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Simple Summary: Adoptive immunotherapy has emerged as an effective alternative of mounting
impact to the current standard of care in cancer, viral infections, and recently, autoimmunity. Key
players in maintaining immune homeostasis are the regulatory T cells (Tregs), a major immunosup-
pressive cell subset and, therefore, an attractive candidate for the cellular therapy of autoimmune
disorders or allo-responses in the transplantation setting. Notwithstanding the safety and tolerability
of Tregs in early trials, their efficacy remains rather ill-defined, being limited by poor persistence and
a lack of specificity, thus hindering widespread clinical application. However, the better biological
understanding of in vivo Treg performance and the recent advances in genetic engineering have
led to the next-generation Treg immunotherapy era, enabling the introduction of new features in
Tregs and generating more potent and targeted Treg cellular therapies. In this review, we discuss the
current achievements and existing challenges towards clinically translating Tregs into a living drug
therapy for a variety of inflammatory conditions.

Abstract: Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibit-
ing immune responses to self-antigens and preventing the excessive activation of the immune system.
Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells
can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune re-
sponses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for
reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation
to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability
of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within
the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo
plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of
Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions,
its efficacy has remained questionable. Leveraging the smart tools and platforms that have been
successfully developed for primary T cell engineering in cancer, the field has now shifted towards
“next-generation” adoptive Treg immunotherapy, where genetically modified Treg products with
improved characteristics are being generated, as regards antigen specificity, function, persistence, and
immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress
beyond it, while critically evaluating the hurdles and opportunities towards the materialization of
Tregs as a living drug therapy for various inflammation states and the broad clinical translation of
Treg therapeutics.
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1. Introduction

Regulatory T cells (Tregs), consist of a small, albeit critical for maintaining immune
equilibrium, fraction of T cells, that prevent or dampen immune responses to self-antigens,
thus preserving self-tolerance while suppressing excessive immune activation to non-self-
antigens ([1–3]). According to the recommendations on Treg cell nomenclature [4], Tregs
can be classified based on their origin of differentiation as (i) emerging de novo in the
thymus, thus bearing a T cell receptor (TCR) with specificity towards self-antigens [thymus-
derived Tregs [5], tTregs, previously called natural Tregs (nTregs)]; (ii) differentiating
in the periphery, therefore having a non-self-antigen-specific TCR [peripherally derived
Tregs, pTregs, previously known as induced or adaptive Tregs (iTregs or aTregs)]; and
(iii) being generated ex vivo (in vitro-induced Tregs, iTregs) and clearly distinguished
from the in vivo-generated Tregs. Despite their heterogeneity, there is a lack of specific
markers distinguishing human tTregs from pTregs. The classically defined Tregs are
CD4+ cells, constitutively expressing high levels of CD25 (interleukin-2 receptor alpha
chain, IL-2Rα) and the transcription factor forkhead box P3 (Foxp3). These markers are
expressed by the majority of tTregs and also a subpopulation of pTregs [6]. Two additional
Foxp3- pTreg subsets, T-helper 3 (Th3) and type-1 Treg (Tr1), the suppressive functions of
which rely on transcription growth factor beta (TGF-β) and interleukin-10 (IL-10) secretion,
respectively, have also been well-described [7,8]. To date, there is also convincing, albeit
substantially less than for CD4+ Tregs, evidence for the existence of CD8+ Tregs with
properties similar to their CD4+ counterparts [9]. Table 1 outlines the main extracellular
markers and transcription factors expressed by various Treg subtypes, along with their
respective mechanism of immunosuppressive action.

Tregs reshape immune responses with precision, executing their regulatory function in
a sophisticated and tailored manner as opposed to the conventional, general immunosup-
pressive approaches. This precise immune regulation, particularly in contexts like autoim-
munity and transplantation is of highest importance. Strategies boosting polyclonal Treg
numbers and function in vivo by the administration of Treg-promoting proteins or pharma-
cological agents such as interleukin-2 (IL-2) [10–12], anti-IL-2 complexes [13], intravenous
immunoglobulin alone or in combination with rapamycin [14–17], antibody-mediated
agonistic stimulation of tumor necrosis factor superfamily receptor 25 (TNFRSF25), and
cytokine-targeted antibodies, which modify the pro-inflammatory environment rescuing
Treg function [18–22], have enhanced the in vivo tolerance in preclinical studies and early
clinical trials.

Adoptive immunotherapy with Tregs, which includes the isolation and ex vivo ex-
pansion of autologous Tregs, has emerged as an attractive therapeutic option to restore the
immune balance in autoimmunity and transplantation. Multiple studies using the adoptive
transfer of ex vivo-expanded polyclonal Tregs have demonstrated significant potential for
inducing tolerance and preventing graft rejection following solid organ transplantation [23],
as well as treating autoimmune-mediated diseases, including type 1 diabetes (T1D) [24],
rheumatoid arthritis [25], multiple sclerosis [26], and systemic lupus erythematosus (SLE),
or graft-versus-host disease (GvHD) in the allogeneic hematopoietic cell transplantation
setting, and recently, coronavirus disease 2019 (COVID-19) [27–29]. However, increasing ev-
idence suggests that Tregs are functionally impaired in patients with autoimmune diseases
and transplant recipients, due to the instability of Foxp3 expression, impaired suppressive
function, decreased migratory capacity, and increased apoptosis [30–32]. The early results
of the first clinical trials, although promising, have questioned the efficacy of Tregs, as only
modest clinical responses were achieved. In this review, we focus on the obstacles limiting
the clinical utility of Treg adoptive immunotherapy in the context of autoimmunity and



Cancers 2023, 15, 5877 3 of 33

transplantation and discuss strategies to overcome these impediments and improve the
outcomes with Treg cell therapy (Table 2).

Table 1. Extracellular markers, transcription factors, and mechanisms of actions of various Treg
subtypes.

Treg Subset Origin Markers Transcription
Factors

Suppressive
Mechanism References

tTregs
Generating in the

thymus

CD4+, CD25hi,
CD27lo, CTLA-4+,
LAG-3+, TIGIT+,
TIM-3+, PD-1+

FOXP3pos

Cell-contact-
dependent

immunosuppres-
sion via receptors
like CTLA-4 and

PD-1

[33]

pTregs

Differentiating
from peripheral

naive CD4+ T cells

CD4+, CD25hi,
CD27lo, CTLA-4+,
LAG-3+, TIGIT+,
Tim-3+, PD-1+

FOXP3pos

Inhibitory function
via soluble factors

such as TGF-β1
and IL-10

[33]

Tr1 Tregs

Differentiating
from peripheral

naive CD4+ T cells

CD4+, CD25,
CD49b+, LAG-3+

[3]

Tbet, Blimp-1,
FOXP3neg [1]

Inhibitory function
via IL-10

production
[34,35]

Th3 Tregs

Differentiating
from peripheral

naive CD4+ T cells

CD4+, CD25+,
CD69+, LAP+ TGF-β, FOXP3neg

Inhibitory function
via TGF-β
production

[36]

CD8+ Tregs

Differentiating
from peripheral

naive CD8+ T cells

CD8+, CD25+,
CD122+, CD49d+

FOXP3pos, Eomes,
Helios, TGF-β

TGF-dependent
control of Helios
and homeostatic
cytokine IL-15 [4]

[37,38]

tTregs: thymus-derived Tregs, pTregs: peripherally derived Tregs, Tr1 Tregs: Type 1 Tregs, Th3 Tregs: T helper T
cells, CTLA-4: Cytotoxic T-lymphocyte-associated protein 4, LAG-3: Lymphocyte-activation gene 3, TIGIT: T-cell
immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains, TIM3:
T-cell immunoglobulin and mucin domain-containing protein 3, PD-1: Programmed cell death protein 1, FOXP3:
Forkhead box P3, TGF-β: Transforming Growth Factor β 1, IL-10: Interleukin-10, Tbet: T-box expressed in T
cells, Blimp-1: B lymphocyte-induced maturation protein 1, LAP: Latency-associated peptide positive, Eomes:
Eomesodermin, IL-15: Interleukin-15.
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Table 2. Clinical trials of adoptive immunotherapy with Tregs.

Cell Product Source Disease Treg Manufacturing Study Phase Patients Safety Efficacy Trial ID References

Tregs for autoimmune diseases

Polyclonal Tregs Autologous T1D Isolation/enrichment
and ex vivo expansion I 12 No AEs 8/12 clinical remission ISRCTN06128462 Marek-Trzonkowska

et al., 2014 [39]

Polyclonal Tregs Autologous T1D Isolation/enrichment
and ex vivo expansion I 14

Well-tolerated. No cell
therapy-related
high-grade AEs

Not powered to detect
improvement in

metabolic function
NCT01210664 Bluestone et al., 2015

[24]

Polyclonal Tregs Autologous T1D Ex vivo expansion
II, randomized

placebo-controlled
double blind

110 Well-tolerated

No improvement in
the preservation of
C-peptide levels vs.

placebo

NCT02691247 Caladrius Biosciences,
2019 [40]

Polyclonal Tregs UCB T1D Isolation/enrichment
and ex vivo expansion

I/II, randomized,
parallel assignment,

open label
Recruiting NCT02932826

Combinational:
polyclonal Tregs +

low-dose IL-2
Autologous T1D Isolation/enrichment

and ex vivo expansion I 7

Off-target effect of
low-dose IL-2

(dramatic reduction in
C-peptide production
and potential shift of
the immune balance

toward activation
rather than tolerance)—

terminated

No preservation or
improvement of

C-peptide production
NCT02772679 Dong et al., 2021 [41]

Combinational:
polyclonal Tregs +

anti-CD20
Autologous T1D Isolation/enrichment

and ex vivo expansion

I/II, randomized,
three-arm, open-label,

single-blinded

36 paediatric (Tregs
only n = 13, Tregs +

rituximab n = 12,
control n = 11)

AEs in 80% of pts
(combined group and

Tregs only group).
AEs, such as infections,

needed special
surveillance

Tregs+anti-CD20 were
superior than Tregs in

controlling
recent-onset T1DM

regarding C-peptide
levels and remission

TregVAC2.0; EudraCT:
2014-004319-35

Zieliński et al., 2022
[42]

Combinational:
polyclonal Tregs +

Liraglutide
UCB T1D Isolation/enrichment

and ex vivo expansion

I/II, randomized,
parallel assignment,

open label
Recruiting NCT03011021

Polyclonal Tregs Autologous MS

Tregs for iv:
isolation/enrichment
and ex vivo expansion

Tregs for IT:
isolation/enrichment

1b/2a (randomized to
iv or IT Treg

administration)
14 (iv n = 11, IT n = 3) No severe AEs

5/11 relapses
(iv-treated), 0/3

relapses (IT-treated).
The statistical results

may be underpowered
due to the low number

of patients

EudraCT
2014–004320-22

Chwojnick et al., 2021
[43]

Polyclonal Tregs Autologous Autoimmune hepatitis Isolation/enrichment
and ex vivo expansion I/II Unknown status NCT02704338

Polyclonal Tregs Autologous Active cutaneous
lupus

Isolation/enrichment
and ex vivo expansion I 1

Terminated due to
participant

recruitment feasibility
Stable clinical status NCT02428309 Dall’Era et al., 2019

[28]

Polyclonal Tregs Autologous Active Pemphigus Isolation/enrichment
and ex vivo expansion I 5

Terminated due to recruitment issues and the
impact of the coronavirus infectious disease 19

(COVID-19) pandemic
NCT03239470
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Table 2. Cont.

Cell Product Source Disease Treg Manufacturing Study Phase Patients Safety Efficacy Trial ID References

Ag-specific,
ovalbumin-specific

type 1 Tregs
(ova-Tregs)

Autologous Refractory Crohn’s
disease

Isolation/enrichment
and ex vivo expansion I/IIa 29 enrolled, 20 treated

Well-tolerated, good
safety profile for this

small patient
cohort—significant

AEs primarily related
to the gastrointestinal

system and the
underlying CD

8/20 (40%) total
clinical improvement
and 6/8 (75%) clinical

response in the
low-dose group

(reducing
dose-dependent

efficacy)

NCT02327221 Desreumaux et al.,
2012 [44]

Polyclonal Tregs Autologous Crohn’s disease Isolation/enrichment
and ex vivo expansion I Recruiting NCT03185000

Tregs for solid organ transplantation

Donor-alloantigen-
specific Tregs Autologous Liver transplantation Ex vivo expansion I/IIa 10 Good safety profile

10/10 normal graft
function and histology.

7/10 successful
cessation of

immunosuppressive
drugs. 3/10 required

conventional low-dose
immunotherapy

n/a Todo et al., 2016 [45]

Donor-alloantigen-
specific Tregs Autologous Liver transplantation Ex vivo expansion I 15 Terminated as it could not be completed within

the grant timeline

NCT02188719
(darTregs) in Liver

Transplantation
(deLTa)

Donor-alloantigen-
specific Tregs Autologous Liver transplantation Isolation/enrichment

and ex vivo expansion I Unknown status NCT01624077

Donor-alloantigen-
specific Tregs Autologous Liver transplantation Isolation/enrichment

and ex vivo expansion I/II 15 Not sufficiently powered to assess safety or
efficacy (only n = 5 finally received Tregs)

NCT02474199
(ARTEMIS) Tang Q et al., 2022 [46]

Polyclonal Tregs Autologous Liver transplantation Ex vivo expansion I/II
9 (3 received 106

Tregs/kg, 6 received
4.5 × 106 Tregs/kg)

Good safety profile

6/6 of the
high-dose-treated

demonstrated reduced
donor-specific T cell

responses

NCT02166177 (ThRIL) Sánchez-Fueyo et al.,
2020 [47]

Donor-alloantigen-
specific Tregs Autologous Liver transplantation Isolation/enrichment

and ex vivo expansion I/II Active, not recruiting NCT03577431(ITN073ST)

HLA-A∗02-CAR Tregs Autologous Liver transplantation Ex vivo expansion and
genetic engineering I/II Recruiting NCT05234190

(LIBERATE)

HLA-A∗02-CAR Tregs Autologous Kidney
transplantation

Ex vivo expansion and
genetic engineering I/II Recruiting NCT04817774

(Steadfast) Schreeb et al., 2022 [48]

Polyclonal Tregs Autologous Kidney
transplantation

Isolation/enrichment
and ex vivo expansion I 3 Well-tolerated 2/3 improvement in

follow-up biopsies
NCT02088931 (TASKp

pilot trial)
Chandran et al., 2017

[49]

Polyclonal Tregs Autologous Kidney
transplantation Ex vivo expansion I 9 Good safety profile All pts survived for at

least 2 years
NCT02145325 (TRACT

trial)
Mathew et al., 2018

[50]

Polyclonal Tregs Autologous Kidney
transplantation

Isolation/enrichment
and ex vivo expansion n/a Recruiting NCT03284242

Combinational:
polyclonal Tregs+

donor bone marrow
cells + Tocilizumab

Autologous Kidney
transplantation

Isolation/enrichment
and ex vivo expansion I/IIa Active, not recruiting NCT03867617

(Trex001)
Oberbauer et al., 2021

[51]
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Table 2. Cont.

Cell Product Source Disease Treg Manufacturing Study Phase Patients Safety Efficacy Trial ID References

Polyclonal Tregs Autologous Kidney
transplantation

Isolation/enrichment
and ex vivo expansion I/II Unknown status NCT01446484

(RSMU-001)

Polyclonal vs.
donor-specific Tregs Autologous Kidney

transplantation Ex vivo expansion I/II randomized
open-label n/a Completed. No results posted yet NCT02711826 (TASK,

CTOT-21)

Polyclonal and
donor-antigen reactive

Tregs, tolerogenic
dendritic cell and

regulatory
macrophage cells

Autologous Kidney
transplantation

Isolation/enrichment
and/or ex vivo

expansion
7 phase I/II trials 66 cell-treated group

vs. 38 reference-group Good safety profile

Lower infection rates;
rates of

biopsy-confirmed
acute rejection (BCAR)
comparable between

the standard
immunosuppressive

group and the
cell-based therapy

group. Successfully
weaned off

immunosuppression
within the first year

post-transplantation to
monotherapy in nearly
all cell-treated patients

NCT02371434,
NCT02129881

(polyclonal Treg),
NCT02244801,
NCT02091232

(donor-antigen
reactive Treg),
NCT02252055

(tolerogenic dendritic
cell), NCT02085629

(regulatory mac
rophage cell),
NCT01656135

(reference group)
(ONE study)

Sawitzki et al., 2020
[52]

Combinational: total
lymphoid irradiation

(TLI), total body
irradiation (TBI),
anti-thymocyte

globulin (ATG), donor
HSCs and polyclonal

Tregs

Autologous Kidney
transplantation Ex vivo expansion I Recruiting NCT03943238

Polyclonal Tregs Autologous Kidney
transplantation Ex vivo expansion IIb, randomized Recruiting ISRCTN11038572 (Two

study) Brook et al., 2022 [53]

Polyclonal Tregs Autologous Heart transplantation Isolation/enrichment
and ex vivo expansion I/II, randomized Recruiting NCT04924491

(THYTECH)
Bernaldo-de-Quirós

et al., 2022 [54]

Polyclonal Tregs Autologous Islet transplantation Isolation/enrichment
and ex vivo expansion I Active, not recruiting NCT03444064

Tregs for COVID-19

Polyclonal Tregs Allogeneic, UCB COVID-19 Isolation/enrichment
and ex vivo expansion

I, randomized,
double-blinded,

placebo-controlled
clinical trial

45 (15 pts placebo, 15
pts 100 × 106 Tregs, 15
pts 300 × 106 , 3 doses

Tregs)

Good safety profile

No definitive
conclusions with

respect to efficacy due
to to the low number

of patients

NCT04468971 Gladstone et al., 2023
[55]

Tregs for GvHD

Polyclonal HLA-G +
induced T-regulatory

cells (iG-Tregs)

Allogeneic,
HLA-identical sibling

donor-derived
GvHD prophylaxis Ex vivo expansion I/II Recruiting EUDRACT-2021-

006367-26
Lysandrou et al., 2023

[56]

Polyclonal Tregs
Allogeneic,

HLA-matched sibling
donor-derived

GvHD treatment Isolation/enrichment
and ex vivo expansion I 2

Temporal control of grade IV acute GvHD
refractory to all other immunosuppressants

used/significant alleviation of chronic GvHD
accompanied by reduced pharmacologic

immunosuppression

NKEBN/458-
310/2008

Trzonkowski et al.,
2009 [57]
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Table 2. Cont.

Cell Product Source Disease Treg Manufacturing Study Phase Patients Safety Efficacy Trial ID References

Polyclonal Tregs
Allogeneic, partially
HLA-matched third

UCB
GvHD prophylaxis Isolation/enrichment I 23 No infusional toxicities

No adverse effect in
terms of infection,
relapse, or early

mortality/decreased
incidence of grade

II–IV acute GVHD vs.
identically treated
historical controls

NCT00602693 Brunstein et al., 2011
[58]

Polyclonal Tregs Allogeneic, HSC
donor-derived

Severe refractory
GvHD treatment Isolation/enrichment I/II Completed. No results posted yet NCT02749084

Polyclonal Tregs Allogeneic, UCB
donor-derived GvHD prophylaxis Not specified II 3 2/3 AEs/Treg-cell

infusion toxicity

2/3 grade II-IV acute
GvHD; 1/3 bacterial
infection; 2/3 viral

infection.
Terminated due to the
consideration of new

technology for the
product

NCT02991898

Polyclonal Tregs
Allogeneic,

HLA-matched sibling
donor-derived

Steroid
dependent/refractory

chronic GvHD
treatment

Not specified I Completed. No results posted yet NCT01911039

Combinational:
polyclonal Tregs +

low-dose IL-2

Allogeneic, HSC
donor-derived

Steroid refractory
chronic GvHD

treatment
Isolation/enrichment I 25 Good safety profile 5/25 (20%) PR; 10/25

(40%) stable disease NCT01937468 Whangbo et al., 2022
[59]

Polyclonal Tregs Allogeneic, HSC
donor-derived

Steroid refractory
chronic GvHD

treatment
Isolation/enrichment I/II Unknown status NCT02385019

Combinational:
polyclonal Tregs + IL-2

+ rapamycin

Allogeneic, HSC
donor-derived

Chronic GvHD
treatment Isolation/enrichment II Teriminated due to slow recruitment NCT01903473

Combinational:
polyclonal Tregs +

Tcon

Allogeneic, HSC
donor-derived

GvHD prophylaxis +
GvL augmentation in

pts with high-risk
hematological
malignancies

undergoing allogeneic
myeloablative (MA)

HCT with a T
cell-depleted graft

Isolation/enrichment I/II

Interim results: 12
(initial group: 5 pts
with frozen Tregs,

modified groupI:7 pts
with fresh Tregs and
single-agent GVHD

prophylaxis)

No infusion reaction

Initial group: 2/5
grade II GvHD;

modified group: 0/7
GvHD

NCT01660607 Meyer et al., 2019 [60]

Polyclonal,
fucosylated Tregs

Allogeneic
UCB-derived GvHD prophylaxis Isolation/enrichment

and ex vivo expansion I 5 No infusion reaction

5/5 ≥grade II acute
GVHD. No longterm
complications for 4/5

alive pts

NCT02423915 Kellner et al., 2018 [61]

Alloantigen-specific
Tr1 cells

Allogeneic,HSC
donor-derived GvHD prophylaxis Ex vivo expansion I 3 (preliminary results) No AEs post infusion

3/3 alive, disease-free
and acute GvHD-free

at 1 year post-HCT
NCT03198234 Chen et al., 2021 [62]
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Table 2. Cont.

Cell Product Source Disease Treg Manufacturing Study Phase Patients Safety Efficacy Trial ID References

Polyclonal Tregs Allogeneic,HSC
donor-derived GvHD prophylaxis Isolation/enrichment

and ex vivo expansion I 14 No severe infusional
toxicities

Pts receiving
sirolimus/MMF: 2/2
grade III acute GvHD

pts receiving
CSA/MMF: 5/12 acute

GvHD grade II-III,
6/12 chronic GvHD

NCT01634217 MacMillan et al., 2021
[63]

Polyclonal Tregs Allogeneic, HSC
donor-derived

Steroid refractory
chronic GvHD

treatment
Isolation/enrichment II Recruiting NCT05095649

CD6-CAR Tregs Allogeneic,HSC
donor-derived

Chronic GvHD
treatment

Ex vivo expansion and
genetic engineering I Not yet recruiting NCT05993611

Treg: regulatory T cells. T1D: type 1 diabetes. AEs: adverse events. MS: multiple sclerosis. Ag-specific: antigen-specific. UCB: umbilical cord blood. Tr1 cells: type 1 regulatory T cells.
GvHD: graft versus host disease. Pt: patient; PR: partial response. IL: interleukin. IT: intrathecal. MMF: mycophenolate mofetil. CSA: cyclosporine. HSC: hematopoietic stem cells.
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2. Specificity of Tolerance

Although there are a number of ongoing clinical trials for autoimmune disorders using
polyclonal Tregs (NCT0469123, NCT02772679), the use of polyclonal Tregs, exhibiting a
plethora of different TCR specificities, has been hampered by fundamental limitations
including the lack of antigen specificity, the heterogeneity of the cell population, and
an exhausted Treg phenotype during ex vivo expansion. The suppressive activity of
polyclonal Tregs is shaped after ex vivo Ag activation via their TCR, prior to adoptive
transfer; however, once stimulated, activated Tregs exert non-specific suppression in an Ag-
independent manner post in vivo administration. Such generalized immunosuppression
may enhance the risk of opportunistic infections or tumor growth in transplanted or
tumor-bearing hosts, respectively [64–66].

In addition, as polyclonal Tregs do not consist of a homogeneous population, an
infusion of large numbers of cells is required for clinical benefit, yet at the expense of
nonspecific immune suppression. At last, the observed loss of the Treg phenotype and
attenuation of their immunosuppressive function upon repetitive polyclonal TCR and CD28
co-receptor-mediated stimulation during ex vivo expansion [67] further limits polyclonal
Treg potency. To overcome these hurdles, many groups are engaged in pursuing alternatives
to polyclonal Tregs.

Generating Antigen-Specific Tregs to Overcome Polyclonal Treg Limitations

In contrast to polyclonal Tregs, an enriched population of antigen-specific Tregs, which
would mainly migrate towards the sites of cognate antigen presentation, may provide the
advantage of on-target specificity, without global immunosuppression. In addition, due to
the enhanced trafficking to, and the targeted immunosuppression in diseased tissues, lower
numbers of antigen-specific Tregs are required for clinically relevant outcomes over their
unselected, polyclonal counterparts [68]. Thus, immunotherapy with antigen-specific Tregs
may be both safer and more potent than Tregs of a polyclonal TCR repertoire in inducing
immune tolerance in a disease-specific manner.

Indeed, numerous studies attest to the clinical superiority of antigen- or alloantigen-
specific Tregs, showcasing their increased suppressive efficacy, improved migration patterns
to the target tissue, and limited off-target effects as compared to polyclonal Tregs [68–73].
Nevertheless, the ex vivo, large-scale expansion of disease-relevant, antigen-specific Tregs
is hampered mainly by their low frequency in peripheral blood (merely 1–3% of the cir-
culating CD4+ T cells [74]). Thus, expanding sufficient doses for clinical use requires the
implementation of prolonged, labor-intensive, and costly protocols, largely yielding Treg
products of suboptimal quality with compromised Treg suppressive ability. Hence, current
efforts are focusing on the ex vivo manufacturing of antigen-specific Tregs, either by con-
verting antigen-specific conventional T cells into FOXP3+ cells with suppressive function
or redirecting the specificity of polyclonal Treg cells by genetic engineering to express a
synthetic antigen receptor that recognizes a disease-relevant antigen (Figure 1) [75].

The first approach was initially reported by Stephens et al., who converted naive CD4+
Foxp3− T cells specific for a naturally expressed autoantigen (H+/K+ ATPase) into self-
antigen-specific Foxp3+ Tregs, by stimulation in the presence of TGF-β [76]. Those naïve
organ-specific Tregs proved effective at preventing autoimmunity in a murine model of
autoimmune gastritis. More recently, Akamatsu et al. showed that epigenetic modification
induced by the chemical inhibition of the cyclin-dependent kinase 8 (CDK8) and CDK19,
enabled the conversion of antigen-specific effector/memory T cells into Foxp3+ cells [75].
The in vivo inhibition of CDK8/19 generated functionally stable FoxP3+Tregs, capable of
suppressing immune responses in mouse models of multiple sclerosis, allergy, and diabetes.
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Tregs, e.g., via culture in the presence of TGF-ß (D). Tcon: T conventional cells, Treg: T regulatory 
cells, Ag: antigen, CAR: chimeric antigen receptor, TCR: T cell receptor, APCs: antigen-presenting 
cells, IL-2: interleukin-2, MACs: Magnetic Cell Separation, FACs: fluorescence-activated cell sorting, 
TGF-ß: transforming growth factor beta. Created with BioRender.com (accessed on 07/12/2023). 
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Figure 1. Strategies to ex vivo generate Treg cells for adoptive immunotherapy. (A) A polyclonal
Treg cell population can be generated after isolation of Tregs, CD3/CD28 activation, and ex vivo
expansion in the presence of high-dose IL-2 or other Treg inducers. (B,D) Antigen-specific Treg cell
products can be produced either by genetically modifying isolated polyclonal Treg cells to express
a chimeric antigen receptor (CAR-Tregs) (B) or an artificial T cell receptor (TCR-Tregs) targeting a
disease-relevant antigen of interest (C) or by converting antigen-specific Tcons to antigen-specific
Tregs, e.g., via culture in the presence of TGF-ß (D). Tcon: T conventional cells, Treg: T regulatory
cells, Ag: antigen, CAR: chimeric antigen receptor, TCR: T cell receptor, APCs: antigen-presenting
cells, IL-2: interleukin-2, MACs: Magnetic Cell Separation, FACs: fluorescence-activated cell sorting,
TGF-ß: transforming growth factor beta. Created with BioRender.com (accessed on 7 December 2023).

The second approach of converting primary T cells into antigen-specific Tregs towards
targeted immune suppression involves a plethora of genetic engineering technologies,
including retro/lenti-viral transduction or non-viral transfection methods, such as DNA-
based transposons, CRISPR/Cas9 technology, or the direct transfer of in vitro transcribed
messenger RNA (mRNA), allowing the introduction and ultimately the expression of
either artificial TCRs (TCR-Tregs) or chimeric antigen receptors (CAR-Tregs) into Tregs [77])
(Figure 1).

TCRs isolated from islet-specific human T cells and delivered into polyclonal Tregs
provided the proof of concept for the development of islet-specific Treg therapies for the
effective treatment of Type 1 diabetes (T1D) [78]. Similarly, Tregs expressing a myelin
basic protein-specific (MBP) TCR ameliorated the severity of disease in mouse models of
multiple sclerosis [79,80]. Given that in many autoimmune diseases, the causative antigen
is often not defined, Wright et al. leveraged the ability of Tregs to also promote bystander
suppression once activated—in other words, the ability of activated Tregs to recognize un-
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related antigens in the local microenvironment and create a regulatory milieu suppressing
conventional T cells (Tcons), independently of antigen specificity [66,81]—and explored
whether Tregs, transduced with a TCR specific to a disease-unrelated antigen, could direct
their suppressive function to selective sites in vivo and ameliorate the autoimmune disease.
Indeed, adoptive therapy with ovalbumin-specific TCR-Tregs in an established arthritis
model resulted in the amelioration of arthritis via bystander suppressive pathways, in
the absence of cognate recognition of disease-initiating antigen [82], suggesting a clear
clinical benefit by tissue-specific TCR Tregs in the treatment of autoimmune diseases even
when the disease-causing autoantigens remain unknown. Beyond autoimmunity, the com-
bination of TCR-Tregs specific for allogeneic major histocompatibility complex (MHC)
class II molecules with short-term adjunctive immunosuppression, favored transplantation
tolerance in mice, implying clinical potential for the administration of Tregs bearing a TCR
specific for donor antigens. Likewise, Tregs derived from TCR transgenic mice targeting the
minor histocompatibility antigen (miHAg) HY, which is expressed solely in male mice, were
highly effective in controlling GvHD in an antigen-dependent manner while sparing the
GVL effect in haploidentical and miHAg-mismatched murine bone marrow transplantation
models [83,84].

Tregs have been also engineered to express CARs towards suppressing Ag-specific
immune responses in various diseases and several proof-of-concept studies demonstrated
the utility of CAR Tregs in the setting of autoimmunity and transplantation. CARs recognize
a specific antigen in an MHC-independent mode via an extracellular fusion protein of the
variable regions of the heavy and light chain of a specific immunoglobulin which is linked
via a transmembrane domain to the intracellular signaling domain CD3z, allowing for T
cell activation upon antigen encounter.

Elinav et al. first reported that the adoptive transfer of CAR-Tregs targeting the
colitis-associated antigen 2,4,6-trinitrophenol (TNP) for the treatment of induced colitis [85]
ameliorated experimental colitis over wild type Tregs, thus paving the way for the treatment
of inflammatory diseases using CAR-Tregs. Following this study, many groups reported
data suggesting the preliminary success of CAR-Tregs in experimental models of autoim-
mune and chronic inflammatory diseases, including inflammatory bowel disease [86–88],
multiple sclerosis [89], T1D [90], asthma [91], and hemophilia [92]. Apart from autoantigens,
Tregs can be also engineered to suppress alloimmune responses and promote transplan-
tation tolerance via the CAR targeting of donor MHC molecules. CAR-Tregs targeting
human leukocyte antigen (HLA)-A2, the most common, frequently mismatched, antigen in
transplantation, have been shown to efficiently prevent lethal GvHD [93,94], and induce
graft-specific tolerance after pancreatic islet, skin, or heart graft in mouse models [95–99].
These promising findings led to the authorization of the first-in-human trials assessing
the safety and tolerability of autologous CAR-Tregs in HLA-A*02-negative recipients re-
ceiving renal and liver transplants, from an HLA-A*02-positive donor (NCT04817774 and
NCT05234190, respectively [48]). Lastly, CD19 has also been targeted by CAR-Tregs, as au-
toantibodies secreted from B cells are thought to induce various autoimmune diseases [100].
In a xenograft mouse model, CD19-CAR-Tregs showed the efficient suppression of IgG
antibody by B cells and the differentiation of B cells, without inducing GvHD, providing
a novel strategy to treat autoantibody-mediated autoimmune diseases [101]. In this con-
text, conventional CD19-CAR T cells, yet not CD19-CAR Treg cells, have been shown to
successfully treat refractory SLE in humans [102].

Technological advances in engineering Tcons for cancer therapy have also inspired
their integration into Treg immunotherapy. Biswas’s group redirected the specificity of
Tregs towards the coagulation factor (F)VIII, either by delivering a high-affinity CAR
(second generation CAR) or a TCR fusion construct (TRuC) synthesized by fusing the
FVIII single-chain variable fragment (scFv) to the TCRε subunit, enabling T cell activation
independently of a peptide–MHC complex, and compared those two Treg cell products
side by side [103]. Surprisingly, CAR-Treg engagement induced a robust effector pheno-
type resulting in the loss of their suppressive function. In contrast, TruC Tregs delivered
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controlled antigen-specific signaling via the engagement of the entire TCR complex and
successfully suppressed the FVIII-specific antibody response, implicating that cellular
therapies employing engineered receptor Tregs may require the fine-tuning of activation
thresholds to optimize their suppressive performance. CARs engineered with a modular
approach are called UniCARs and have also been employed in CAR-Treg therapy. In Uni
CARs, the antigen recognition domain is split from the signaling domain of a conventional
CAR. This CAR system contains a signaling module that binds to a specific epitope on a
switching/targeting module, which is a bispecific fusion molecule harboring one binding
domain directed against a tumor-associated Ag and an epitope specifically recognized
by the UniCAR. Hence, UniCAR T cells are switchable and remain dormant until they
encounter the targeting module and are cross-linked to target cells. The target antigen can
be readily adjusted if needed, by targeting module exchange, without the requirement of
re-engineering the CAR T cells [104]. These CARs can be therefore applied universally.
The rationale behind UniCAR Tregs has been tested to a limited extent thus far. UniCAR
Tregs have been generated from patients with autoimmune or inflammatory diseases or
healthy volunteers and when infused in mouse models, they were localized at specific sites
and mitigated inflammatory or allograft responses in a spatiotemporal manner [95,105].
Although limited, these findings provide evidence for the feasibility of UniCAR adaptation
in Tregs. To our knowledge, UniCAR Tregs have not yet been tested in the clinical setting.
However, immunotherapy with UniCAR Tregs with an on/off switchable potential may
offer a safer approach, enabling a flexible, albeit precise, modular targeting for Treg adop-
tive immunotherapy of inflammation-related diseases including GvHD, autoimmunity, or
transplant rejection. In another context, De Paula Pohl et al. developed a CAR-analogous,
chimeric B-cell antibody receptor, called BAR, containing the immunodominant A2 domain
of FVIII to generate BAR-Tregs targeting FVIII-specific B cells which are responsible for
persistent anti-FVIII neutralizing antibodies (inhibitors) in hemophilia A patients [106].
This in vitro study demonstrated that only A2-FVIII domain-expressing BAR Tregs, but not
A2-BAR Tcons, could efficiently target and suppress FVIII-specific memory B cells. Other
approaches driving the antigen specificity of Tcons, such as third- and fourth-generation
CARs, and TCR-like CARs (CAR T cells with a TCR-like antibody) could also be applied to
Treg-based therapies [107–110].

3. Treg Functional Stability versus Plasticity

The T cell phenotype is inseparably linked to its activity; thus, any phenotypic alter-
ation of T cells will significantly skew their function. Studies over the past few decades
have established that within an inflammatory niche, some Tregs present lineage instabil-
ity, losing the expression of FoxP3, the master regulator of Treg cell differentiation and
function [6,111], and thus, the ability to sustain repressor functions or/and an unexpected
plasticity enabling rapid cell fate conversion from a suppressive to an active, effector T cell
immune phenotype and function (as reviewed in [112–118]). An inflammatory local milieu
within an overall lymphopenic environment has been incriminated for the inhibition of
Treg function and their cell fate conversion to effector T cells (ex-Foxp3 cells), which then
secrete inflammatory cytokines, increasing the risk of disease aggravation [119]. Although
the dynamic regulation of Foxp3 expression is crucial in enabling the immune system to
most flexibly control pathogens under various physiological conditions, a reverted, effec-
tor phenotype of ex-FoxP3 cells and the transition from a regulatory to an inflammatory
program may trigger a pathogenic autoreactive T cell immunity or cytotoxic activity with
serious sequelae in the context of in vivo or adoptively transferred Tregs, respectively [117].
Hence, Treg instability and plasticity are features of great importance in the pathogenesis
of immunological diseases, while they represent significant barriers to the broader clinical
adaptation of Tregs.
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Stabilizing Treg Phenotype to Overcome Plasticity

Since the efficacy of Treg cell therapy is closely related to their phenotypic stabil-
ity in vivo, successful Treg immunotherapy requires an inflexible phenotypic profile and
sustained immunosuppressive functions against a destabilizing inflammatory microenvi-
ronment. Regulatory T cells induced ex vivo (iTregs) demonstrate functional instability over
nTregs as a result of the lack of iTreg-specific epigenetic changes and in particular, DNA
hypomethylation at the enhancer regions of FOXP3 and other signature genes that drive
phenotypic stability [120]. iTregs display only incomplete DNA demethylation despite
high Foxp3 expression. Towards maintaining Treg functional benefits in vivo, fine-tuning
transcriptional and epigenetic signals and pathways is a sine qua non requirement to ensure
the stability of Tregs and minimize the risk of skewing into pathogenic T cells under a
highly inflammatory environment.

The forced expression of Foxp3 in TCR-Tregs has been shown to counteract the con-
sequences of endogenous FoxP3 downmodulation, thus preventing the accumulation of
effector T cells in vivo, and also to convert contaminating conventional CD4 cells into
Treg-like cells displaying long-term persistence [121].

The mere expression of FoxP3 is not sufficient for iTreg generation; the Treg-specific
epigenome needs to be also induced in iTreg cells, in particular, Treg-specific DNA hy-
pomethylation. The expression of Foxp3 is regulated by combinatorial epigenetic modifica-
tions and mainly relies on the methylation status of Foxp3 gene loci, and in particular, the
promoter and Treg-specific demethylated region (TSDR) in the Foxp3 gene, which become
demethylated in functional Tregs [120,122,123]. Indeed, the stabilization of Foxp3 expres-
sion has been successfully achieved by the epigenetic modifications of TSDR or within the
promoter and enhancer regions of the Foxp3 locus, using DNA methyltransferase (DNMT)
or histone deacetylase (HDACs) inhibitors or dCas9 fused to transcriptional activators
(VPR), repressors (KRAB), or histone acetyltransferases (HATs, p300) [124–129]. Targeting
intronic cis-regulatory elements in the Foxp3 loci (CNS1 and CNS2) by metabolic repro-
gramming using small molecules such as vitamin C, a cofactor for ten-eleven-translocation
(TET) enzyme mediating DNA demethylation, also conferred epigenetic modulation in a
TET-2-dependent manner, leading to stable Foxp3 expression and improved suppressive
Treg activity [130–132].

Since a variety of extrinsic and intrinsic cell factors control the epigenetic, transcrip-
tional, translational, and post-translational regulation of Foxp3 expression (reviewed
in [133,134]), their direct regulation could be another key strategy to “lock in” Foxp3
expression, and subsequently Treg stability. To further add to the list of potential targets
enhancing the Foxp3 stability, super-enhancers, a cluster of highly active, cell type-specific
enhancers orchestrating the expression of Foxp3 and other Treg cell lineage-defining genes,
as well as chromatin organizers, such as Satb1, which plays an essential role in establishing
and activating Treg-specific super-enhancers have also been identified [135–137].

Another approach to ensure the stabilization of Foxp3 is to protect it from its neg-
ative regulators or proteins leading to polyubiquitination and subsequent proteasomal
degradation. To this end, the inhibition of Foxp3 negative regulators including the Deleted
in Breast Cancer 1 (DBC1) protein or Janus kinase2 (JAK2), licensed Tregs to retain high
Foxp3 expression and maintain their suppressive function in experimental models of au-
toimmunity and GvHD, respectively [138,139]. Likewise, in proof-of-principle studies, the
short hairpin RNA (shRNA)-mediated inhibition of Stub1, a ubiquitin ligase responsible
for the polyubiquitination of Foxp3, or the ectopic expression of the deubiquitinase USP7,
resulted in stable or increased Foxp3 expression and enhanced Treg suppressive function
even within a hostile inflammatory microenvironment [140,141].

Helios, a transcription factor expressed in a large subset of Foxp3+ Tregs, mainly
in tTregs, which exhibit a more stable suppressive phenotype than pTregs and iTregs by
virtue of a more stabilized epigenetic signature [142], has attracted researchers’ attention as
another potential target towards enhancing Treg stability. Indeed, the ectopic expression of
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Helios along with Foxp3 in Tregs resulted in superior suppressive function as compared to
only Foxp3- and only Helios-expressing Tregs in a murine GvHD model [143].

4. Inhibitory Treg Signaling by the Tumor Microenvironment

In addition to tumor and stromal cells, immune cells are an essential component of the
tumor microenvironment (TME) where the tumor-immune cell interplay plays a key role in
tumorigenesis. In contrast to effector T cells, NK cells, DCs, and M1 macrophages, Tregs
comprise tumor-promoting immune cells in which the suppressive activity is mediated by
key molecules including IL-10, TGF-β, CTLA4, and IL-35. In contrast, inflammatory signals
by cytokines, like TNF-a or IL-6, can decrease Treg activity probably as a homeostatic
mechanism against Treg interference with immune responses to pathogens [144–147]. In
addition to these signals, Treg function can be reduced via inhibitory signals directed
to their TCR, which can provide negative feedback to Treg-mediated suppression. In
particular, CD4+CD25+ Treg cells have a significant defect in the phosphorylation of AKT
upon TCR-mediated activation, resulting in the decreased activity of downstream effectors.
This defect is tightly associated with Treg suppressive function as the TCR-independent
conditional activation of exogenous AKT reversed their suppressive capacities [148]. In
recent years, immune checkpoint molecules including CTLA-4, PD-1, LAG-3, TIM-3, and
TIGIT have been recognized as critical mediators in the biology of TME that promote cancer
progression by exerting inhibitory antitumor mechanisms, whereas immune checkpoint
inhibitors (ICIs) induce impressive effector T cell antitumor immune responses [149–155].
However, as Tregs are known to express several immune checkpoint inhibitor targets, their
numbers and function may be altered by ICI immunotherapy, thus shaking the balance
between effector T cell activation and suppressive effector PD-1+ Treg cell proliferation at
the tumor site. Should the effect on suppressive effector Tregs be dominant, the inhibition
of anticancer immunity with uncontrollable tumor growth may occur, resulting in the
development of hyperprogressive disease (HPD) [156,157]. This paradoxical acceleration
of the disease in a subset of patients treated with ICIs should be promptly acknowledged
and urgently managed to counteract a potentially deleterious flare-up. The presence of
actively proliferating PD-1+ effector Treg cells at tumor sites has been suggested as a reliable
marker for HPD and their depletion in tumor tissues as a means of treating and preventing
HPD in PD-1 blockade cancer immunotherapy [156]. In addition, a PD-1 and CTLA-4
combination blockade has been shown to increase effector Teff infiltration, resulting in
highly advantageous Teff-to-regulatory T-cell ratios within the tumor [158].

Functional Treg Enhancement against Inflammatory Cytokine Signaling

Expanding knowledge on the negative signal that inflammatory cytokines exert on
Tregs has triggered investigation towards establishing a more robust Treg function. One
such strategy is rendering Tregs resistant to factors of the inflammatory milieu driving the
negative feedback of their function, such as Protein kinase C theta (PKC-θ), an inhibitor
of Tregs’ suppressive function being selectively recruited to the central supramolecular
activation complex (cSMAC) region of the immunological synapse (IS) between an antigen-
stimulated T cell and an antigen-presenting cell. Tregs modify the type of IS that is
established between the naïve T cell and the peptide-loaded dendritic cell by inhibiting
the recruitment of PKC-θ to the IS [159,160]. The blockade or silencing of PKC-θ shielded
Tregs from the negative effects of cytokines associated with an inflammatory milieu and
ultimately enhanced their ability to prevent autoimmune colitis, as well as restored the
function of defective Tregs derived from rheumatoid arthritis patients [159]. Ex vivo-
generated iTregs, in which PKC-θ was neutralized by an antibody using a synthetic, cell-
penetrating peptide mimic, presented enhanced immunosuppression and stability and
were highly effective in preventing GvHD in a mouse model while maintaining anti-tumor
surveillance [161].

An alternative to making Tregs resistant to pro-inflammatory cytokines is to neutralize
cytokines in vivo. In fact, in vivo treatment with cytokine- or cytokine receptor-targeted
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monoclonal antibodies, such as anti-tumor necrosis factor α (anti-TNF-α) or anti-IL-6 recep-
tor, has been shown to neutralize inflammatory cytokines while rescued Treg function in pa-
tients with rheumatoid arthritis and kidney transplant recipients, respectively [19,162,163].
It may therefore be possible to enhance Treg cell function and improve outcomes by combin-
ing adoptive Treg transfer with monoclonal Abs targeting cytokines or cytokine receptors.

In addition, Tregs could also be engineered to self-secrete neutralizing agents like
monoclonal antibodies or to express receptors counteracting extrinsic, repressive signals.
Using this concept, albeit in a different context, genetically engineered, anti-tumor T
cell products with integrated artificial receptors engaging transforming growth factor
β (TGF-β), an inhibitor of effector T and NK cells and tumor antigen-specific cellular
immunity, were capable of overcoming the TGF-β-induced tumor immune evasion, being
shielded from the inhibitory effects of TGF-β or functionally empowered via the conversion
of TGF-β suppressive signal to an activating signal [164–167]. A similar rationale may be
adapted to generate Treg products able to “tame” their corresponding inhibitory molecules
even within a hostile inflammatory environment.

Besides providing the means to balance the extrinsic microenvironmental factors, genetic
engineering also offers the opportunity to manipulate Tregs to secrete anti-inflammatory
cytokines and thus, acquire an intrinsic advantage. The co-expression of IL-10 as additional
payload in HLA-A2 CAR-Tregs further enhanced their capacity to suppress alloresponses
in vitro [168], although IL-10-overexpressing FVIII-CAR Tregs unexpectedly developed a
robust effector phenotype and failed to control inhibitory immune responses in a murine
model of hemophilia A [103]. TGF-beta or IL-34, both suppressive Treg-specific and
tolerogenic cytokines [169], could serve as additional candidates for co-expression in
CAR-Tregs in order to augment their suppressive functions. Nevertheless, in engineered
receptor Tregs, the tight regulation of their signal output and the determination of activation
thresholds are critical to avoid unwanted toxicity.

5. Tissue Homeostatic Repair

In addition to being potent immune suppressors, Tregs have recently been recognized
as also expressing tissue repair/regeneration signatures [170]. Unique populations of Treg
cells with a broad phenotypic and functional diversity, have been discovered in a variety of
non-lymphoid tissues, including the skeletal and cardiac muscle, skin, gut, lung, liver, and
the CNS [171–176]. Tissue Tregs take over in the early phase of the inflammatory response,
to foster the transition to a tissue milieu that favors regeneration via promoting tissue
barrier repair, the proliferation and/or differentiation of non-lymphoid cell precursors, and
the tissue remodeling to dampen fibrosis or astrogliosis [172,177]. These pro-regenerative
effects of tissue Tregs may result from either cell–cell contacts or paracrine effects with
general or tissue-specific soluble factors.

Tissue-resident Tregs, which have been aptly characterized as “regulatory chameleons” [178],
share a common FOXP3+CD4+ precursor located in lymphoid organs that undergoes
definitive specialization once in the target tissue, following complex transcriptional pro-
grams. A conserved transcriptional and epigenetic signature, common in mice and humans,
that defines tissue-resident Tregs was identified as BATF+CCR8+ Treg cells in peripheral
blood [172]. Notably, CCR8+Tregs from healthy tissues presented multiple similarities
with CCR8+ Tregs isolated from tumor sites, thus strongly implicating the contribution of
these cells to the human tissue repair program in both health and disease [172]. Another
highly suppressive population of Treg cells, CD161+Treg cells having an all-trans retinoic
acid (ATRA)-regulated gene signature, has been identified as also mediating wound heal-
ing. These CD161+Tregs were enriched in the intestinal lamina propria, particularly in
Crohn’s disease, where CD161 expression on Treg cells was induced by ATRA. CD161 was
co-stimulatory, and co-ligation with the TCR-induced cytokine secretion accelerated the
gut epithelial barrier healing [176].
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Promoting Tissue Homeostatic Regeneration by Treg Cells

Modifications promoting homeostatic tissue repair could enhance Treg function to
restore tissue damage caused by chronic inflammation, in addition to suppressing local
inflammation. Examples of such modifications include engineered Tregs to overexpress
Amphiregulin (AREG), a ligand for the epidermal growth receptor, and a wound-repair
factor or Cellular Communication Network Factor 3 (CCN3), a growth regulatory protein,
implicated in the regeneration of various tissues, including muscle [172], demyelinated
neurons, and skin [179–181]. Engineered AREG-producing Tregs presented an enhanced
ability to polarize monocytes toward an M2-like tolerogenic phenotype, which usually
drives the natural wound-healing process, suggesting that engineered Tregs may further
promote tissue repair [182]. The tissue-repair capacity of human AREG+ Tregs seems to
operate independently from their classical suppressive function, as TCR-induced prolifera-
tion/differentiation coincided with a progressive loss of AREG [182].

6. Site-Specific Treg Cell Migration

The question of whether Tregs act primarily in the draining lymph node or the target
tissue has drawn conflicting conclusions in different studies; however, they collectively
point to the requirement of trafficking and migration to both inflamed tissues and draining
lymphoid organs for effective Treg cell function in vivo [183]. Nevertheless, the trafficking
properties of Treg cells proved to be highly dynamic and only the sequential migration
from blood to the inflamed tissue and then to the draining lymph nodes using a panel of
trafficking molecules and chemokine receptors (CCR2/CCR4/CCR5/CCR7 and P- and
E-selectins) orienting their migration, ensured efficient Treg differentiation and the full
execution of their immunosuppressive function [184], in an islet allograft transplantation.
By entering in a coordinated fashion, both the diseased and the priming site, Tregs may
limit effector T cell migration at both sites or control their priming via releasing IL-10
and TGF-b. The two sequential stages of migration seem functionally tightly linked, as
the suppressive capabilities of Treg cells became limited when one migration phase was
prevented [184].

Enhancing Treg Cell Recruitment In Vivo

To be effective, adoptively transferred Tregs must home to and mediate their function
at the target tissues [185]. To this end, the manipulation of Treg cell differentiation and
dynamic trafficking may be therapeutically beneficial for Treg immunotherapy.

To ensure precise trafficking to specific sites/tissues in vivo, homing-receptor-tailored
Tregs orchestrating the tissue-targeted migration of adoptively transferred Tregs have
been developed. Tailoring thymic Tregs to express specific homing receptors for targeted
migration by ex vivo expansion in Th1-polarizing conditions induced by the addition of
interferon-γ and IL-12 or retinoic acid, generated epigenetically stable Tregs under pro-
longed exposure to inflammatory conditions, that were directed towards Th1-inflammation
sites or the gut, respectively [186].

Alternatively, tissue-directed Treg recruitment was achieved by the controlled release
of the C-C-Motif Chemokine 22 (CCL22) through microparticle formulations enabling
the preferential recruitment of CCR4-expressing Tregs to a local site in vivo [187]. This
microparticle-based system prolonged hindlimb allograft survival and promoted donor-
specific tolerance [188].

7. Survival and Persistence

The limited to-date efficacy of adoptive immunotherapy with Tregs is, at least in part,
attributed to their poor in vivo persistence. Both apoptosis and the loss of proliferation
advantage could be incriminated for the observed poor persistence. Indeed, due to low
Bcl-2 expression or induced oxidative stress, freshly isolated CD4+CD25+ Tregs were
prone to apoptosis as compared to their CD25- counterparts or activated Tregs were driven
to apoptosis upon encountering a specific antigen, respectively [189,190]. Moreover, in
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contrast to the well-described phenomenon of exhaustion with Tcon cells resulting from
chronic stimulation and leading to poor in vivo T cell performance, Treg susceptibility to
exhaustion remained an outstanding question, although the repetitive cycles of stimulation
and prolonged culture required for Treg expansion were expected to affect their pheno-
types, functionality, and fitness [191]. Indeed, the repetitive TCR-driven stimulation and
prolonged ex vivo expansion were shown to be associated with epigenetic remodeling at
loci important for Treg function and identity, including the promoter hypomethylation of
genes known to downregulate T cell activation with the concomitant promoter hypermethy-
lation of genes positively regulating TCR signaling and strong promoter hypomethylation
in genes implicated in Tcon cell exhaustion [192], thus posing a risk for functional Treg
exhaustion similar to what was previously reported for effector T cells [193].

To address the issue of potential Treg susceptibility to exhaustion, as it occurs with
Tcons, and overcome the limitations posed by Treg capacity to normally express exhaustion-
related inhibitory receptors which are often associated with enhanced Treg suppressive
potential [194–196], Lamarche et al. used a model of tonic-signaling CAR to ask whether
exhaustion has the potential to limit the in vivo efficacy of Tregs. This recent study revealed
for the first time that Tregs can develop a functional deficit consistent with the concept
of exhaustion, acquiring phenotypic, functional, and epigenetic changes accompanied by
the complete loss of their suppressive function in vivo [197]. Therefore, Treg susceptibility
to chronic stimulation-driven dysfunction must be considered and mitigated as we move
forward with sophisticated adoptive Treg cellular therapies.

Improving Treg Survival and Persistence

Given that IL-2 is indispensable, yet not Treg secretable, for Treg development in the
thymus and survival in the periphery, one strategy to exploit the high sensitivity of Tregs
to this cytokine and expand Treg numbers in vivo while avoiding the activation of Tcons, is
by using low doses of IL-2 after adoptive Treg transfer [198,199]. The low, in contrast to
high, IL-2 doses are not associated with toxicity, while they can safely expand endogenous
Tregs in various disease contexts [200–206]. The high sensitivity of Tregs to very low IL-2
doses, based on a reduced IL-2 signaling threshold compared to effector cells, is attributed
to the constitutive expression of high-affinity IL-2 receptor α chain (CD25) in Tregs, in stark
contrast to intermediate affinity CD25 expressed in antigen-experienced effector cells [207].
Despite the expansion of circulating Tregs and the promising clinical results in early trials
of hepatitis C virus-induced vasculitis [202], GvHD [200,208], T1D [12], SLE [209,210], and
alopecia areata [211], low IL-2 monotherapy in double-blind, placebo-controlled trials was
not sufficient to provide clinically relevant improvements [212,213], nor promote liver
allograft tolerance [214].

Therefore, several groups leveraged the ability to selectively increase immunosuppres-
sive Tregs via the high-affinity IL-2Rαβγc using the combination of the adoptive transfer
of Tregs with IL-2 administration in vivo (Figure 2). In a nonhuman primate model, adding
low-dose IL-2 to rapamycin in a setting of clinically relevant immunosuppression doubled
the number of circulating Tregs and logarithmically prolonged the persistence of adop-
tively transferred ex vivo-expanded Tregs, which resulted in transcriptomic similarity to
endogenous resting Tregs with increasing time after transfer [215]. Nevertheless, in patients
with T1D or skin allografted mice, the low-dose IL-2 treatment post the adoptive transfer of
polyclonal Tregs although it increased the frequency of circulating Tregs, led to only limited
therapeutic benefit [41,216], probably due to the inferior in vivo performance of polyclonal
Tregs over antigen-specific Tregs, as discussed earlier. In fact, when IL-2 was combined
with donor-specific Tregs, but not with polyclonal Tregs, it preferentially enhanced the
proliferation of the allospecific Tregs and a synergistic effect in prolonging skin allograft
survival was observed [216]. Nevertheless, IL-2 receptor complexes are also expressed
on immune cells other than CD4+ T cells, making them responsive to IL-2. Therefore,
low IL-2 dosing may come at the expense of the activation of CD8+ and NK cells. In a
clinical trial assessing the efficacy of low IL-2 to suppress allospecific immune responses
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and allow the complete discontinuation of maintenance immunosuppression in liver trans-
plant recipients, rejection episodes were reported for four of five participants who initiated
immunosuppression withdrawal [214]. Interestingly, exogenous IL-2, even at low doses,
has been shown to induce conflicting effects on Tregs in the allo-HCT setting depending on
the immune environment of the host; in a mild inflammatory state, low IL-2 regulated Treg
homeostasis and suppressed GvHD, whereas in an intense inflammatory environment, the
same IL-2 doses enhanced activated T cells rather than Tregs and exacerbated GvHD in a
mouse model [217].

Cancers 2023, 15, x FOR PEER REVIEW 18 of 35 
 

 

Therefore, several groups leveraged the ability to selectively increase 
immunosuppressive Tregs via the high-affinity IL-2Rαβγc using the combination of the 
adoptive transfer of Tregs with IL-2 administration in vivo (Figure 2). In a nonhuman 
primate model, adding low-dose IL-2 to rapamycin in a setting of clinically relevant 
immunosuppression doubled the number of circulating Tregs and logarithmically 
prolonged the persistence of adoptively transferred ex vivo-expanded Tregs, which 
resulted in transcriptomic similarity to endogenous resting Tregs with increasing time 
after transfer [216]. Nevertheless, in patients with T1D or skin allografted mice, the low-
dose IL-2 treatment post the adoptive transfer of polyclonal Tregs although it increased 
the frequency of circulating Tregs, led to only limited therapeutic benefit [41,217], 
probably due to the inferior in vivo performance of polyclonal Tregs over antigen-specific 
Tregs, as discussed earlier. In fact, when IL-2 was combined with donor-specific Tregs, 
but not with polyclonal Tregs, it preferentially enhanced the proliferation of the 
allospecific Tregs and a synergistic effect in prolonging skin allograft survival was 
observed [217]. Nevertheless, IL-2 receptor complexes are also expressed on immune cells 
other than CD4+ T cells, making them responsive to IL-2. Therefore, low IL-2 dosing may 
come at the expense of the activation of CD8+ and NK cells. In a clinical trial assessing the 
efficacy of low IL-2 to suppress allospecific immune responses and allow the complete 
discontinuation of maintenance immunosuppression in liver transplant recipients, 
rejection episodes were reported for four of five participants who initiated 
immunosuppression withdrawal [215]. Interestingly, exogenous IL-2, even at low doses, 
has been shown to induce conflicting effects on Tregs in the allo-HCT setting depending 
on the immune environment of the host; in a mild inflammatory state, low IL-2 regulated 
Treg homeostasis and suppressed GvHD, whereas in an intense inflammatory 
environment, the same IL-2 doses enhanced activated T cells rather than Tregs and 
exacerbated GvHD in a mouse model [218]. 

 
Figure 2. Strategies to enhance the survival and persistence of adoptively transferred Tregs. The 
figure depicts different approaches to enhance the in vivo survival and persistence of Tregs after 
adoptive Treg transfer; these include administration of low-dose IL-2 or its mutants for selective in 
vivo stimulation of Tregs and not other immune cells (A), administration of other molecules that 
can also in vivo boost adoptively transferred Tregs such as TNFSR25 agonistic antibody (B), 

Figure 2. Strategies to enhance the survival and persistence of adoptively transferred Tregs. The
figure depicts different approaches to enhance the in vivo survival and persistence of Tregs after
adoptive Treg transfer; these include administration of low-dose IL-2 or its mutants for selective
in vivo stimulation of Tregs and not other immune cells (A), administration of other molecules
that can also in vivo boost adoptively transferred Tregs such as TNFSR25 agonistic antibody (B),
immunoglobulin (C), rapamycin (D), and cytokine-targeted antibodies (E), upregulation of STAT5
for sustained, IL-2-independent Foxp3 expression, and (F) knock-out of the glucocorticoid receptor
(GR) to render Tregs resistant to glucocorticoids (G). Created with BioRender.com (accessed on 7
December 2023).

To overcome the pleiotropy of IL-2 leading to the simultaneous stimulation and sup-
pression of immune responses as well as systemic toxicity and to specifically target trans-
ferred Tregs without activating other immune cells, Garcia’s group engineered orthogonal
IL-2/IL-2 receptor (IL-2R) pairs that interact with one another, but do not interact with the
natural IL-2 or IL-2R counterparts, thereby enabling the selective stimulation of target cells
in vivo [218]. Following the adoptive transfer of Tregs incorporating an orthogonal IL-2R
into a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection selectively
promoted ortho IL-2Rβ+ Treg cell proliferation without increasing other T cell subsets
and facilitated donor hematopoietic cell engraftment followed by heart transplantation
tolerance [219]. Likewise, in a murine major histocompatibility complex-disparate GVHD
model, this approach led to enhanced GVHD survival, the in vivo selective expansion of
Tregs, and importantly, the maintenance of graft-versus-tumor (GVT) responses, whereas
the adoptive transfer of ortho-hIL-2Rβ+ CAR T cells into immunodeficient mice bearing
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CD19+Nalm6 leukemia xenografts in combination with ortho-hIL-2 administration led
to 1000-fold ortho-hIL-2Rβ+CAR T expansion and rescued the antileukemic effect of an
otherwise suboptimal CAR T cell dose [220,221].

Another IL-2 mutein therapeutic approach currently being evaluated in clinical trials
(NCT3451422) [222], makes use of an IL-2 Fc fusion protein (Efavaleukin alfa), in which
an introduced mutation decreases binding to IL-2Rβ and increases dependence to IL-
2α (CD25). This preferential binding to the high-affinity IL-2R leads to enhanced cell
surface retention and selective Treg signaling over recombinant IL-2. Similarly, human
cytokine/antibody fusion proteins introduced into Tregs conferred protection in mouse
models of colitis and checkpoint inhibitor-induced diabetes mellitus [223], while CAR-Tregs
bearing membrane-associated IL-2 (mbIL-2) showed superior activity compared to control
CAR-Tregs in a preclinical humanized mouse model [224]. Though promising, the efficacy
of those IL-2 Treg mutants remains to be determined in clinical trials.

Other molecules known to also expand Tregs such as TNFRSF25 agonistic antibody,
intravenous immunoglobulin, rapamycin, and cytokine-targeted antibodies [14–16,20–22]
could be used to in vivo boost adoptively transferred Tregs in the recipient (Figure 2).
Alternatively, such molecules could be administered to the donor to increase Tregs’ numbers
and their potential, prior to ex vivo expansion, as it has been promisingly shown in animal
models [225–228]; however, such an approach raises ethical concerns and clinical translation
seems rather unrealistic.

Moreover, targeting the downstream IL-2 signaling, for instance, using signal trans-
ducer and activator of transcription 5 (STAT5)-transduced Tregs, may result in the dis-
ruption of Treg dependency on IL-2 and sustained Foxp3 expression, thus ensuring Tregs’
long-term persistence [229]. Indeed, modulating the Th2 cytokine production in vivo
through STAT5 overexpression in transgenic CD4+ cells resulted in more efficient Treg
expansion in vivo and reduced GvHD lethality compared to wild type Tregs in an in vivo
relevant model [230]. These data implicate that the upregulation of constitutively active
forms of STAT5 in Tregs by either pharmacological methods or genetic engineering could
prove useful in preventing or controlling GvHD or autoimmunity.

In the context of transplantation, immunosuppression, although a sine qua non for the
prevention or treatment of GvHD and graft rejection, severely compromises the endogenous
or any potential adoptively transferred T cell immunity. Hence, by making Tregs resistant
to specific immunosuppressive agents, they may acquire a survival advantage and remain
functional even under the unfavorable conditions of intense immunosuppression (Figure 2).
In the setting of adoptive T cell therapy with virus-specific T cells, our group has developed
steroid-resistant, pathogen-specific T cells by the CRISPR/CAS9 genetic disruption of
the glucocorticoid receptor, and other groups have also generated specific T cells with
engineered resistance to various immunosuppressive agents [231] (reviewed in [232]). We
foresee that this approach could be adopted for the generation of immunosuppression-
resistant Treg cell products, which after adoptive transfer into transplanted patients, could
remain functional and effective, thus broadening the applicability of immunotherapy
with Tregs.

8. Treg Safety Considerations

Treg cell immunotherapy products consist of “living drugs” with potential long-term
dynamics and as such, safety is of utmost importance in moving this therapy to the bedside.
The non-targeted specificity of polyclonal Tregs, phenotypic instability, and potential plas-
ticity may lead to unwanted and even deleterious effects. Genetically-modified Tregs bear
additional risks associated with genetic engineering, including genotoxicity, off-tumor/on-
target toxicity, and hyperactivation syndromes.

Optimizing Treg Safety

As discussed, polyclonal, non-specific Treg cell products might entail safety risks
due to their potential to lead to systemic, off-target immunosuppression and therefore,
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suboptimal immune responses against opportunistic infections and possibly cancer de-
velopment. The use of antigen-specific Tregs, described in detail above, could decrease
this risk, however, even with enriched antigen-specific Treg products, an unintentional
contamination of Treg cell products with effector Tcons or a potential phenotype switching
in vivo, can lead to unwanted immune responses with severe consequences. The preven-
tion of contamination with Tcons during Treg manufacturing, ideally by magnetic-activated
or fluorescence-activated cell sorting purification as a last production step, could remove
the undesired Tcons, at the expense, however, of some loss of an already limited Treg
population. The isolation of antigen-specific T cells expressing Treg markers, along with an
in-depth assessment of their regulatory activity and ability to produce immunosuppressive
factors upon antigen-specific challenge, will enable the release of safer cell products. To
better control the Treg in vivo plasticity risk and further improve the safety of adoptive
immunotherapy with antigen-specific Tregs, the strategies mentioned above enhancing the
stability of Tregs, such as enforced Foxp3 expression [121], can be applied.

Genetically-modified Tregs having enhanced activation and expansion capabilities,
may be advantageous over conventional Treg therapy against autoimmunity and allo-
responses due to their specificity and potency. Notwithstanding the reported long-term
safety of retro- or lentiviral-based CAR T cells in thousands of patients receiving CAR-
transduced Tcons [233,234], genetic modification per se creates legitimate concerns re-
garding the risk of genotoxicity and insertional mutagenesis that could also apply to
genetically-modified Tregs [235–240]. Inducible suicide genes or chromatin insulators have
been proposed as potential means to generate safer viral vectors and consequently safer
gene and cell therapy [241–243]. Should the employment of (viral or non-viral) delivery
methods in nuclease-based genome editing with CRISPR/Cas9 or TALENs be concerned,
it is vital to minimize potential undesirable, off-target mutations by performing extended
in silico, in vitro, and in vivo off-target analysis which may help limit the introduction of
unintended genetic changes that could affect the safety and efficacy of engineered cells and
by validating precision targeting [244–247].

Although the potential of gene-modified Tcon cells to elicit off-tumor/on-target toxic-
ity, CRS, or ICANS is well-recognized and could also apply to CAR-Treg immunotherapy,
the risk of these toxicities being observed with gene-engineered CAR Tregs (should they not
be contaminated with large numbers of Tcon cells or not be profoundly unstable in vivo) is,
at least theoretically, substantially lower; this is due to the Treg capacities to counteract the
T-effector cell function in vivo, disfavor macrophage activation, and potentially prevent
the cytokine storm [248–250].

Towards mitigating CAR Tcon or TCR Tcon cells’ toxicity, various safety features
have been incorporated in CAR-Tcons, including suicide genes (RQR8, huEGFRt, HSV-tk,
iCasp9) that make the cells highly vulnerable to lysis by monoclonal antibodies or small
molecules administered on demand, enabling the deletion of cells in case of severe adverse
events [241,242,251].

The use of antigen-specific TCR-Tregs is associated with the risk of the potential mis-
matched pairing of the transgenic with the endogenous TCRs that may lead to impaired
transgenic TCR expression, or in the worst-case scenario, undesirable, and even dangerous
off-target effects (as reviewed in [252]). Strategies including the deletion or silencing of
endogenous TCR by gene editing or RNA interference, respectively, or the cysteine modifi-
cation of the transgenic TCR, making the unproductive mispairing with the endogenous
TCR unlikely [253–257], have been proposed to prevent TCR mispairing in cancer therapy
with TCR-engineered Tcons and could also be considered in TCR-Treg immunotherapy.

The potential immunogenicity of CARs induced by the presence of non-human se-
quences (scFvs) in the CAR construct, other components of the CAR-T, or the presence
of residual viral or other non-human origin proteins during CAR T cell manufacturing
represents another safety challenge to consider regarding CAR-Tregs [258]. Humanized
alloantigen-specific CAR (A2-CAR)-Tregs to annihilate the risk of undesirable immune
responses have been developed and shown to be effective in suppressing HLA-A2+ cell-



Cancers 2023, 15, 5877 21 of 33

mediated xenogeneic GvHD and diminish the rejection of human HLA-A2+ skin allo-
grafts [259].

9. Conclusions

The feasibility and safety of adoptive immunotherapy with Tregs have been demon-
strated in pivotal clinical studies that have suggested Treg cell therapy as a promising
therapeutic option for patients suffering from autoimmune diseases or the immunological
complications of hematopoietic cell or solid organ transplantation (Table 2). Independent
of their suppressive activity, a new role for Tregs has been recently recognized with regard
to promoting tissue repair and wound healing, thus opening the potential for also treating
non-autoimmune disorders with Tregs.

Nevertheless, the efficacy of Treg adoptive immunotherapy to reshape the immune
balance toward a specific and long-lasting tolerance still faces a plethora of challenges and
the establishment of immune tolerance remains rather elusive. In the recent two decades,
the dramatic progress in our understanding of basic Treg cell biology and its association
with the development of autoimmunity or allo-responses in transplantation, along with
the advent of new genetic engineering tools, has led to the concept and development
of “designer” Tregs towards enhancing the potency, long-lasting effect, and safety of
this tolerogenic therapy [260]. Unequivocally, genetically-modified Tregs have attracted
increasing scientific, as well as commercial attention. An important step further, towards
the broader applicability of adoptive Treg cell therapy especially in the autoimmunity
context, where autologous and possibly suboptimally performing ex vivo and in vivo cells
are being used, will be the development of Treg biobanks with universal, off-the-shelf
products (Figure 3). Such universal Tregs will enable the use of a single batch of a Treg cell
product to treat multiple patients while minimizing the manufacturing time and cost of
those living drugs. In this case, it would be ideal, in order to escape immune recognition by
the host, to use either HLA-deficient, gene-edited Tregs or Tregs having the non-classical
HLA-E or HLA-G either ectopically expressed or epigenetically reprogrammed, to also
bypass the NK cell-mediating killing [56,261].
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multiplex genetic engineering to overcome the HLA barriers by disrupting the HLA molecules or
knocking in non-classical HLAs (HLA-E/-G) and to express an artificial disease-relevant immune
receptor—instead of their native TCR—for antigen specificity (classic and newer designer CARs or
transgenic TCRs), an orthogonal IL2/IL-2R pair for enhanced in vivo persistence and/or a suicide
gene as a safety switch. Treg: T regulatory cells, TCR: T cell receptor, MHC: major histocompatibility
complex, HLA: human leukocyte antigen, IL-2: interleukin-2, IL-2R: interleukin-2 receptor, HLA-G:
human leukocyte antigen G, HLA-E: human leukocyte antigen E, CAR: chimeric antigen receptor,
scFv: single-chain variable fragment, gen: generation, TRuC: TCR fusion construct, UniCAR: univer-
sal CAR-T cells, BAR: chimeric B-cell antibody receptor, ab: antibody, KO: knockout. Created with
BioRender.com (accessed on 7 December 2023).

The numerous gene engineering tools and the smart strategies for redirecting cell
specificity that are currently available or under development, along with new semi- or fully
automated systems for manufacturing have generated an exciting, yet challenging, new
era in Treg adoptive immunotherapy [262] towards finding the proper balance between
immune tolerance and immune surveillance, thus bringing us closer to definitive treatments
for difficult-to-cure diseases.
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