71 (m, 2H). *C NMR (75 MHz, CDCl3) § 173.2, 169.6, 168.2, 156.7, 155.1,
153.8, 150.3, 149.5, 147.6, 140.3, 139.9, 129.5, 128.5, 126.4, 124.1, 123.9, 118.1, 115.3, 113.3,
109.0, 108.9, 108.7, 71.4, 30.9, 30.0, 21.3, 21.3, 6.8.

3-(4-O-butyl triphenylphosphonium)-3",4'-O-diphenylmethane-5,7-diacetyl quercetin iodide

PhsP, toluene
_—

110 °C

jl,oo\H

3-(4-O-iodobutyl)-3",4’-O-diphenylmethane-5,7-diacetyl quercetin (0.26 g, 0.36 mmol) and
PhsP (0.47 g, 1.80 mmol) were dissolved in toluene (10 ml) and heated at reflux for 1-3 days
with monitoring the reaction course by TLC. When all the substrate had reacted, the reaction
mixture was cooled and the solvent was evaporated under reduced pressure. The crude product
was purified by column chromatography with elucidation by DCM:methanol (96:4) mixture to
give 3-(4-O-butyl triphenylphosphonium)-3’,4’-O-diphenylmethane-5,7-diacetyl quercetin
iodide as yellow solid with isolated yield 76% (0.27 g, 0.27 mmol). *H NMR (300 MHz, CDCls;
mixture of isomers) 6 7.92 — 7.82 (m, 6H), 7.82 — 7.74 (m, 3H), 7.73 — 7.64 (m, 7TH), 7.64 —
7.51 (m, 5H), 7.45 - 7.34 (m, 6H), 7.27 (d, J = 2.2 Hz, 0.5H), 6.95 (t, J = 8.2 Hz, 1H), 6.78 (d,
J=2.2Hz, 0.5H), 6.76 (d, J = 2.0 Hz, 0.4H), 6.50 (d, J = 2.0 Hz, 0.4H), 4.11 — 3.88 (m, 4H),
2.32 (s, 1.7H), 2.31 (s, 1.3H), 2.26 — 2.07 (m, 2H), 2.07 — 1.95 (m, 2H), 1.90 (s, 3H). *C NMR
(75 MHz, CDClI3) 6 179.2, 173.2, 169.1, 168.4, 168.1, 161.6, 157.2, 156.5, 155.9, 155.6, 155.2,
153.9, 150.0, 149.9, 149.6, 147.7, 147.7, 139.7, 139.6, 139.6, 138.1, 135.1, 133.9, 133.7, 130.7,
130.6, 130.5, 130.4, 129.4, 128.6, 128.4, 126.2, 124.2, 123.8, 123.7, 123.6, 118.9, 118.8, 118.2,
118.1, 117.8, 117.7, 114.9, 113.3, 109.1, 109.0, 108.8, 108.2, 104.9, 101.0, 70.7, 69.3, 29.7,
29.5,29.3,29.1,21.3,20.7,19.2, 18.7, 14.2. HRMS (ESI) calcd for [M-1"] Cs4H4409P 867.2723,
found 867.2727.



1.4. Synthesis and identification of mitQ5
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Scheme S3. Synthetic pathway for mitQ5.

3,3',4',7-tetrabenzyl quercetin

BnBr, K,CO;
DMEF, 0-20 °C, 20h

Quercetin (1.00 g, 3.31 mmol) and K2COs (1.60 g, 11.6 mmol) were dissolved in DMF (20 ml),
cooled to 0 € and BnBr (1.38 ml, 11.6 mmol) was added dropwise with vigorous stirring. After
2 hours, the reaction mixture was allowed to warm to room temperature and the stirring was
continued for night. Then, after TLC confirmation, that all the substrate had reacted, the mixture
was diluted with 100 ml of ethyl acetate and washed with 1IN HCI (3x50 ml). Organic phase
was dried with anhydrous MgSO4 and the solvent was evaporated under reduced pressure.
Purification by column chromatography using gradient mixture of hexane/DCM (1:1 to 1:2) as
eluent led to obtain 3,3',4',7-tetrabenzyl quercetin as yellow solid with isolated yield: 41% (0.90
g, 1.36 mmol) The obtained spectral data are consistent with the literature reports:® *H NMR
(300 MHz, CDCls) 6 7.71 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.6, 2.1 Hz, 1H), 7.50 — 7.19 (m,
21H), 6.97 (d, J = 8.7 Hz, 1H), 6.47 (d, J = 2.2 Hz, 1H), 6.44 (d, J = 2.2 Hz, 1H), 5.25 (s, 2H),
5.13 (s, 2H), 5.05 (s, 2H), 5.00 (s, 2H).

5> CN104557891B Quercetin ~ derivative and  preparation method and application thereof.
https://worldwide.espacenet.com/patent/search/family/053075061/publication/CN104557891B?q=pn%3DCN10
4557891B Current Patent Assignee: NANJING HUITELAI PHARMACEUTICAL - CN104557891, 2017, B.
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3,3',4',7-tetrabenzyl-5-(4-O-chlorobutyl) quercetin

Br(CH,),Cl, K,CO;
DMF, 1, 48-72h

3,3',4' 7-tetrabenzyl quercetin (0.90 g, 1.36 mmol) and K2COs (0.28 g, 2.04 mmol) were
dissolved in DMF (5 ml) and 1-bromo-4-chlorobutane (0.47 g, 2.72 mmol) was added. The
reaction mixture was stirred overnight in room temperature. After confirming by TLC that all
substrate had reacted, the reaction mixture was diluted with ethyl acetate (100 ml), transfer into
the separating funnel and washed 3 times with 50 ml of 1N HCI. Organic layer was dried with
anhydrous MgSOas. The solvent was evaporated and crude product was recrystallized from ethyl
acetate/hexane mixture. Isolated yield: 85% (0.87 g, 1.15 mmol). *H NMR (300 MHz, CDCls)
07.72 (d,J =2.1Hz, 1H), 7.53 (dd, J = 8.6, 2.1 Hz, 1H), 7.50 — 7.28 (m, 17H), 7.25 — 7.16 (m,
3H), 6.95 (d, J = 8.7 Hz, 1H), 6.52 (d, J = 2.2 Hz, 1H), 6.41 (d, J = 2.2 Hz, 1H), 5.23 (s, 2H),
5.13 (s, 2H), 5.07 (s, 2H), 4.95 (s, 2H), 4.11 (t, J = 5.2 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 2.27 —
2.05 (m, 4H). *C NMR (75 MHz, CDCls) § 174.0, 162.9, 160.4, 158.8, 153.3, 150.6, 148.3,
139.9,137.2,136.9, 135.9, 129.0, 128.9, 128.7, 128.6, 128.3, 128.1, 127.9, 127.7, 127.5, 127.3,
124.1,122.2,115.3, 113.9, 109.9, 97.4, 93.6, 74.3, 71.1, 71.0, 70.6, 68.6, 45.2, 29.3, 26.3.

5-(4-O-chlorobutyl) quercetin

3,3',4' 7-tetrabenzyl-5-(4-O-chlorobutyl) quercetin (0.87 g, 1.15 mmol) was dissolved in
a mixture of ethanol : tetrahydrofuran 1:1 (60 ml). The mixture was deoxygenated with the use
of nitrogen and catalytic amount of palladium on carbon 10 wt % was added. The reaction was
stirred at room temperature under hydrogen atmosphere through night. Then, the reaction
mixture was filtered on Celite® and washed with ethanol (100 ml). The filtrate was concentrated
under reduced pressure to give crude product (confirmed by *H NMR), which was used in next
step without further purification. Isolated yield: 98% (0.44 g, 1.13 mmol).

IH NMR (300 MHz, DMSO-ds) § 9.47 (br s, 2H), 8.77 (br s, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.49
(dd, J = 8.5, 2.2 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.43 (t, J = 7.3 Hz, 1H), 6.34 (d, J = 2.0 Hz,
1H), 4.06 (t, J = 5.7 Hz, 2H), 3.79 (t, J = 6.6 Hz, 2H), 2.10 (ddd, J = 21.0, 14.9, 7.1 Hz, 2H),
2.00 — 1.83 (m, 2H).
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5-(4-O-chlorobutyl)-3',4'-O-diphenylmethane quercetin

Ph,CCl,, DPE
_—

182 °C, 1h

5-(4-O-chlorobutyl) quercetin (0.44 g, 1.13 mmol) and 1,1-dichlorodiphenylmethane (0.40 g,
1.70 mmol) were dissolved in diphenyl ether (15 ml) and the reaction mixture was heated to
182 <C with stirring. After 2 h, the mixture was cooled to room temperature, petroleum ether
(100 ml) was added. The dark brown crude product was obtained by filtration and purified by
silica gel column chromatography (20-50% ethyl acetate in petroleum ether as eluent) to give a
product as a light brown solid with isolated yield: 46% (0.29 g, 0.52 mmol). *H NMR (300
MHz, DMSO-ds) 6 10.75 (s, 1H), 9.06 (s, 1H), 7.83 — 7.74 (m, 2H), 7.58 (ddd, J =7.8, 4.5, 2.8
Hz, 4H), 7.53 — 7.41 (m, 6H), 7.21 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 2.1 Hz, 1H), 6.35 (d, J =
2.1 Hz, 1H), 4.06 (t, J = 5.7 Hz, 2H), 3.78 (t, J = 6.6 Hz, 2H), 2.15-1.98 (m, 2H), 1.98 — 1.84
(m, 2H).

5-(4-O-chlorobutyl)-3,7-diacetyl-3",4"-O-diphenylmethane quercetin

Ac,0, EN
N
DCM, 0-20 °C

5-(4-O-chlorobutyl)-3’,4'-O-diphenylmethane quercetin (0.29 g, 0.52 mmol) was dissolved in
20 ml of DCM and EtsN (1.08 ml, 7.80 mmol) was added. The solution was cooled to 0<C and
acetic anhydride (0.29 ml, 3.12 mmol) was added dropwise. The reaction mixture was allowed
to warm up to room temperature and it was stirred until starting material disappeared completely
(monitored by TLC, with hexane:ethyl acetate 8:2 as eluent). After finishing, the reaction
mixture was diluted by DCM and extracted 3 times with 1N HCI. Organic phase was dried over
anhydrous MgSOQOa. After solvent evaporation, crude product was purified by column
chromatography with the use of mixture of hexane/ethyl acetate/DCM 19:4:1 as eluent. Pure 5-
(4-O-chlorobutyl)-3,7-diacetyl-3’,4"-O-diphenylmethane quercetin is a white solid. Isolated
yield: 52% (0.17 g, 0.27 mmol). *H NMR (300 MHz, CDCls) § 7.65 — 7.54 (m, 4H), 7.47 —7.35
(m, 8H), 7.02 - 6.95 (m, 1H), 6.90 (d, J = 2.1 Hz, 1H), 6.55 (d, J = 2.1 Hz, 1H), 4.10 (d, J = 4.5
Hz, 2H), 3.66 (t, J = 6.0 Hz, 2H), 2.34 (s, 3H), 2.33 (s, 3H), 2.20 — 1.99 (m, 4H). 3C NMR (75
MHz, CDCl3) 6 170.7, 168.5, 168.2, 160.4, 157.9, 154.9, 153.9, 149.7, 147.8, 139.7, 133.8,
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129.5, 128.5, 126.4, 123.5, 123.4, 118.2, 112.4, 108.8, 108.4, 103.1, 101.9, 68.8, 45.1, 29.1,
26.3, 21.3, 20.9.

5-(4-O-iodobutyl)-3',4"-O-diphenylmethane-3,7-diacetyl quercetin

Nal, acetone
e

56 °C

5-(4-O-chlorobutyl)-3,7-diacetyl-3’,4'-O-diphenylmethane quercetin (0.17 g, 0.27 mmol) and
Nal (1.21 g, 8.1 mmol) were dissolved in acetone (5 ml) and heat at reflux overnight. After
cooling, the reaction mixture was diluted with 50 ml of ethyl acetate, filtered through paper
filter directly into the separating funnel and washed 3 times with 30 ml of water. Organic layer
was dried with anhydrous MgSOa4. Solvent was evaporated under reduced pressure to get the
crude product (confirmed by *H NMR) as a white solid, which was used in next step without
further purification. Isolated yield: 98% (0.19 g, 0.26 mmol). *H NMR (300 MHz, CDCls) §
7.63 — 7.53 (m, 4H), 7.46 — 7.35 (m, 9H), 7.01 — 6.94 (m, 1H), 6.90 (d, J = 2.1 Hz, 1H), 6.54
(d,J=2.1Hz, 1H), 4.08 (t, J = 5.8 Hz, 2H), 3.31 (t, J = 6.5 Hz, 2H), 2.34 (s, 3H), 2.34 (s, 3H),
2.15-1.99 (m, 4H).

5-(4-O-butyl triphenylphosphonium)-3',4'-O-diphenylmethane-3,7-diacetyl quercetin iodide

Ph;P, toluene
_—

110 °C

P
Ph” 1
Ph

5-(4-O-iodobutyl)-3',4'-O-diphenylmethane-3,7-diacetyl quercetin (0.19 g, 0.26 mmol) and
PhsP (0.34 g, 1.30 mmol) were dissolved in toluene (8 ml) and heated at reflux for 1-3 days
with monitoring the reaction course by TLC. When all the substrate had reacted, the reaction
mixture was cooled and the solvent was evaporated under reduced pressure. The crude product
was purified by column chromatography with elucidation by DCM:methanol (96:4) mixture to
give 5-(4-O-butyl triphenylphosphonium)-3’,4’-O-diphenylmethane-3,7-diacetyl quercetin
iodide as yellow solid with isolated yield: 59% (0.16 g, 0.16 mmol). *H NMR (300 MHz,
CDCls) 6 7.88 — 7.67 (m, 9H), 7.63 (dd, J = 7.1, 2.9 Hz, 6H), 7.57 — 7.47 (m, 4H), 7.45 - 7.28
(m, 8H), 6.95 (d, J = 8.3 Hz, 1H), 6.87 (s, 1H), 6.58 (s, 1H), 4.15 (m, 2H), 3.89 (m, 2H), 2.31
(s, 3H), 2.22 (m, 2H), 2.12 (s, 3H), 2.01 (m, 2H). 3C NMR (75 MHz, CDCls) & 170.4, 168.4,
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167.6, 159.7, 157.5, 154.9, 153.9, 149.6, 147.6, 139.4, 134.9, 134.8, 133.7, 133.5, 133.3, 130.5,
130.3,129.4, 128.3, 126.1, 123.3, 123.0, 118.7, 118.1, 117.6, 111.7, 108.7, 108.0, 103.2, 102.1,
69.3, 30.9, 29.6, 28.6, 28.3, 22.4, 21.7, 21.2, 20.6, 20.1. HRMS (ESI) calcd for [M-I7]
Cs4H4409P 867.2723, found 867.2734.

2. NMR spectral data
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Figure S1. *H NMR (300 MHz, CDCIs) of 3',4'-O-diphenylmethane quercetin.
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Figure S2. 'H NMR (300 MHz, CDCls) of 3',4'-O-diphenylmethane-3,7-diacetyl quercetin.
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Figure S7. *H NMR (300 MHz, CDClIs) of 7-(4-O-butyl triphenylphosphonium)-3’,4'-O-
diphenylmethane-3,5-diacetyl quercetin iodide.
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diacetyl quercetin.

49394-13C CDCI3
MQC-0087

2600

44,78
21.26
21.23

G

17316
_-160.54
~168.12
53.73
50,27
49 44
—71.70
—64.83
2913
—27.37

2400

~2200

2000

1300

1600

1400

1200
- 1000
=800
600

400

WY 1 A O A

0

=200

T T T T T T T T T T T T T T T T T T T T T T T T T 1
220 210 200 1% 180 170 1s0 150 140 1300 120 F1110 ;.00 S0 a0 70 60 50 40 30 20 10 o -10
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Figure S14. 'H NMR (300 MHz, CDCIs) of 3-(4-O-butyl triphenylphosphonium)-3',4'-O-
diphenylmethane-5,7-diacetyl quercetin iodide.
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Figure S22. C NMR (75 MHz, CDCIs) of 5-(4-O-chlorobutyl)-3,7-diacetyl-3',4'-O-

diphenylmethane quercetin.
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Figure S23. 'H NMR (300 MHz, CDCIs) of 5-(4-O-iodobutyl)-3,7-diacetyl-3’,4'-O-

diphenylmethane quercetin.
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Figure S24. 'H NMR (300 MHz, CDCIs) of 5-(4-O-butyl triphenylphosphonium)-3’,4'-O-
diphenylmethane-3,7-diacetyl quercetin iodide.
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Figure S25. °C NMR (75 MHz, CDCls) of 5-(4-O-butyl triphenylphosphonium)-3,4'-O-
diphenylmethane-3,7-diacetyl quercetin iodide.

S-26



3. Kinetic measurements for quercetin
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Figure S26. Kinetic traces of oxygen uptake for peroxidation in the presence of quercetin.

Table S1. Kinetic parameters: induction time tind, rate of autoxidation, Roxi, initiation rate Ri,
rate of inhibited autoxidation Rinn, inhibition rate constant kinn determined for autoxidation of
2.7 mM methyl linoleate in 10 mM DMPC liposomes in the presence of 1juM quercetin at pH
range from 4 to 9.

H Tind Rox1 - 108 Ri- 108 Rinn - 10°  Finn - 10*
P [min] [M1s7] [M1s7) MY [Ms?
4.0 - 16.6+1.1 - - -

5.0 - 13.0+0.1 - - -
6.0 15.6+0.6

70 169+12 158+1.0 0.13+£002 44+03 08+03
80 46.8+3.2 145+15 004+001 28+0.1 04+0.1
9.0 - 13.8+0.6 - - -

Table S2. Thermodynamic parameters determined from DSC experiments: molar enthalpy (AH
in kJ/mol) and the main transition temperature? (Tm in kelvins) of DMPC containing quercetin
and its derivatives mitQ3/5/7 at the concentrations of 0, 50, 100, and 150 M.

quercetin mitQ3 mitQ>5 mitQ7
C [pM] AH Tm AH Tm AH Tm AH Tm
0 205 2971 205 297.1 20.5 297.1 20.5 297.1
50 nd® nd® 16.6 296.7 18.8 296.7 19.9 296.7
100 nd® nd® 16.0 296.4 17.6 296.3 15.1 296.4
150 142 2969 126 296.0 13.9 296.4 13.5 296.1

2 Temperature at which 50% of heat was exchanged.  nd = not determined.
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Figure S27. ADME parameters calculated for quercetin.
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Figure S28. ADME parameters calculated for mitQ3.

-13.32

4.81e-11 mg/ml ; 4.76e-14 mol/l
Insoluble

-14.93

1.18e-12 mg/ml ; 1.17e-15 mol/l
Insoluble

-19.37

4.33e-17 mg/ml ; 4.29e-20 mol/l
Insoluble

Low

No

Yes

No

No

No

No

Yes

-3.73 cmis

No; 2 violations: MW=>500, MLOGP>4 .15

No; 4 violations: MW=480, WLOGP>5.6,
MR=>130, #atoms>70

Noj; 1 violation: Rotors>=10
No; 1 violation: WLOGP=5.88

No; 4 violations: MW=600, XLOGP3=>5,
#rings>7, Rotors>15

017

0 alert

3 alerts: iodine, phenol_ester, phosphor @

Noj; 3 violations: MW=350, Rotors>7,
XLOGP3=35

6.82

Please note that consensus logPow for mitQ3 was erroneously calculated as an average from 5
values, while one of them (ilogP=0.00) should be omitted, thus, consensus logPow is 9.49.
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Figure S29. ADME parameters calculated for mitQ5.
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Figure S30. ADME parameters calculated for mitQ?7.
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Figure S31. The effects of quercetin (Q) and mito-quercetin derivatives (mitQ3, 5, and 7) on
metabolic activity of six breast cancer cell lines, namely, ER-positive MCF-7, HER2-positive
SK-BR-3 and four triple negative (TNBC) MDA-MB-231, MDA-MB-468, BT-20, and Hs
578T cells. Normal human fibroblasts (BJ cells) were used for comparison. Cells were treated
with Q, mitQ3, 5, and 7 at the concentrations of 0.1, 1, 5 and 10 M for 24 h. Two glucose
concentrations in cell culture medium (DMEM), namely 4.5 g/l (high glucose, HG DMEM) and
1 g/l (low glucose, LG DMEM) and two cell concentrations, namely 5x10* cells/ml and 1>10°
cells/ml were considered. Metabolic activity was assayed using MTT test. Metabolic activity at



untreated conditions (HG or LG conditions, CTR) is considered as 100%. As Q and mitQ3, 5
and 7 were dissolved in DMSO, the effects of DMSO were also studied. Yellow horizontal lines
were used to emphasize the effects similar to the effects of untreated control (100% of metabolic
activity, HG or LG conditions, CTR) and a decrease in metabolic activity of 50% compared to
CTR. Bars indicate SD, n=3, " "p<0.001, “p<0.01, 'p<0.05 compared to HG or LG
untreated control (CTR) (ANOVA and Dunnett’s a posteriori test).
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Figure S32. Mitochondria-related gene mutation status (A), correlation analysis between the

metabolic activity (MTT-based data) and the number of gene mutations in genes involved in
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mitochondrial functions (B), and mutation types (C) in six breast cancer cell lines used in the
study. (A) Gene mutation raw data were acquired form DepMap portal

(https://depmap.org/portal/). Set intersections in a matrix layout were visualized using the

UpSet plot. Total, shared and unique gene mutations in genes involved in mitochondrial
functions across six breast cancer cell lines are shown. Blue bars in the y-axis represent the
number of gene mutations in genes involved in mitochondrial functions in each cell line. Black
bars in the x-axis represent the number of mutations shared across cell lines connected by the
black dots in the body of the plot. (B) Correlation analysis of the data was performed using a
linear correlation (Spearman’s r) test. The 95% confidence interval, r and p values are shown.
© Gene mutation types are presented as a chord diagram
(https://www.bioinformatics.com.cn). HG, high glucose DMEM (4.5 g¢/l); LG, low glucose

DMEM (1 g/l).
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Figure S33. Kinase gene mutation status (A), correlation analysis between the metabolic
activity (MTT-based data) and the number of kinase gene mutations (B) and mutation types (C)
in six breast cancer cell lines used in the study. (A) Gene mutation raw data were acquired form
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DepMap portal (https://depmap.org/portal/). Set intersections in a matrix layout were visualized
using the UpSet plot. Total, shared and unique kinase gene mutations across six breast cancer
cell lines are shown. Blue bars in the y-axis represent the number of kinase gene mutations in
each cell line. Black bars in the x-axis represent the number of mutations shared across cell
lines connected by the black dots in the body of the plot. (B) Correlation analysis of the data
was performed using a linear correlation (Spearman’s r) test. The 95% confidence interval, r
and p values are shown. (C) Gene mutation types are presented as a chord diagram
(https://www.bioinformatics.com.cn). HG, high glucose DMEM (4.5 g¢/l); LG, low glucose
DMEM (1 g/l).
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Figure S34. MitQ7-mediated changes in the phases of cell cycle in six breast cancer cell lines,
namely, ER-positive MCF-7, HER2-positive SK-BR-3 and four triple negative (TNBC) MDA-
MB-231, MDA-MB-468, BT-20, and Hs 578T cells. Breast cancer cells were treated with 1
M mitQ7 for 24 h. DNA content-based analysis of cell cycle using flow cytometry and
dedicated DNA staining. Representative histograms are shown. HG, high glucose DMEM (4.5
g/l); LG, low glucose DMEM (1 g/l); CTR, untreated control.
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Figure S35. MitQ7-induced apoptosis in six breast cancer cell lines, namely, ER-positive MCF-
7, HER2-positive SK-BR-3 and four triple negative (TNBC) MDA-MB-231, MDA-MB-468,
BT-20, and Hs 578T cells. Breast cancer cells were treated with 1 M mitQ7 for 24 h. Apoptosis
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was assayed using flow cytometry and Annexin V staining (apoptotic marker) and 7-AAD
staining (necrotic marker). Four subpopulations were revealed, namely live cells (dual staining-
negative), early apoptotic cells (Annexin V-positive), late apoptotic cells (dual staining-
positive) and necrotic cells (7-AAD-positive). Representative dot plots are shown. HG, high
glucose DMEM (4.5 g/); LG, low glucose DMEM (1 g/l); CTR, untreated control.
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Figure S36. MitQ7-mediated changes in intracellular pH in six breast cancer cell lines, namely,
ER-positive MCF-7, HER2-positive SK-BR-3 and four triple negative (TNBC) MDA-MB-231,
MDA-MB-468, BT-20, and Hs 578T cells. Breast cancer cells were treated with 1 M or 5 UM
mitQ7 for 24 h. Imaging cytometry and dedicated protocol was considered. Intracellular
alkalization was monitored as a decrease in fluorescent signals and is presented as relative
fluorescence units (RFU). Box and whisker plots are shown, n=3, ™“p<0.001 compared to
HG or LG untreated control (ANOVA and Dunnett’s a posteriori test), *#p <0.001, #*» <0.05
compared to HG corresponding conditions (ANOVA and Dunnett’s a posteriori test). HG, high
glucose DMEM (4.5 g/l); LG, low glucose DMEM (1 g/l).
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Figure S37. MitQ7-mediated senolytic activity in doxorubicin-induced senescent breast cancer
cells. MCF-7, SK-BR-3, MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells were
treated with 35 nM doxorubicin for 24 h and left for growth for 7 days after drug removal to
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induce senescence program. Doxorubicin-induced senescent breast cancer cells were then
treated with 1 M mitQ7 for 24 h and apoptosis was assayed using flow cytometry and Annexin
V staining. Representative dot plots are shown. HG, high glucose DMEM (4.5 g/l); LG, low

glucose DMEM (1 g/l); CTR, untreated control.
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Figure S38. MitQ7-mediated changes in mitochondrial transmembrane potential

in

doxorubicin-induced senescent breast cancer cells. MCF-7, SK-BR-3, MDA-MB-231, MDA-
MB-468, BT-20, and Hs 578T cells were treated with 35 nM doxorubicin for 24 h and left for
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growth for 7 days after drug removal to induce senescence program. Doxorubicin-induced
senescent breast cancer cells were then treated with 1 pM mitQ7 for 24 h and changes in
mitochondrial transmembrane potential were revealed using flow cytometry and dedicated
mitopotential probe. Four cell subpopulations were distinguished, namely cells with intact
mitochondrial membrane and 7-AAD-negative (live), cells with depolarized mitochondrial
membrane and 7-AAD-negative (depolarized/live), cells with depolarized mitochondrial
membrane and 7-AAD-positive (depolarized/dead), and cells with intact mitochondrial
membrane and 7-AAD-positive (dead). Representative dot plots are shown. HG, high glucose
DMEM (4.5 g/l); LG, low glucose DMEM (1 g/l); CTR, untreated control.
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