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Simple Summary: Thermal ablation is an established treatment for primary and secondary liver
tumors. As ablation treatment planning is a fast-emerging field, accurate and patient-specific ablation
zone simulation may contribute to higher efficacy of thermal ablation. Computational modeling
could facilitate these simulations. This systematic review aims to identify, evaluate, and summarize
the findings of the literature on existing computational models for thermal liver ablation planning
and compare their accuracy. The literature shows a wide variety of computational modeling and
validation methods. Additional research, with a focus on shape-based outcome metrics, is warranted
to determine which model demonstrates superior accuracy and suitability for clinical practice. More
insight into parameter personalization is required to enable patient-specific ablation planning.

Abstract: Purpose: This systematic review aims to identify, evaluate, and summarize the findings
of the literature on existing computational models for radiofrequency and microwave thermal liver
ablation planning and compare their accuracy. Methods: A systematic literature search was performed
in the MEDLINE and Web of Science databases. Characteristics of the computational model and
validation method of the included articles were retrieved. Results: The literature search identified
780 articles, of which 35 were included. A total of 19 articles focused on simulating radiofrequency
ablation (RFA) zones, and 16 focused on microwave ablation (MWA) zones. Out of the 16 articles
simulating MWA, only 2 used in vivo experiments to validate their simulations. Out of the 19 articles
simulating RFA, 10 articles used in vivo validation. Dice similarity coefficients describing the overlap
between in vivo experiments and simulated RFA zones varied between 0.418 and 0.728, with mean
surface deviations varying between 1.1 mm and 8.67 mm. Conclusion: Computational models to
simulate ablation zones of MWA and RFA show considerable heterogeneity in model type and
validation methods. It is currently unknown which model is most accurate and best suitable for use
in clinical practice.

Keywords: thermal ablation; liver neoplasm; computational modeling; ablation zone simulation;
therapy planning

1. Introduction

Percutaneous thermal ablation is an established minimally invasive treatment for
primary and secondary liver tumors [1,2]. Radiofrequency ablation (RFA) and microwave
ablation (MWA) are currently the most widely applied thermal ablation techniques to treat
liver malignancies. Both techniques aim to induce tissue heating of at least 55–60 ◦C to
necrotize the tumor along with an ablative margin of normal liver parenchyma around the
tumor of at least 5 mm [3,4]. RFA applies a rapidly alternating current that excites the ions
in the liver tissue, causing frictional heating. In MWA, electromagnetic waves cause polar
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molecules, predominantly water, to realign with the oscillating field, which generates heat
through kinetic energy [5].

The obtained ablative margin in thermal ablation is correlated with local recurrence
rates. In a study by Laimer et al. conducted on patients with hepatocellular carcinoma,
each millimeter increase in the minimal ablative margin resulted in a 30% risk reduction
for local recurrence [4]. No recurrences occurred when an ablative margin of >5 mm
was obtained, but this was only achieved in 37.5% of the ablations. These results are
in accordance with several other studies investigating the correlation between ablative
margin and local recurrences in primary and secondary liver tumors [3,4,6–9]. In these
studies, the percentage of the intended ablative margin of >5 mm varied between 2.7% and
51.4%. These low rates indicate a discrepancy between the predicted and created ablation
zone, either due to shape and size deviation of the created ablation zone or inaccurate
needle positioning.

Currently, the ablation zone size is predicted according to the manufacturer’s spec-
ifications. With each system, a chart is provided containing 2D ellipse predictions for
several settings (such as ablation time and power). In recent years, treatment planning tools
have become available that use these predictions to help the operator choose the probe
trajectory and ablation setting [10]. Yet, these predictions are mostly based on preclinical
animal experiments [11]. Various factors, such as vascular proximity, tissue perfusion,
tumor location, and underlying fibrosis or cirrhosis, can lead to differences in the shape and
volume of the ablation zone compared to predictions. Computational modeling and ex vivo
experiments have demonstrated that the aforementioned tumor and liver characteristics
affect the heat conductivity and thus the dimensions of the actual ablation zone [12–15]. To
increase the rate of adequate ablations with sufficient margins and thereby reduce the risk
of local recurrence, patient-specific therapy planning is essential.

The computation of ablation necrosis volumes generally consists of two steps. First,
increase in temperature during thermal ablation can be simulated by computational models
based on electromagnetic and bioheat equations [16,17]. Cell-death models then convert
these temperatures to a volume of necrosis. A wide variety of complexity is observed in
these models [16–18]. Whereas some computational models rely only on a bioheat equation
with fixed parameters, other models incorporate more complexities, such as patient-specific
anatomy and temperature-dependent parameters.

Computational models are currently mainly used for in silico testing and optimization
of devices as well as to study the effect of different parameters and techniques on ablation
treatment [19–21]. As treatment planning is a fast-emerging field, accurate and patient-
specific ablation zone simulation may contribute to higher efficacy of thermal ablation [10].
Computational modeling potentially opens up an opportunity for patient-specific ablation
zone simulation. This systematic review aims to identify, evaluate, and summarize the find-
ings of the literature on existing computational models for radiofrequency and microwave
thermal liver ablation planning and compare their accuracy.

2. Materials and Methods
2.1. Search Strategy

Studies were identified by searching the electronic databases MEDLINE and Web of
Science on 17 April 2023. The search queries were based on synonyms of the keywords
“Thermal ablation”, “Liver neoplasm”, and “Computational modeling”. The complete
search strategies used can be found in Appendix A. The study has not been registered
in PROSPERO.

2.2. Study Selection

After duplicate removal, abstracts were screened, followed by full-text assessment.
Articles were found eligible if (i) ablation zone simulation was performed for either
(ii) percutaneous RFA or MWA in (iii) liver tissue and if (iv) the model was quantitatively
validated using ex vivo or in vivo experiments with (v) either ablation zone dimensions,
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ablation zone volumes, or volume-based metrics reported as outcome measure(s). Fur-
thermore, articles should focus on simulating ablation zones for treatment planning and
not for device or protocol optimization. Reviews, systematic reviews, letters to the ed-
itor, and articles written in other languages than English were excluded. Two authors
(G.C.M.v.E. and P.H.) independently assessed the articles according to these criteria. In case
of disagreement, consensus was reached by discussion.

2.3. Data Extraction

Included articles were categorized based on the thermal ablation technique used,
either RFA or MWA. For each included computational model, the applied biological heat
transfer model and the cell death model were extracted. Furthermore, it was noted whether
perfusion, blood vessels, water vaporization, temperature-dependent thermal parameters,
and/or an image-based anatomical model were incorporated. Data extraction for the
validation of computational models included study type (in vivo, ex vivo, or clinical
studies), number of ablations, ablation settings, ground truth comparison, outcome metrics,
and validation results. The relative volume deviation (RVD) or relative diameter deviation
(RDD) between the simulated and experimentally obtained ablation zones was calculated
based on reported ablation zone volumes or diameters, if this outcome was not reported on
already, to ensure homogenous size-based outcome metrics.

3. Results
3.1. Study Selection

The search strategy identified 849 articles after removal of duplicates. A total of
673 articles were excluded after abstract screening. A total of 176 articles were full-text
assessed, resulting in the exclusion of 141 articles. A total of 35 articles met the inclusion
criteria and were included in this systematic review [22–56]. Figure 1 shows a flow diagram
of the study-selection process.
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Out of the 35 articles included, 16 focused on simulating MWA and 19 on RFA.
Tables 1 and 2 contain details about the computational model used in these articles. Figure 2
gives a schematic overview of a general model structure. Frequently used equations in the
models can be found in Appendix B and frequently used outcome metrics in Appendix C.
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Table 1. Characteristics of the used computational model for microwave ablation zone modeling from the included articles (x = incorporated in the model).

Author (Year) Bioheat Model Cell Death Model Numerical
Method * Perfusion Blood

Vessels
Water Va-

porization

Temperature-
Dependent

Tissue
Parameters

CT-Based
Anatomic

Model
Model Remarks

Cavagnaro et al.
[26] (2015)

Pennes’ BHE 60 ◦C isothermal contour

FDTD

BHE-S: Standard BHE

Pennes’ BHE 60 ◦C isothermal contour x BHE-V: Standard BHE including
water vaporization

Pennes’ BHE 60 ◦C isothermal contour x BHE-ST_B and BHE-ST (two different equations
for temperature-dependent parameters)

Pennes’ BHE 60 ◦C isothermal contour x x

BHE-V-ST_B and BHE-V-ST. (two different
equations for temperature-dependent

parameters), only conductivity is
temperature-dependent

Pennes’ BHE 60 ◦C isothermal contour x x

SAR-T-1min_B and SAR-T-1min (two different
equations for temperature-dependent

parameters). Temperature-dependency of
conductivity as well as dielectric parameters

Collins et al. [29]
(2020) Pennes’ BHE Arrhenius thermal

damage model FEM
Determine dielectric properties based on MRI

fat quantification with
inverse-modeling strategy

Deshazer et al.
[30] (2017) Pennes’ BHE

Arrhenius thermal damage
model (isocontour 63%) and

52 ◦C isothermal contour
FEM

x, but not in
experi-
ments

x x

Damage-dependent blood perfusion rate. Two
different models tested (A and B); they only

differ in dielectric parameter dependency
of temperature

Deshazer et al.
[31] (2017)

Own heat-transfer
model 60 ◦C isothermal contour FEM x x Investigated the option of intra-procedural SAR

measurement to model ablation zone

Faridi et al. [33]
(2020)

Transient
heat-transfer

equation

Arrhenius thermal damage
model (isocontour 63%) FEM x x

Added the Morris method to determine the
sensitivity of the ablation zones to uncertainty

in tissue physical properties

Gao et al. [35]
(2017) Pennes’ BHE 54 ◦C isothermal contour FEM

Used experiments to determine phantom
parameters and SAR distribution, which is the

basis of the FEM model

Gao et al. [36]
(2019) Pennes’ BHE 54 ◦C isothermal contour FEM x x x

Tried to model coagulation zone over time and
incorporate tumor geometry to assess

tumor coverage

Gao et al. [37]
(2019) Pennes’ BHE 54 ◦C isothermal contour FEM x x Used parameter sensitivity analysis to optimize

the temperature-based parameters
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Table 1. Cont.

Author (Year) Bioheat Model Cell Death Model Numerical
Method * Perfusion Blood

Vessels
Water Va-

porization

Temperature-
Dependent

Tissue
Parameters

CT-Based
Anatomic

Model
Model Remarks

Lopresto et al. [38]
(2017) Pennes’ BHE 60 ◦C isothermal contour FDTD x x

Evaluate the effect of ±25% variations in
dielectric and thermal parameters using the

combined expanded uncertainty

Singh et al. [44]
(2019)

Pennes’ BHE with
Dual phase
lag model

Three-state cell death model FEM
x, but not in

experi-
ments

x x

Incorporates lot of complexities:
damage-dependent blood perfusion rate,
mechanical deformation (shrinkage) and

heat-flux model. Modeled RFA as well as MWA.
However, only validated MWA

with experiments

Tehrani et al. [46]
(2010) Pennes’ BHE Three-state cell death model FEM x x

Used a multicompartment model including
tissue, tumor and blood. Added a model for

tumor shrinkage

Tucci et al. [48]
(2022)

Local thermal
non-equilibrium

equation

Arrhenius thermal damage
model (isocontour 99%) FEM x x, 4 different

diameters x x

Damage-dependent blood perfusion rate. Two
compartment model with difference in porosity
(and other factors) in tumor and surrounding

liver tissue. Also, within the tumor, the
difference in porosity in the tumor core toward
the tumor rim (increasing porosity) is modeled

Wang et al. [52]
(2021) Pennes’ BHE 54 ◦C isothermal contour FEM x x x x

Incorporated convection heat-transfer condition
and Newton formula for heat transfer between

blood vessel and tissue

Wang et al. [53]
(2023) Pennes’ BHE

54 ◦C isothermal contour
and Arrhenius thermal

damage model (isocontour
63%)

FEM
x, but not in

experi-
ments

x x Modeled dual-antenna MWA, different
distances between antennas

Wu et al. [55]
(2013) Pennes’ BHE 55 ◦C isothermal contour FDTD x x

Used GPUs to simulate in 3D. Did not quantify
the electrical field, but determined its
contribution based on experiments.

Zhai et al. [56]
(2008) Pennes’ BHE

Arrhenius thermal
damage model

(isocontour 63%)
FEM x x x

GPU-accelerated model for preoperative 3D
simulation of necrotic zone in clinical setting.

Incorporated effect of necrosis on
blood perfusion

* FDTD = Finite Difference Time Domain, FEM = Finite Element Method, FVM = Finite Volume Method. BHE = bioheat equation, CT = Computed Tomography, GPU = graphics
processing unit, MWA = microwave ablation, SAR = specific absorption rate.
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Table 2. Characteristics of the used computational model for radio-frequency ablation zone modeling from the included articles (x = incorporated in the model).

Author (Year) Bioheat Model Cell Death Model Numerical Method * Perfusion Blood
Vessels

Water
Vapor-
ization

Temperature-
Dependent

Tissue
Parameters

CT-Based
Anatomic

Model
Model Remarks

Audigier et al. [22]
(2013)

Combination of
Pennes’ BHE and

Wulff–Klinger model

Three-state cell
death model

Lattice Boltzmann
solver x x x

Computational fluid dynamics and Darcy’s
equation are coupled to the bioheat equation to

model blood circulation and blood flow

Audigier et al. [23]
(2015)

Combination of
Pennes’ BHE and

Wulff–Klinger model

Three-state cell
death model

Lattice Boltzmann
solver x x x

Computational fluid dynamics and Darcy’s
equation are coupled to the bioheat equation to

model blood circulation and blood flow,
two-compartment model (blood vessels and

liver tissue)

Audigier et al. [24]
(2017)

Combination of
Pennes’ BHE and

Wulff–Klinger model

Three-state cell
death model

Lattice Boltzmann
solver x x x

Navier-stokes equation and computational fluid
dynamics solver used to model blood flow. Blood
flow is determined using preoperative MRI, blood
pressures are measured invasively, and porosity
map created on CT image. Used intra-operative

measurements to validate parameter values used.
Used lower conductivity for cirrhotic livers

Audigier et al. [25]
(2022) Pennes’ BHE 50 ◦C isothermal contour Lattice Boltzmann

solver x x
Also used a spherical model and Eikonal model for

comparison. Used a GPU for acceleration,
multi-probe modeling

Chang et al. [27]
(2004) Pennes’ BHE

Arrhenius thermal
damage model

(isocontour 63%)
FEM x, but not in

experiments x Damage-dependent blood perfusion ratel

Chen et al. [28]
(2021) Simplified Pennes’ BHE 55 ◦C isothermal contour Simplified toward

analytical solution
Ignored the heat source of the electrical current

flow in the model

Duan et al. [32]
(2016) Pennes’ BHE

Arrhenius thermal
damage model

(isocontour 63%)
FEM x, but not in

experiments x

Using a pre-procedural determined probe position;
the probability of several ablation zones is

displayed by the model. Damage-dependent blood
perfusion ratel

Fang et al. [34]
(2022) Pennes’ BHE

Arrhenius thermal
damage model

(isocontour 99%)
FEM x, but not in

experiments x x x Used the Navier–Stokes equation for blood
flow modeling

Hoffer et al. [39]
(2022) Pennes’ BHE

Arrhenius thermal
damage model

(isocontour < 63%)
FEM and FDM x x x

Used a GPU to accelerate FEM, able to model
single and multi-probe ablations, focused on

clinical application

Mariappan et al. [40]
(2017) Pennes’ BHE Three-state cell

death model FEM x x x Used a GPU to accelerate FEM, focused on
clinical application

Moche et al. [41]
(2020) Pennes’ BHE Three-state cell

death model FEM x x x
Used a GPU, more focused on clinical application.

Simulation parameters involved a proportional
integral derivative

Ooi et al. [42] (2019) Pennes’ BHE
Arrhenius thermal

damage model
(isocontour 99%)

FEM x, but not in
experiments x x x Modeled different boundary conditions
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Table 2. Cont.

Author (Year) Bioheat Model Cell Death Model Numerical Method * Perfusion Blood
Vessels

Water
Vapor-
ization

Temperature-
Dependent

Tissue
Parameters

CT-Based
Anatomic

Model
Model Remarks

Payne et al. [43]
(2011)

Split-volume bioheat
equation (own model)

Three-state cell
death model FEM x x x

Incorporated Newton’s cooling law to model heat
transfer between vessels and tissue and Darcy’s

law for blood velocity

Subramanian et al.
[45] (2015) Pennes’ BHE Own thermal

damage formula FEM x Experimental-based values of the specific heat,
thermal conductivity, and electrical conductivity

Tucci et al. [47]
(2021)

Pennes’ BHE
Arrhenius thermal

damage model
(isocontour 99%)

FEM

x x Damage-dependent blood perfusion rate

Local thermal
equilibrium equation 60 ◦C isothermal contour x x

Porous media-based model, damage-dependent
blood perfusion rate; assumes equilibrium in

temperature between blood and tissue

Local thermal
non-equilibrium

equation
60 ◦C isothermal contour x x x

Porous media-based model, damage-dependent
blood perfusion rate; separates vaporization phase

for water, tissue, and blood

Vaidya et al. [49]
(2021) Pennes’ BHE Arrhenius thermal

damage model FVM x x x
Multicompartment model incorporating tissue,
tumor, blood, and probe. Damage-dependent

blood perfusion rate

Voglreiter et al. [50]
(2018) Pennes’ BHE Three-state cell

death model FEM x x x Used a GPU to accelerate FEM; focused on
clinical application

Wang et al. [51]
(2019) Pennes’ BHE 54 ◦C isothermal contour FEM x

Welp et al. [54]
(2006) Heat transfer equation

Arrhenius thermal
damage model

(isocontour 99%)
FEM x x x Incorporated the heat transfer between blood and

tissue

* FDTD = Finite Difference Time Domain, FEM = Finite Element Method, FVM = Finite Volume Method, FDM = Finite Difference Method. BHE = bioheat equation, CT = Computed
Tomography, GPU = graphics processing unit, RFA = radio-frequency ablation.
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3.2. MWA Data Analysis

Sixteen articles presented computational models for MWA. Thirteen articles used
Pennes’ bioheat equation as bioheat model [26,29,30,35–38,44,46,52,53,55,56], while one
article used the transient heat transfer equation [33], one the local thermal non-equilibrium
equation [48], and one used a proprietary heat transfer model [31]. As a cell death model,
the Arrhenius thermal damage model was used in four articles, the three-state cell death
equation was used in two articles, and an isothermal contour (54 ◦C or 60 ◦C) was used
in eight articles. Two articles used both the Arrhenius thermal damage model and an
isothermal contour of 52 ◦C and 54 ◦C, respectively [30,53].

Seven articles included perfusion in their model, two blood vessels, thirteen water
vaporization, and thirteen temperature-dependent tissue parameters. Two models used
CT-based anatomy models. Gao et al. used CT data to extract tumor geometry to model
tumor coverage, while Zhai et al. created a complete CT-based 3D model for simulating
the ablation [36,56].

3.2.1. MWA Ex Vivo Validation

Table 3 gives an overview of the ex vivo validation of the included computational
models for MWA simulation. Fourteen articles used ex vivo experiments in animals or
phantoms [26,29–31,33,35–38,44,46,52,53,55]. Two articles used the Dice similarity coeffi-
cient (DSC) to express their results and found similar scores between 0.74 and 0.82 [31,33].
One article used the Jaccard similarity index and found results of 0.866 and 0.934. However,
these results might be biased since the electrical and thermal conductivities were recon-
structed after the experiments to best fit the model [29]. Sing et al. used the experiments of
Wu et al. to validate their simulated ablation zone [44,55]. The main differences between
the two models were the use of the three-state cell death model and the incorporation of
tissue shrinkage within the model of Sing et al. The latter could explain why simulations
by Sing et al. resulted in a smaller longitudinal diameter compared to Wu et al.: 26.24 mm
(RDD: −13.4%) and 29.7 mm (RDD = −2.0%), respectively. However, the experiments of
Sing et al. resulted in a greater overestimation of the transverse diameter (RDD: 5.2% versus
4.7%). Figure 3 visually gives an overview of the models validated with the longitudinal
and transverse RDD.
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Table 3. Ex vivo validation of computational models modeling microwave ablation.

Author (Year) Model
In Vivo or

Ex Vivo
Validation

Number of
Experi-
ments

Ground Truth

Ablation
Settings (Time

of Ablation and
Power)

Outcome Measure/Metric Performance Validation Remarks

Cavagnaro et al. [26]
(2015)

BHE-S

Ex vivo,
bovine
livers

6
Sectioning sample and
measure ablation zone

10 min, 40 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD *

L: −8.31% T: −0.83%

BHE-V L: −18.5% T: −9.09%

BHE-ST_B L: −1.85% T: 10.2%

BHE-ST L: −2.54%, T: 7.44%

BHE-V-ST_B L: −6.93%, T: 4.68%

BHE-V-ST L: −11.1%, T: −0.83%

SAR-T-1min_B L: 15.5%, T: −6.34%

SAR-T-1min L: 1.39%, T: −9.09%

Collins et al. [29]
(2020)

Fat phantoms Ex vivo,
phantom

15 Sectioning sample,
photographed and 2D

segmentation of ablation zone

15 min, 60 W,
915 MHz

Jaccard similarity index 0.866 ± 0.053 For each phantom, the electrical and
thermal conductivity were reconstructed

to best fit the modelNon-fat phantom 6 Jaccard similarity index 0.934 ± 0.022

Deshazer et al. [30]
(2017)

Model A

Ex vivo,
bovine
livers

4

Sectioning sample and
measure ablation zone

10 min, 30 W,
915 MHz

Longitudinal (L) and
transverse (T) RDD *

L: 2.9%, T: 24.0%
A: linear temperature dependency of

dielectric properties, B: similar to model A
but added linear decrease in electrical

conductivity above 95 ◦C

Model B 4 L: 5.7%, T: 12.0%

Model A 8 15 min, 60 W,
915 MHz

L: 21.4%, T: 25.7%

Model B 8 L: 23.8%, T: 14.3%

Deshazer et al. [31]
(2017)

Short-tip, 1000 W/kg
iso-SAR

Ex vivo,
porcine
livers

3

Segmentation on infrared
camera temperature

measurements

6 min, 15 W,
915 MHz DSC

0.74 ± 0.01

Short-tip, 500 W/kg
iso-SAR 0.82 ± 0.04

Long-tip, 1000 W/kg
iso-SAR

3

0.77 ± 0.03

Long-tip, 500 W/kilo
iso-SAR 0.76 ± 0.01

Faridi et al. [33]
(2020)

Ex vivo,
bovine
livers

4

Segmentation on MRT-derived
Arrhenius thermal damage

3D maps

10 min, 30 W,
2450 MHz

DSC

0.8 ± 0.0

8 5 min, 30 W,
2450 MHz 0.8 ± 0.08

3 5 min, 50 W,
2450 MHz 0.75 ± 0.06
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Table 3. Cont.

Author (Year) Model
In Vivo or

Ex Vivo
Validation

Number of
Experi-
ments

Ground Truth

Ablation
Settings (Time

of Ablation and
Power)

Outcome Measure/Metric Performance Validation Remarks

Gao et al. [35] (2017) Ex vivo,
phantom

Sectioning sample and
measure ablation zone

10 min, 60 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: −5.6%, T: −1.1%

Advancement 0.341 vs. 0.3 ± 0.05 cm

Gao et al. [36] (2019)
Ex vivo,
porcine
livers

20 Sectioning sample and
measure ablation zone

40, 45, 50, 55 and
60 W, 2450 MHz

Error of transverse radius,
advancement and backward

longitudinal length
±5%

Gao et al. [37] (2019)
Ex vivo,
porcine
livers

20 Sectioning sample and
measure ablation zone

6 min, 60 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: 2.3%, T 3.4% Optimized thermo-dependent parameters

based on experiments

Lopresto et al. [38]
(2017)

Ex vivo,
bovine
livers

4 Sectioning sample and
measure ablation zone

10 min, 60 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: −6.5%, T: −4.0%

Advancement 7.4 mm (model) versus
7.5 ± 2.1 mm

Singh et al. [44]
(2019)

Ex vivo,
porcine
livers

10 Sectioning sample and
measure ablation zone

2 min, 40 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: −13.4% T: 5.4% Used the experimental results of

Wu et al. [52]

Tehrani et al. [46]
(2010)

Ex vivo,
porcine
livers

56 Sectioning sample and
measure ablation zone

10 min, 50 and
60 W, 2450 MHz

and 80 W,
915 MHz

Longitudinal (L) and
transverse (T) RDD * L: 9%, T: 12% Used the experimental results of

Sun et al. [57]

Wang et al. [52]
(2021)

Ex vivo,
porcine

liver
11 Sectioning sample and

measure ablation zone
6 min, 60 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: 6.8%, T: −4.4%

Used a peristaltic pump to simulate blood
circulation and soft plastic tubes for

blood vessels

Wang et al. [53]
(2023)

54 ◦C isothermal
contour Ex vivo,

porcine
liver

5
Sectioning sample and
measure ablation zone

8 min, 50 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: 7.12%, T: 5.56%

Results with 30 mm spacing
between antennas

Arrhenius model Longitudinal (L) and
transverse (T) RDD * L: −4.98%, T: −13.21%

Wu et al. [55] (2013)
Ex vivo,
porcine
livers

10 Sectioning sample and
measure ablation zone

2 min, 40 W,
2450 MHz

Longitudinal (L) and
transverse (T) RDD * L: −2.0%, T: 4.2%

* Relative differences are results of the computational model compared to the experiments. Advancement = the distance from the antenna tip to the boundary of the ablated zone,
CT = Computed Tomography, DSC = dice similarity coefficient, MRT = Magnetic Resonance Thermometry, RDD = relative diameter deviation, RVD = relative volume deviation,
SAR = specific absorption rate.
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3.2.2. MWA In Vivo Validation

Table 4 presents an overview of the two articles that used in vivo validation in pa-
tients [48,56]. Tucci et al. modeled four different blood vessels and compared them to the
in vivo experiments of Amabile et al. [48,58]. They concluded that their model, including
terminal arteries, showed a good agreement with the ablation zones achieved in the clinical
study. Zhai et al. performed a study on nine patients [56]. Ablation simulation had an
RVD of ±7.0% compared to clinically obtained ablation volumes. However, the study has a
limited sample size without uniform image analysis.

Table 4. In vivo validation of computational models modeling microwave ablation.

Author
(Year) Model

In Vivo or Ex
Vivo

Validation

Number
of Experi-

ments
Ground Truth

Ablation
Settings (Time

of Ablation
and Power)

Outcome Mea-
sure/Metric Performance Validation

Remarks

Tucci et al.
[48] (2022)

Capillaries

In vivo,
patients 32

Segmentation
on 24 h

post-ablation
CT

5 and 10 min,
60 W,

2450 MHz

Transverse
RDD * +24% (5 min) +43% (10 min)

Used the ex-
perimental
results of
Amabile
et al. [58]

RVD * 31% (5 min), 93% (10 min)

Terminal
arteries

Transverse
RDD * −4% (5 min), +8% (10 min)

RVD * −32% (5 min), −8% (10 min)

Terminal
branches

Transverse
RDD *
RVD *

Transverse
RDD *
RVD *

−42% (5 min), −43% (10 min)

−83% (5 min), −84% (10 min)

Tertiary
branches

−18% (5 min), −13% (10 min)

−88% (5 min), −84% (10 min)

Zhai et al.
[56]

(2008)

In vivo,
patients 9

Segmentation
on 1–2 weeks
post-ablation

CT

Patient-
specific,

2450 MHz
RVD * ±7.0%

Article
contains

only small
details on

experiments.
Study type
unknown

* Relative differences are results of the computational model compared to the experiments. CT = Computed
Tomography, RDD = relative diameter deviation, RVD = relative volume deviation.

3.3. RFA Data Analysis

Nineteen articles presented computational models for RFA. Thirteen articles used
Pennes’ bioheat equation as a bioheat model [25,27,28,32,34,39–42,45,49–51], while one
article used the heat transfer equation [54], one the split volume bioheat equation [43], and
one article compared three different bioheat-models, i.e., Pennes’ bioheat equation, the
local thermal equilibrium equation, and the local thermal non-equilibrium equation [47].
Three articles by Audigier et al. used a combination of Pennes’ bioheat equation with
the Wulff–Klinger model [22–24]. As a cell death model, the Arrhenius thermal damage
model was used in eight articles, the three-state cell death equation in seven, and an
isothermal contour in three articles. Subramanian et al. used their own thermal damage
formula [45]. Thirteen articles included perfusion in their model, twelve articles included
blood vessels, six included water vaporization, and eight included temperature-dependent
tissue parameters. Nine articles created a CT-based anatomical model for their simulation.
Eight of them segmented the liver, tumor, and blood vessels, while Ooi et al. only derived
a liver contour from the CT scan [42]. Next to an anatomical model, Moche et al. used
dynamic CT measurements to derive perfusion values [41].

3.3.1. RFA Ex Vivo Validation

Table 5 contains the ex vivo validation of the RFA ablation zone models [27,28,32,34,
42,45,49,51,54]. All experiments were performed on animal livers, either bovine or porcine,
or phantoms. The experimental ablation zones were measured after tissue sample sections
along the probe axis. The ablation settings differed in all experiments. A visual overview
of the longitudinal and transverse RDD is given in Figure 4. Figure 5 contains a combined
overview of the MWA and RFA ex vivo experiments.
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Table 5. Ex vivo validation of computational models modeling radiofrequency ablation.

Author (Year) Model In Vivo or Ex Vivo
Validation

Number of
Experiments Ground Truth

Ablation Settings
(Time of Ablation

and Power)

Outcome
Measure/Metric Performance Validation Remarks

Chang et al. [27]
(2004)

Ex vivo, porcine
livers

2 Sectioning sample and placed
in 2,3,5-triphenyltetrazolium
chloride to color cell viability

15 min, 20 V
Longitudinal (L) and
transverse (T) RDD *

L: 0.0%, T: 0.0%
2 15 min, 25 V L: −16.7%, T: 20.0%
2 15 min, 30 V L: −4.5%, T: 0.0%

Chen et al. [28]
(2021)

single probe

Ex vivo, porcine
livers

5

Sectioning sample and measure
ablation zone

Longitudinal (L) and
transverse (T) RDD * L: −0.35%, T: 1.68%

Switching probe
(10 mm) 5 Longitudinal

midline (Lm),
longitudinal

probeline (Lp), and
transverse (T) RDD *

Lm: −1.38%, Lp:
−1.82%, T: −0.08%

Switching probe
(15 mm) 5

12 min

Lm: 0.47%, Lp:
0.05%, T: −0.87%

Switching probe
(20 mm) 5 Lm: 4.54%, Lp:

0.64%, T: −1.76%

Duan et al. [32]
(2016)

Ex vivo, porcine
livers 20 Sectioning sample and measure

ablation zone

5 min, temperature-
controlled
(105 ◦C)

Longitudinal (L) and
transverse (T) RDD

and relative area
deviation (A) *

L: 11.1%, T:10.9%,
A:1%

Fang et al. [34] (2022) Ex vivo, bovine
livers 3 Sectioning sample and measure

ablation zone

12 min, impedance-
controlled,
1800 mA

Transverse RDD * −2.83%

Used the
experimental results

of Goldberg et al.
[59]

Ooi et al. [42] (2019) Ex vivo, bovine
livers 3 Sectioning sample and measure

ablation zone

12 min, impedance-
controlled,
1800 mA

Transverse RDD * −20.9%

Used the
experimental results

of Goldberg et al.
[59]

Subramanian et al.
[45] (2015)

Ex vivo, bovine
livers 15

Segmentation on image of
flatbed scanner after sectioning

sample

500 KHz, 1–6 min,
31–34 V 60–80 W

Relative area
deviation * −2.63%

Optimized tissue
parameters based on

experiments

Vaidya et al. [49]
(2021) Ex vivo, phantom 1

Sectioning phantom, using
temperature-sensitive ink to

measure ablation zone

10 min, temperature-
controlled (103 ◦C),
max power of 35 W

Relative area
deviation * 17.03%

Used ink which
colors irreversibly
above threshold

T > 70 ◦C
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Table 5. Cont.

Author (Year) Model In Vivo or Ex Vivo
Validation

Number of
Experiments Ground Truth

Ablation Settings
(Time of Ablation

and Power)

Outcome
Measure/Metric Performance Validation Remarks

Wang et al. [51]
(2019)

Ex vivo, porcine
livers

3

Sectioning sample and measure
ablation zone

Temperature-
controlled (80 ◦C),

330 kHz

Longitudinal (L) and
transverse (T) RDD *

L: 7.7%, T: 12.8%

Used a peristaltic
pump to simulate
blood circulation

and soft plastic tubes
to simulate blood

vessels

3
temperature-

controlled (95 ◦C),
330 kHz

L: 3.9%, T: 21.5%

3
Temperature-

controlled (90 ◦C),
330 kHz

L: 0.4%, T: 11.8%

3
Temperature-

controlled (95 ◦C),
330 kHz

L: 0.3%, T: 8.1%

Welp et al. [54] (2006)

Vessel ∅ = 4 mm,
flow 25 mL/min

Ex vivo, porcine
livers 10

Sectioning sample and measure
ablation zone

12 min, impedance-
controlled,

25 W

Transverse RDD *

−5.7%

Used glass tubes to
simulate blood

vessels

Vessel ∅ = 4 mm,
flow 50 mL/min −2.4%

Vessel ∅ = 4 mm,
flow 75 mL/min −8.7%

Vessel ∅ = 6 mm,
flow 75 mL/min 1.9%

Vessel ∅ = 6 mm,
flow

150 mL/min
1.9%

Vessel ∅ = 6 mm,
flow

300 mL/min
1.9%

* Relative differences are results of the computational model compared to the experiments. CT = Computed Tomography, DSC = dice similarity coefficient, RDD = relative diameter
deviation, RVD = relative volume deviation.
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3.3.2. RFA In Vivo Validation

An overview of the ten articles on RFA ablation zone simulation using in vivo vali-
dation is given in Table 6. These consist of four in vivo animal experiments [24,39,43,47],
five retrospective clinical studies [22,23,25,40,50], and one prospective clinical study [41].
The prospective study of Moche et al. found a DSC of 0.62 ± 0.14 with a surface deviation
of 3.4 ± 1.7 mm [41]. They concluded that the real-time simulation of RFA-induced tissue
necrosis in the liver was fast (3.5 ± 1.9 min) and accurate enough for therapy planning.
Mariappan et al. used the same computational model in their retrospective study and
found similar results in 23 ablations, with a slightly lower surface deviation (2.50 mm
versus 3.4 mm) [40]. The simulation accuracy increased by using patient-specific CT-based
perfusion values. The results obtained by Audigier et al. indicated lower accuracy of their
simulation model compared to the previously mentioned studies [22–24]. They found a
DSC of 0.44 and a surface deviation of 5.3 ± 3.6 mm [24]. This difference in results might
be explained by the reconstruction of the ablation probe location. Audigier et al. did not
reconstruct the clinically used probe location but assumed the center of the tumor as the
probe location in their simulation, which introduces an inaccuracy in the measurements.
On the other hand, Moche et al. and Mariappan et al. reconstructed the probe location as
used in clinical practice by using image registration [40,41].
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Table 6. In vivo validation of computational models modeling radiofrequency ablation.

Author (Year) Model In Vivo or Ex Vivo
Validation

Number of
Experiments Ground Truth

Ablation Settings
(Time of Ablation

and Power)

Outcome
Measure/Metric Performance Validation Remarks

Audigier et al.
[22] (2013) In vivo, patients 5 patients,

7 ablations

Segmentation on
post-ablation CT

scan
Patient-specific Surface deviation 8.67 mm Retrospective study

Audigier et al.
[23] (2015) In vivo, patients 10 patients,

14 tumors

Segmentation on
post-ablation

CT scan
Patient-specific

DSC 0.418

Retrospective studySensitivity 66.94%

PPV 38.30%

Audigier et al.
[24] (2017)

In vivo, porcine
livers 5 swine, 12 ablations

Segmentation on
post-ablation

CT scan

6 min, temperature-
controlled (105 ◦C),
two iterations for

large tumors

Surface deviation 5.3 ± 3.6 mm

Surrogate tumors
implanted

DSC 0.44

Sensitivity 47%

PPV 53%

Audigier et al.
[25] (2022)

Biophysics-based
model

In vivo, patients 11 patients,
12 ablations

Segmentation on
post-ablation

CT scan
Patient-specific DSC, surface

deviation, and RVD

Best Retrospective study. Did
not express their results
numerical, but ranking
extracted out of graphs

Spherical model

Eikonal model

Hoffer et al. [39]
(2021)

Computational
model

In vivo, porcine
livers

2 swine, 6 ablations
Segmentation on

post-ablation
CT scan

Mean surface
deviation 1.1 mm

Max surface
deviation 5.2 mm

Manufacturer’s cart
Mean surface

deviation 2.5 mm

Max surface
deviation 7.8 mm

Mariappan et al.
[40] (2017)

Unknown CT
perfusion values

In vivo, patients

6 patients,
10 ablations Segmentation on

1-month
post-ablation

CT scan

Patient-specific,
temperature-

controlled

DSC 0.7286

Retrospective study

RVD 5.11%

Surface deviation 2.55 mm

Known CT perfusion
values

12 patients,
23 ablations

DSC 0.691

RVD 17.93%

Surface deviation 2.50 mm
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Table 6. Cont.

Author (Year) Model In Vivo or Ex Vivo
Validation

Number of
Experiments Ground Truth

Ablation Settings
(Time of Ablation

and Power)

Outcome
Measure/Metric Performance Validation Remarks

Moche et al. [41]
(2020)

In vivo, patients 46 patients,
51 ablations

Segmentation on
1-month

post-ablation
CT scan

Patient-specific,
temperature-

controlled

DSC 0.62 ± 0.14

Prospective study
Sensitivity 0.70 ± 0.21

PPV 0.66 ± 0.25

Surface deviation 3.4 ± 1.7 mm

Payne et al. [43]
(2011)

In vivo, porcine
livers 2 swine

Segmentation on
post-ablation CT

scan

Temperature-
controlled RVD 39.6%

Tucci et al. [47]
(2021)

Pennes
In vivo, porcine

livers 8 swine
Sectioning sample

and measure
ablation zone

12 min, 90 V,
500 KHz, impedance-

controlled
Transverse RDD *

−32.4%
Compared to

experiments of Goldberg
et al. [59]

LTE −7.57%

LTNE −7.57%

Voglreiter et al.
[50] (2018) In vivo, patients 21 patients

Segmentation on
post-ablation

CT scan
Patient-specific

DSC 0.7003 ± 0.0937

Retrospective study

RVD 13.77 ± 12.96%

Sensitivity 69.70 ± 10.94%

PPV 71.73 ± 12.00%

Surface deviation 2.44 ± 0.84 mm

* Relative differences are results of the computational model compared to the experiments. CT = Computed Tomography, DSC = dice similarity coefficient, PPV = positive predictive
value, RDD = relative diameter deviation, RVD = relative volume deviation.
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Two articles compared their computational model to more simplistic models [25,39].
Hoffer et al. demonstrated an improved accuracy for computational models compared
to the manufacturers’ chart, with mean surface deviations of 1.1 mm and 2.5 mm, respec-
tively [39]. Audigier et al. also found that patient-specific models resulted in higher DSC
and surface deviations compared to simplistic ellipse models [25].

4. Discussion

A wide variety of computational modeling and validation methods was found in
this systematic review, making a full-fledged comparison between different models for
ablation simulation complex. The studies included in this review used different bioheat
equations, parameters, validation methods, and outcome measures or metrics, making it
hard to draw conclusions on which computational model performs best and could possibly
be implemented in clinical practice.

Considerable differences were identified in the RFA and MWA models, which can
be explained by the different heating mechanisms of the two techniques. Thirteen of the
sixteen (81%) MWA models included the effect of water vaporization and temperature-
dependent parameters, compared to six of the nineteen RFA models (32%). The temperature-
dependency of dielectric parameters (electrical conductivity and permittivity) and thermal
conductivity is two-folded. First, tissue parameters change as a result of protein denatura-
tion at temperatures above 60 ◦C [60–62]. In addition, water vaporization has an isolating
effect. This leads to a decrease in conductivity and permittivity above 100 ◦C in RFA as well
as in MWA [60–62]. However, RFA power is usually temperature- or impedance-controlled
to avoid vaporization and gas formation, whereas tissue temperatures in MWA frequently
exceed 100 ◦C. Therefore, temperature-dependent parameters, as well as water vaporiza-
tion, have a greater potential influence on MWA. This could explain the discrepancy in
incorporating these parameters in MWA models and RFA models. Moreover, blood vessels
are included more frequently in RFA models compared to MWA models (12 out of 19 (63%)
and 2 out of 16 (12.5%), respectively). Since the “heat-sink effect” caused by blood vessels
near the ablation region is considered to have a greater impact on RFA, this finding seems
logical [63,64]. When designing an ablation simulation model, these differences in the
heating mechanism should be taken into consideration.

The various models applied different bioheat equations, which is the basis for the
simulation and therefore affects the simulation accuracy. The majority of the models are
purely based on Pennes’ bioheat equation due to its simplicity and feasibility. Nevertheless,
this equation has an important limitation. The equation only considers microvascular
perfusion, assuming a constant blood temperature of 37 ◦C without flow directionality.
However, the blood temperature of vessels within and surrounding the ablation zone
will increase during ablation [42]. Other bioheat equations that incorporate changes in
liver perfusion overcome this limitation while maintaining or even increasing model
performances [47,48]. In the liver, which is a well-perfused organ with variations in
perfusion due to underlying liver diseases, these more advanced bioheat equations are
likely to be more accurate.

In addition to the bioheat equation, there are numerous other model design choices
affecting the simulation accuracy. This systematic review does not present all possible
characteristics of the models. For example, it does not incorporate tissue contraction or
two-compartment models. The latter models the tumor and liver as separate compartments,
each with its own tissue-specific parameters. This limitation emphasizes the complexity of
ablation zone prediction and the number of parameters potentially affecting the ablation
zone. Theoretically, the highest accuracy could be achieved by the inclusion of all model
characteristics and parameters, but there is a trade-off between accuracy on one hand and
complexity and required computational resources on the other. With the recent advance-
ment in artificial intelligence and machine learning, the development of more complex and
accurate models becomes feasible.
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The chosen input parameter values required for the computational model also con-
tribute to the accuracy achieved. Some input parameters, e.g., thermal conductivity, electri-
cal conductivity, and density, are dependent on tissue composition. They differ between
tumor and liver parenchyma as well as per patient as a result of underlying liver disease, i.e.,
cirrhosis, hepatic steatosis, and previous treatments like systemic treatment or transarterial
radioembolization or chemoembolization.

Several studies concluded that thermal conductivity significantly decreases with an
increasing fat content [29,65–67]. According to the computational models of Deshazer et al.
and Servin et al., a greater fat content in the liver leads to larger ablation zone volumes in
MWA [66,67]. Due to the lower conductivity of surrounding liver parenchyma, heat loss
to peripheral parenchyma is limited since low thermally conducting tissue retains high
temperatures. This leads to larger ablation zones in MWA. RFA relies more on indirect
heating, i.e., heat conductivity, compared to direct heating in MWA. Therefore, smaller
ablation zones are observed in livers with increasing fat content. Diminished conductivity of
the parenchyma results in higher temperatures at the site of the tumor edge, while the liver
parenchyma surrounding the tumor has a lower temperate increase [65]. Hypothetically,
this “oven-effect” would lead to higher ablation temperatures within the tumor while
increasing the risk of narrow ablative margins in RFA. In vivo experiments are needed to
test these hypotheses.

In contrast to the widely studied effect of hepatic steatosis in thermal liver ablation,
limited research has been conducted on the relation between ablation volumes and cirrhosis
or fibrosis. This might be related to the complexity of parenchymal changes due to cirrhosis
and fibrosis. Deshazer et al. simulated the difference in perfusion between normal liver
tissue and cirrhotic liver tissue and found larger ablation zones in cirrhotic livers compared
to normal liver tissue [67]. Further studies are needed to investigate heat propagation and
conductivity in cirrhotic and fibrotic liver tissue to be able to include these as patient-specific
input parameters in liver ablation simulation.

The simulation accuracy is determined by model validation. The included studies
varied in validation methods using in or ex vivo experiments with different outcome
measures or metrics. Although the bottleneck in current practice is that the manufacturer’s
prediction is mostly based on ex vivo experiments, 23 out of 38 included models are still
validated with ex vivo experiments [11]. Moreover, in most studies, the axis length and total
volume of the simulated and actual ablation are compared without taking into account the
shape and relative position. These variations and limitations in the model validation make
it difficult to compare the different simulation models and to identify model parameters
that have the largest impact on model accuracy.

To decide on the optimal balance between complexity, accuracy, and computational
time, a comparative clinical study should be conducted. This could be a retrospective or
prospective study in which the clinically obtained ablation zone is compared to different
simulations. This validation necessitates a probe position scan to simulate the ablation at the
corresponding probe position, as well as a post-ablation CT scan to segment the clinically
obtained ablation zone. To compare the shape and position of the simulated and clinically
obtained ablation zone, image registration of the post-ablation and probe position CT scan
is required. Variations in liver shape and position should be minimized by identical patient
positioning and breathing phase in both scans, which can be controlled with techniques
such as high-frequency jet ventilation [68]. Nevertheless, image registration remains a
challenge due to ablation-induced deformations of the liver. Therefore, registration might
introduce inaccuracies to the measurements. After image registration, volumetric outcome
metrics, such as the DSC and surface deviations, could be used to compare the overlap
of the simulated and clinically obtained ablation zones. These outcome metrics are more
expressive in clinical practice compared to size-based metrics since the ablation zone should
cover the tumor, including an ablative margin of at least 5 mm. Therefore, the simulation
should not only be an accurate prediction of size and volume but also of shape and position
relative to the ablation probe. In addition, the maximum surface deviation should be
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computed since it is indicative of the boundary discrepancies as well as the negative
maximum surface deviation and the false positive value (Appendix C, Figure A2c,g), which
might be a good measure for the technical success of the ablation. The different models
could be compared to determine which combination of included parameters and models
results in the most accurate prediction.

The clinical application of ablation zone simulation requires reliable models. Three
of the included articles originate from the ClinicIMPPACT project, which aims to bring
a planning and simulation tool for RFA into the clinical practice [40,41,50,69]. In a clini-
cal study, Moche et al. evaluated this application prospectively and concluded that the
model performs sufficiently for clinical implementation with a mean surface deviation of
3.4 mm [41]. Nevertheless, it is generally recommended to aim for an ablative margin of
at least 5 mm, but the exact relationship between ablative margins and local recurrence
is still unknown [70]. Therefore, it is questionable if a mean surface deviation of 3.4 mm
provides sufficient accuracy. Furthermore, to conclude on the accuracy needed for clinical
implementation of computational models, the reliability of the current clinical practice,
i.e., the manufacturer’s prediction, should be known. Hence, the match between the
manufacturer’s prediction and the clinically obtained ablation zone should be quantified.
Of interest is a study by Hoffer et al. They compared their computational model with
the manufacturer’s chart and performed in vivo ablations in six swine and found their
computational model to have higher accuracy [39]. However, clinical studies with a large
patient population are still lacking.

Percutaneous thermal ablation techniques have evolved over the most recent decades
with new innovations. One advancement is the use of treatment planning software com-
bined with probe navigation using either stereotactic thermal ablation or robotic probe
positioning to increase thermal ablation efficacy. However, this planning software still
relies on the manufacturer’s predicted ablation zones, lacking patient-specific parameters.
The full potential of this innovation can only be exploited when reliable patient-specific
ablation zone predictions are available [10]. The use of image-based two-compartment
models may be an important step towards a more accurate, patient-specific model. The
comparative study of Audigier et al. has indicated that patient-specific modeling results
in more accurate predictions compared to a spherical model [25]. Moreover, Mariappan
et al. concluded that the simulation yields better accuracy when personalized perfu-
sion values are given as input in the simulation model [40]. These values can be ex-
tracted from CT images, which also enables two-compartment modeling that incorporates
the liver vasculature. These results emphasize the potential of computational modeling
for patient-specific ablation planning. However, more insight into parameter personal-
ization is required to enable patient-specific ablation planning and implement this into
clinical practice.

5. Conclusions

Computational models simulating ablation zones in MWA and RFA show considerable
heterogeneity in model type and validation methods. It is currently unknown which model
is most accurate and best suitable for use in clinical practice. However, several studies have
demonstrated a good correlation between simulated ablation zones and in vivo ablations.
More research on patient-specific parameters is needed to develop more accurate models
that can be used for individualized treatment planning.
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Appendix A

String PubMed
[“Ablation Techniques”[Mesh] OR “Ablation Technique*”[tw] OR “Thermal abla-

tion”[tw] OR “Radiofrequency ablation”[tw] OR “Microwave ablation”[tw] OR “abla-
tion”[tw]]

AND
[“Liver Neoplasms”[Mesh] OR “Carcinoma, Hepatocellular”[Mesh] OR “Liver”[Mesh]

OR Hepatocellular carcinoma*[tw] OR “hcc”[tw] OR liver tum*[tw]]
AND
[“Mathematical Computing”[Mesh] OR “Computer Simulation”[Mesh] OR “Thermal

Conductivity”[Mesh] OR “Electric Conductivity”[Mesh] OR “Finite Element Analysis”[Mesh]
OR predictive model*[tw] OR prediction model*[tw] OR computational model*[tw] OR
mathematical model*[tw] OR “simulation”[tw]]

String Web of Science
ALL = (“Ablation Techniques” OR “Ablation Technique*” OR “Thermal ablation” OR

“Radiofrequency ablation” OR “Microwave ablation” OR “ablation”)
AND
ALL = (“Liver Neoplasms” OR “Carcinoma, Hepatocellular” OR “Liver” OR “Hepato-

cellular carcinoma*” OR “hcc” OR “liver tum*”)
AND
ALL = (“Mathematical Computing” OR “Computer Simulation” OR “Thermal Conduc-

tivity” OR “Electric Conductivity” OR “Finite Element Analysis” OR “predictive model*”
OR “prediction model*” OR “computational model*” OR “mathematical model*” OR
“simulation”)

Appendix B

Bioheat models
Pennes’ bioheat equation

pc δT
δt = ∇(k∇T) + QExtern −QPer f ussion + QMetabolism

pc δT
δt = ∇(k∇T) + QExtern − pbcbwb(T − Tb)

Pennes’ bioheat equation is widely used to govern the temperature distribution in
blood-perfused tissues for thermal therapy. The equation can be divided into four terms,
the conduction term (∇(k∇T)), QExtern, QMetabolsim, and QPer f ussion. QExtern is the heat
generated by the external source, in this case, the RFA or MWA source; QPer f ussion is the
heat loss caused by the capillary vasculature; and QMetabolism is the heat generated by tissue
metabolism. This term is negligible due to its minimal impact. The transient heat transfer
equation is a simplified version of Pennes’ bioheat equation without the QPer f ussion term.

Wulff-Klinger (WK) model

(1− ε)pc
δT
δt

= (1− ε)∇(k∇T) + (1− ε)QExtern − (1− ε)pbcbub(T − Tb)

The Wulff–Klinger model is a derivation from Pennes’ bioheat equation, but instead of
modeling the heat loss due to capillary vasculature, it models the heat loss around vessels.
The equation assumes an equilibrium between tissue and blood temperatures.

Local Thermal Non-Equilibrium (LTNE) equation

(1− ε)(pc)t
δTt

δt
= (1− ε)∇(kt∇Tt)− hca(Tt − Tb) + (1− ε)QExtern + βpbcbwb(Tb − Tt)
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ε(pc)b

(
δTb
δt

+ βu∇Tb

)
= ε∇(kb∇Tb) + hca(Tt − Tb) + εQExtern + βpbcbwb(Tt − Tb)

Local Thermal Equilibrium (LTE) equation

(1− ε)(pc)t + ε(pc)b
δT
δt

+ ε(pc)bβµ∇T = QExtern[ (1− ε)kt + εkb]∇2T

LTE and LTNE are models that more extensively model the effect of blood vessels and
perfusion in ablation. The LTNE assumes two states, the tissue state and blood state, and
therefore consists of two equations. The LTE assumes that tissue and blood have the same
temperature and therefore combines the two functions.

Table A1. Parameters appearing in the tissue bioheat models with their unit and description. In case
parameters might be temperature-dependent, this is denoted in the last column.

Parameter Unit Description Temperature-
Dependent?

T K Tissue temperature
t s Time
ρ kg

/
m3 Tissue density

c J
/

kg K Specific heat Yes

k W
/

m K Thermal conductivity Yes

ωb 1
/

s Blood perfusion rate Yes

Tb K Temperature of blood entering the tissue
ε Blood volume fraction

ub m
/

s Blood flow velocity

hc W/Km2 Interfacial heat transfer coefficient

a 1
/

m
Volumetric heat transfer area between

tissue and blood

β
Coefficient (0 or 1) depending on the

thermal damage function
The subscript “b” represents the characteristics of blood, while subscript “t” represents the characteristics
of tissue.

The external generated heat (Q_Extern)
Equations used to determine the electromagnetic energy deposition.
RFA

∇[σ∇V] = 0

QExtern = σ|∇V|2

MWA
Electromagnetic wave equation.(

∇2 + ω2µεc

)⇀
E = 0

QExtern =
1
2

σ‖E‖2

Helmholtz harmonic wave equation.

∇µ−1
r (∇E)− k2

0

(
εr −

jσ
ωε0

)
E = 0
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QExtern =
1
2

σ‖E‖2

Table A2. Parameters appearing in external heat equations with their unit and description. In case
parameters might be temperature-dependent, this is denoted in the last column.

Parameter Unit Description Temperature-
Dependent?

V V Electric potential
E V

/
m Electrical field strength

σ S
/

m Electrical conductivity Yes

ω rad
/

s Angular frequency of the electromagnetic wave

µ H
/

m Permeability

εc Complex permittivity
εr Relative dielectric constant of biological tissue Yes
ε0 Relative dielectric constant of vacuum
k0 Free space wave number

Blood flow models
Darcy’s law
Used to determine the flow velocity in capillaries and blood vessels for more extensive

perfusion modeling and vascular-mediated cooling.
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ρb
δub
δt

+ ρbub·∇ub = −∇P + µ∇2ub

Newton formula
Describes the heat transfer between blood vessels and tissue. Under constant blood

flow conditions, the Newton formula is described as

hb =
NuDkb

D

Table A3. Parameters appearing in blood flow models with their unit and description.

Parameter Unit Description

ub m
/

s Blood flow velocity

κ s
/

m permeability

µ kg
/

m·s Blood viscosity

ε Blood volume fraction
ρb Blood density
P H

/
m Pressure

hb Heat transfer coefficient
NuD Local Nusselt number

kb W/mK Blood vessel thermal conductivity
D M Blood vessel diameter
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Cell death models
Arrhenius thermal damage model

Ω(t) = ln
(

c(0)
c(t)

)
= A

∫
exp
(
− ∆E

RT(t)

)
dt

Ω(t) = degree o f tissue injury;
c(t) = concentration o f living cells;
R = universal gas constant [J/(mol K)];
A = Frequency f actor f or the kinetic expression

[
1
s

]
;

∆E = activation energy f or the irreversible damage reation
[

J
mol

]
;

T = tissue temperature inside computational domain [K].
The Arrhenius thermal damage model is used to determine the damaged tissue, and

hence the ablation volume. Ω = 1 corresponds to a 63% probability of cell death and
Ω = 4.6 corresponds to a 99% probability of cell death.

Three-state cell necrosis model

A
k f (T)→ ←

kb
V

k f (T)→ D

k f (T) = k f e
T
Tk (1− A);

A = concentration o f cells alive;
V = concentration o f cells in vulnerable state;
D = concentration o f cells dead;
k f = cell death rate constant;
kb = cell recovery rate constant.
The three-state cell necrosis model assumes three states of the cells in the ablation

region, either alive, vulnerable, or dead. It is possible to recover from the vulnerable state
and return to the alive state. The sum of the three concentrations equals one.

Appendix C

Size-based outcome metrics
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Figure A1. Schematic illustration of the size-based outcome metrics; (a) Outline of the experimen-
tally created ablation zone. The transverse and longitudinal diameter are represented with the dot-
ted black lines; (b) Outline of the simulated ablation zone. The transverse and longitudinal diameter 
are represented with the dotted black lines; (c); Illustration of the advancement. The yellow line 
represents the ablation probe. In this example, the experimentally obtained advancement (blue line) 
is smaller compared to the simulated advancement (dotted black line). Note: Illustration is in 2D, 
while outcome metrics might be based on 3D measurements. 

The RDD is the most frequently used size-based outcome measure. It represents the 
relative differences between the diameters of the computational model’s simulated abla-
tion zone and the diameters of the ablation zone created with experiments. Figure A1a,b 
represents these diameters. A positive RDD means the simulated diameters are larger 
compared to the diameters obtained in the experiments. 

Figure A1. Schematic illustration of the size-based outcome metrics; (a) Outline of the experimentally
created ablation zone. The transverse and longitudinal diameter are represented with the dotted
black lines; (b) Outline of the simulated ablation zone. The transverse and longitudinal diameter
are represented with the dotted black lines; (c); Illustration of the advancement. The yellow line
represents the ablation probe. In this example, the experimentally obtained advancement (blue line)
is smaller compared to the simulated advancement (dotted black line). Note: Illustration is in 2D,
while outcome metrics might be based on 3D measurements.

The RDD is the most frequently used size-based outcome measure. It represents the
relative differences between the diameters of the computational model’s simulated ablation
zone and the diameters of the ablation zone created with experiments. Figure A1a,b
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represents these diameters. A positive RDD means the simulated diameters are larger
compared to the diameters obtained in the experiments.

The RVD represents the difference in volume of the simulated and experimentally
obtained ablation zone. A positive RVD means the simulated ablation zone is larger
compared to the created ablation zone in the experiments and vice versa.

Figure A1c represents the advancement, the distance between the probe tip and the
anterior boundary of the ablation zone. The black line represents the advancement of
the created ablation zone, which is larger compared to the advancement of the simulated
ablation zone (blue line).

Shape-based outcome metrics
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Figure A2. Schematic illustration of the shape-based outcome metrics; (a–c) Representation of surface-
based outcome metrics; (a) average surface deviation, (b) maximum surface deviation, (c) maximum
negative surface deviation. (d–g) Representation of overlap-based outcome metrics; (d) dice similarity
coefficient (DSC), (e) sensitivity, (f) positive predictive value (PPV), and (g) negative predictive value.
Note: visualization is in 2D, while all outcome metrics were based on 3D measurements.

Figure A2a–c represents shape-based boundary outcome metrics. Figure A2a presents
a schematic illustration of the surface deviation. The surface deviation is the average
Hausdorff distance between the simulated and experimentally created ablation zone sur-
faces. It is a frequently used outcome measure for boundary error. The maximum surface
deviation is given in Figure A2b, while the arrow in Figure A2c is the maximum negative
surface deviation.

Figure A2d–g represent shape-based overlap outcome metrics. Figure A2d illustrates
the computation of the DSC: two times the volume of overlap (shaded blue area) of the
simulated and created ablation zone divided by the sum of both volumes. The sensitivity,
Figure A2e, is the volume of overlap divided by the experimentally created ablation zone,
and the positive predictive value (PPV), Figure A2f, is the volume of overlap divided by
the simulated ablation zone. Figure A2g illustrates the false positive value. It represents
the undertreated ablation volume (shaded blue areas), i.e., volume which was simulated
as ablated, but in the experiments was not, relative to the total simulated volume. These
outcome metrics are all volumetric measurements.
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