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Simple Summary: In this study, we reviewed and analyzed various radiomics models used to
identify three of the most common pediatric posterior fossa tumors: medulloblastoma, pilocytic
astrocytoma, and ependymoma. We wanted to understand how well these models worked overall.
By examining a range of studies, we found that the models could effectively distinguish between
these tumor types with high accuracy. Certain types of models and specific features in the images
seemed to perform better. The findings suggest that these models can be very useful in accurately
diagnosing these pediatric brain tumors. This research could lead to even more precise models in
the future.

Abstract: Purpose: To better define the overall performance of the current radiomics-based models
for the discrimination of pediatric posterior fossa tumors. Methods: A comprehensive literature
search of the databases PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus was
designed and conducted by an experienced librarian. We estimated overall sensitivity (SEN) and
specificity (SPE). Event rates were pooled across studies using a random-effects meta-analysis, and the
χ2 test was performed to assess the heterogeneity. Results: Overall SEN and SPE for differentiation
between MB, PA, and EP were found to be promising, with SEN values of 93% (95% CI = 0.88–0.96),
83% (95% CI = 0.66–0.93), and 85% (95% CI = 0.71–0.93), and corresponding SPE values of 87%
(95% CI = 0.82–0.90), 95% (95% CI = 0.90–0.98) and 90% (95% CI = 0.84–0.94), respectively. For MB,
there is a better trend for LR classifiers, while textural features are the most used and the best
performing (ACC 96%). As for PA and EP, a synergistic employment of LR and NN classifiers,
accompanied by geometrical or morphological features, demonstrated superior performance (ACC
94% and 96%, respectively). Conclusions: The diagnostic performance is high, making radiomics a
helpful method to discriminate these tumor types. In the forthcoming years, we expect even more
precise models.

Keywords: radiomics; machine learning; deep learning; pediatric tumors; posterior fossa; systematic
review; meta-analysis
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1. Introduction

Radiomics, a promising tool in medical imaging, employs a non-invasive approach
that can aid in the diagnosis, treatment, and prognosis of various diseases [1]. This rapidly
expanding discipline involves extracting high-dimensional quantitative data from medical
images, subsequently analyzed using artificial intelligence (AI) techniques, such as machine
learning (ML) and deep learning (DL), to define features such as tissue heterogeneity,
texture, shape, and intensity [2]. These features reveal insights beyond human vision and
minimize inter-observer variability in the diagnostic procedure.

In neurosurgical oncology, radiomics proves beneficial for distinguishing between
different types of malignancies [3]. Posterior fossa tumors constitute nearly 50% of all
pediatric brain tumors.

Medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) are the
three most prevalent pediatric posterior fossa tumors [4]. However, these tumors pose
a challenge in differentiation due to their similar clinical presentations and radiological
features [5]. Given the distinct treatments and prognoses associated with each, accurate
diagnosis becomes crucial [6–8].

The efficacy of radiomics in distinguishing between these three forms of posterior
fossa tumors in pediatric patients remains unclear. We performed a systematic review
and a meta-analysis of the current literature to evaluate the performance of radiomics
for differentiation between pediatric MB, EP, and PA of the posterior fossa. The findings
of this study will shed light on the efficacy of radiomics in the differential diagnosis of
pediatric posterior fossa tumors and will provide useful information for the development
of future models.

2. Materials and Methods
2.1. Literature Search

The systematic review was performed according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [9]. A comprehensive
literature search of the databases PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science,
and Scopus was designed and conducted by an experienced librarian with input from the
authors. The following research string was used: “radiomics AND ((medulloblastoma OR
ependymoma OR pilocytic astrocytoma) OR (posterior fossa))”. The studies were found
using the Medical Subject Heading (MeSH) terms and Boolean operators. A search filter
was set to show only publications over the designated period. The search was limited to
articles published between 2012 and 2022. The first literature search was performed on
5 June 2023, and the search was updated on 28 July 2023. This study was not registered in
any public registry such as PROSPERO.

Two authors (L.D.M. and F.P.) determined the inclusion criteria for the studies in
the literature search process. The following inclusion criteria were used: (1) case series
including at least 10 patients, (2) studies reporting exclusively histologically proven medul-
loblastomas, ependymomas, or pilocytic astrocytomas of the posterior fossa, (3) pediatric
patients (i.e., aged ≤ 21 years [10]), (4) studies reporting on radiomics for differential
diagnosis of posterior fossa tumors, (5) availability of radiomics performance data for
differentiation of these tumors. The exclusion criteria were: (1) case reports or review
studies, (2) studies reporting on AI-based models other than radiomics, (3) studies on the
radiomics differentiation of other tumor types, and (4) studies not reporting performance
data of the radiomics model.

The list of identified studies was imported into Endnote X9, and duplicates were
removed. The search results were checked by two independent researchers (F.P. and W.B.)
with experience according to the inclusion and exclusion criteria. A third reviewer (L.D.M.)
resolved all disagreements. Then, eligible articles were subject to full-text screening. Refer-
ence lists of identified studies were also reviewed to identify additional relevant studies.
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2.2. Data Extraction

For each study, we abstracted the following baseline information: year of publication,
total number of patients, distribution of patients per tumor type, and magnetic resonance
imaging (MRI) protocol. As for the radiomics models, we collected information about the
AI sub-category (i.e., ML or DL), classification algorithms (i.e., logistic regression (LR),
neural network (NN), support vector machine (SVM), naïve bayes (NB), k-nearest neighbor
(kNN), multilayer perceptron (MLP), random forest (RF), gradient boost (GB), adaptive
boosting (AdaBoost), classification tree (CT), single-layer neural network (SLNN), extreme
gradient boosting (EGB), elastic net regression (ENR), linear discriminant analysis (LDA),
convolutional neural network (CNN), generative adversarial network (GAN), etc.), best-
performing classifier, best-performing features (i.e., textural, geometrical or morphological,
voxel intensities-based, etc.), best-performing MRI sequences (i.e., apparent diffusion
coefficient (ADC), T1-weighted (T1W), contrast-enhanced T1-weighted image (CE-T1W),
T2-weighted (T2W), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), diffusion-
weighted imaging (DWI), dynamic susceptibility contrast (DSC)), and the application of
cross-validation analysis (i.e., yes or no). Regarding the performance of the models, we
extracted data on the resultant sensitivity (SEN) and specificity (SPE), the positive predictive
value (PPV) and negative predictive value (NPV), accuracy (ACC), and area under the
curve (AUC).

In studies with overlapping patient populations written by the same authors or insti-
tution, we only included the largest or most complete dataset. In cases where the outcomes
were separated by study cohorts, we abstracted performance outcomes of validation or test
cohorts to perform our meta-analysis.

2.3. Outcomes

Our primary outcomes were the SEN, SPE, and summary receiver operating charac-
teristics (SROC) curve of radiomics for the differentiation of the pediatric posterior fossa
tumors included. Bivariate analyses according to the discrimination task between MB vs.
non-MB, PA vs. non-PA, and EP vs. non-EP were conducted. In terms of the performance
of the models, we also looked at the PPV, NPV, ACC, and AUC.

The impact of the following variables on the performance of the proposed radiomics
models was evaluated as a secondary outcome: year of development, cohort size, AI
sub-category, best-performing classifiers, features, and MRI sequences, and application of
cross-validation. These variables were also studied quantitatively to picture the current
trends of radiomics models differentiating pediatric posterior fossa tumors.

2.4. Study Risk of Bias Assessment

We modified the Newcastle–Ottawa Scale (NOS) to assess the methodologic quality of
the studies included in our meta-analysis [11]. This tool is designed for use in comparative
studies. However, as there was no control group in our studies, we assessed their method-
ologic quality based on selected items from the scale, focusing on the following questions:
(1) Did the study include all patients or consecutive patients vs. a selected sample? (2) Was
the study retrospective or prospective? (3) Was clinical follow-up satisfactory, allowing for
the ascertainment of all outcomes? (4) Were the outcomes reported? (5) Were there clearly
defined inclusion and exclusion criteria [12]?

2.5. Statistical Analysis

For the meta-analytic purpose, we considered the total number of patients included
in each study’s test or validation dataset. Performance data of the models were figured
according to class, i.e., MB vs. non-MB, PA vs. non-PA, and EP vs. non-EP. Data from
primary studies were reported in a 2 × 2 contingency table consisting of true positive (TP),
false positive (FP), false negative (FN), and true negative (TN) based on the concordance
between the biopsy results and radiomics tool predictions. Such a table served as the
input for the R-package mada [13], used for modeling the joint estimates of SEN and SPE
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and their 95% confidence intervals (CIs). Event rates were pooled across studies using a
random-effects meta-analysis, and the χ2 test was performed to assess the heterogeneity of
SEN and SPE, considering the null hypothesis as equality in each case.

To better show the diagnostic performance of AI-based radiomics tools, we made the
following further figures of merit: (1) univariate graphics in the form of forest plots for
both SEN and SPE; (2) endpoints of interest with individual confidence regions; (3) SROC
curve seeking to combine the ROC curves of primary studies. In these last two graphical
outcomes, the coordinates of the endpoints of interest are in the form of SEN and 1–SPE,
the latter better known as the false positive rate (FPR).

3. Results
3.1. Literature Review

A total of 268 papers were identified after duplicate removal. After title and abstract
analysis, 24 articles were identified for full-text analysis. Eligibility was ascertained for
nine articles [14–22]. The remaining 15 articles were excluded for the following reasons:
(1) studies not reporting data on radiomics performance for the differentiation of posterior
fossa tumors (eight articles), (2) studies not reporting on the types of posterior fossa tumors
(three articles), (3) studies reporting on AI-based models other than radiomics (three
articles), (4) an improper study design (one article). All studies included in the analysis
had at least one or more outcome measures available for one or more of the patient groups
analyzed. Figure 1 shows the flow chart according to the PRISMA statement [9].
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3.2. Baseline and Radiomics Data

A total of 1796 patients were included in the systematic review. Most studies were
published in 2020 (45%), followed by 2021 and 2022 in equal percentages (22%), and
2015 (11%). The smallest study included 44 patients [16], while the largest had 535 [21].

http://www.prisma-statement.org/
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A total of 911 patients had histology-proved MBs (51%), 531 PAs (30%), and 354 EPs
(20%). Differentiation in three posterior fossa tumor types was reported for 1745 patients
(97%), of which 884 had medulloblastomas (51%), 330 had ependymomas (19%), and
531 pilocytic astrocytomas (30%). On the other hand, discrimination between two tumor
types was reported for 51 patients (3%), of which 27 had medulloblastomas (53%) and
24 had ependymomas (47%). Each study included different MRI sequences, and the most
common was T2W (25%), followed by ADC (22%), CE-T1W (19%), and T1W (16%). Other
MRI modalities were DWI (9%), T2-FLAIR (6%), and DSC (3%).

A total of eight studies reported on ML (89%), one article on DL (11%), and there
were no hybrid studies. As for the classifiers, SVM and RF were the most adopted (19%),
followed by kNN (15%), LR (11%), AdaBoost (8%), and others. A summary of the included
studies is provided in Table 1.

Table 1. Summary of the studies.

Author, Journal, Year Dataset
(No.)

MB
(No.) PA (No.) EP (No.) Imaging Protocol Method Classifiers

Dong, Acad Radiol, 2021 [14] 51 27 - 24 CE-T1W, DWI,
ADC ML kNN, AdaBoost,

RF, SVM

Dong, BJR, 2022 [15] 136 67 37 32
T1W, CE-T1W,
T2W, T2-FLAIR,
ADC, DWI

ML SVM

Fetit, NMR Biomed, 2015 [16] 44 21 16 7 T1W, T2W ML NB, kNN, CT, SVM,
ANN, LR

Grist, Neuroimage clin, 2020 [17] 49 17 22 10
T1W, T2W,
T2-FLAIR, CE-T1W,
DWI, ADC, DSC

ML SLNN, AdaBoost, RF,
SVM, kNN

Quon, AJNR, 2020 [18] 495 272 135 88 CE-T1W, T2W,
ADC DL CNN

Wang, Neurochirurgie, 2022 [19] 99 59 27 13 T1W, T2W, ADC ML RF

Wang, Zhonghua Yi Xue Za Zhi,
2020 [20] 99 59 27 13 T1W, T2W, ADC ML RF

Zhang, Neurosurgery, 2021 [21] 535 278 160 97 CE-T1W, T2W ML SVM, LR, kNN,
RF, EGB, NN

Zhou, AJNR, 2020 [22] 288 111 107 70 CE-T1W, T2W,
ADC ML LR

Abbreviations: MB = medulloblastoma; PA = pilocytic astrocytoma; EP = ependymoma; CE-T1W = contrast-
enhanced T1-weighted image; DWI = diffusion-weighted imaging; ADC = apparent diffusion coefficient;
T1W = T1-weighted; T2W = T2-weighted; T2-FLAIR = T2-weighted fluid-attenuated inversion recovery;
DSC = dynamic susceptibility contrast; ML = machine learning; DL = deep learning; kNN = k-nearest neigh-
bor; AdaBoost = adaptive boosting; RF = random forest; SVM = support vector machine; NB = naïve bayes;
CT = classification tree; ANN = artificial neural network; LR = logistic regression; SLNN = single-layer neural
network; CNN = convolutional neural network; EGB = extreme gradient boosting; NN = neural network.

3.3. Primary Outcomes

In total, the performance of radiomics to discriminate by class MB, PA, and EP was
reported for 624, 396, and 245 patients, respectively, forming the validation or test datasets
of the studies included in our meta-analysis. The overall SEN was 93% (95% CI = 0.88–0.96)
for MB, 83% (95% CI = 0.66–0.93) for PA, and 85% (95% CI = 0.71–0.93) for EP. The overall
SPE was 87% (95% CI = 0.82–0.90) for MB, 95% (95% CI = 0.90– 0.98) for PA, and 90%
(95% CI = 0.84–0.94) for EP. Figure 2 shows the SEN and SPE forest plots of the bivariate
analyses for discrimination of MB, PA, and EP. Figure 3 provides the individual confidence
regions, and Figure 4 the corresponding SROC curve for the differentiation tasks. Specif-
ically, the summary estimate coordinates of the SROC curve for MB, PA, and EP were
[0.92; 0.14], [0.83; 0.05], and [0.83; 0.10], respectively.
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For MB, the PPV ranged from 75% to 95%, NPV from 76% to 100%, ACC from 82% to
96%, and AUC from 0.91 to 1.00. For PA, the PPV ranged from 77% to 96%, NPV from 82%
to 97%, ACC from 82% to 94%, and AUC from 0.94 to 0.99. Finally, regarding EP, the PPV
ranged from 42% to 86%, NPV from 85% to 100%, ACC from 80% to 96%, and AUC from
0.84 to 0.99. Table 2 summarizes the performance data of the radiomics models analyzed.
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Figure 4. Corresponding SROC curve for the differentiation between MB, PA, and EP. Abbrevia-
tions: SROC = summary receiver operating characteristics; MB = medulloblastoma; PA = pilocytic
astrocytoma; EP = ependymoma.

Table 2. Summary of the performance data of the radiomics models.

Author, Journal, Year SEN SPE ACC PPV NPV AUC

MB

Dong, Acad Radiol, 2021 [14] 0.81 0.92 0.86 0.92 0.81 0.91
Dong, BJR, 2022 [15] 0.93 0.94 0.93 0.93 0.94 1.00
Fetit, NMR Biomed, 2015 [16] 0.98 0.91 0.96 0.91 1.00 0.99
Grist, Neuroimage clin, 2020 [17] NA NA NA 0.86 NA 0.80
Quon, AJNR, 2020 [18] 0.96 0.88 0.92 0.88 0.96 NA
Wang, Neurochirurgie, 2022 [19] 0.95 0.92 0.94 0.95 0.93 NA
Wang, Zhonghua Yi Xue Za Zhi, 2020 [20] 0.83 0.80 0.82 0.86 0.76 NA
Zhang, Neurosurgery, 2021 [21] 0.97 0.91 0.94 0.92 0.96 NA
Zhou, AJNR, 2020 [22] 0.91 0.81 0.85 0.75 0.94 0.94

PA

Dong, Acad Radiol, 2021 [14] - - - - - -
Dong, BJR, 2022 [15] 0.60 0.95 0.83 0.86 0.83 0.98
Fetit, NMR Biomed, 2015 [16] 0.85 0.96 0.92 0.94 0.90 0.99
Grist, Neuroimage clin, 2020 [17] NA NA NA 0.86 NA 0.80
Quon, AJNR, 2020 [18] 0.96 0.89 0.92 0.86 0.97 NA
Wang, Neurochirurgie, 2022 [19] 0.81 0.99 0.94 0.96 0.93 NA
Wang, Zhonghua Yi Xue Za Zhi, 2020 [20] 0.42 0.96 0.82 0.79 0.82 NA
Zhang, Neurosurgery, 2021 [21] 0.87 0.97 0.94 0.93 0.95 NA
Zhou, AJNR, 2020 [22] 0.95 0.83 0.88 0.77 0.97 0.94

EP

Dong, Acad Radiol, 2021 [14] 0.92 0.81 0.86 0.81 0.92 0.91
Dong, BJR, 2022 [15] 0.83 0.83 0.83 0.56 0.95 0.94
Fetit, NMR Biomed, 2015 [16] 0.71 0.95 0.92 0.71 0.95 0.99
Grist, Neuroimage clin, 2020 [17] NA NA NA 0.86 NA 0.80
Quon, AJNR, 2020 [18] 0.93 0.92 0.92 0.64 0.99 NA
Wang, Neurochirurgie, 2022 [19] 0.96 0.93 0.94 0.68 1.00 NA
Wang, Zhonghua Yi Xue Za Zhi, 2020 [20] 0.96 0.79 0.82 0.42 1.00 NA
Zhang, Neurosurgery, 2021 [21] 0.90 0.97 0.96 0.86 0.98 NA
Zhou, AJNR, 2020 [22] 0.52 0.89 0.80 0.59 0.85 0.84

Abbreviations: MB = medulloblastoma; PA = pilocytic astrocytoma; EP = ependymoma; SEN = sensitiv-
ity; SPE = specificity; ACC = accuracy; PPV = positive predictive value; NPV = negative predictive value;
NA = not available.
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3.4. Secondary Outcomes

We put into effect a moderator analysis in the form of a diagnostic bivariate meta re-
gression investigating the following factors: year of publications, best-performing classifier,
artificial intelligence paradigm (i.e., machine or deep learning), best-performing feature,
best-performing image modality and cross-validation (on/off). Our moderator analysis
could not evidence any variables to significantly impact the performance of the models.
Nonetheless, the best-performing variables for MB (ACC 96%) were the MRI T1W and T2W
sequences in combination, the LR classifier, and textural features. Conversely, the best-
performing variables for PA (ACC 94%) and EP (ACC 96%) were the MRI T2W sequence
alone, the LR and NN classifiers in combinations, and geometrical/morphological features.
Most of the studies applied a cross-validation setting (67%), although no study provides
any further validation on external datasets. Table 3 summarizes the secondary outcomes.

Table 3. Cross-validation analysis, best-performing features, and best-performing imaging modalities
of each study.

Author, Journal, Year Cross-Validation Analysis Best-Performing Features Best-Performing Imaging
Modalities

Dong, Acad Radiol, 2021 [14] Yes Geometrical/Morphological ADC
Dong, BJR, 2022 [15] Yes Voxel intensities ADC
Fetit, NMR Biomed, 2015 [16] Yes Texture T1W+T2W
Grist, Neuroimage clin, 2020 [17] Yes Mean ADC
Quon, AJNR, 2020 [18] Yes Deep features T2W
Wang, Neurochirurgie, 2022 [19] No Voxel intensities ADC
Wang, Zhonghua Yi Xue Za Zhi, 2020 [20] No NA ADC
Zhang, Neurosurgery, 2021 [21] No Geometrical/Morphological T2W
Zhou, AJNR, 2020 [22] Yes NA NA

Abbreviations: ADC = apparent diffusion coefficient; T1W = T1-weighted; T2W = T2-weighted;
NA = not available.

3.5. Study Heterogeneity

The χ2 test suggested substantial heterogeneity of SEN and SPEC for the discrimination
of MB, PA, and EP.

4. Discussion

The systematic review and meta-analysis conducted here provide substantial insights
into the promising role of radiomics in effectively differentiating between three prevalent
posterior fossa tumors in pediatric patients. We comprehensively identified and analyzed
the literature, ultimately yielding a valuable dataset of 1796 patients. The studies, spanning
2015 to 2022, collectively showcased the efficacy of radiomics in distinguishing between MB,
PA, and EP. Our analysis revealed that radiomics-based models overall have favorable SEN
and SPE in discerning these tumor types, despite variations in specific MRI sequences and
classification algorithms. Specifically, the combination of MRI T1W and T2W sequences, the
LR classifier, and textural features yielded the best results for MB. Conversely, the MRI T2W
sequence alone, a combination of LR and NN classifiers, and geometrical/morphological
features demonstrated optimal performance for PA and EP. These outcomes highlight the
potential of radiomics for accurate posterior fossa tumor classification in pediatric patients.

4.1. Radiomics Models

Our study encompassed a comprehensive analysis of 1796 patients across various
years of publication, with a notable concentration of studies emerging in 2020 (45%),
closely followed by an equitable distribution between 2021 and 2022 (22% each), and fewer
representation in 2015 (11%).

A noteworthy observation is the prevalence of ML techniques (89%) over DL ap-
proaches. This could be attributed to the relatively limited availability of large, annotated
datasets required for training deep learning models effectively [23]. As deep learning
methodologies evolve and more data become available, exploring the potential benefits
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of deep learning models in this context could provide new avenues for improving tumor
classification accuracy.

SVM and RF emerged as the most commonly employed classifiers, each utilized in 19%
of the studies. The preference for these classifiers could be attributed to their robustness
and ability to handle complex data relationships [24]. Other classifiers like kNN, LR, and
AdaBoost were also utilized, each contributing to the diversity of model architectures.

The selection of MRI sequences showcased varying preferences. The T2W sequence
was the most common choice, adopted by 25% of the studies, followed by ADC and
CE-T1W sequences at 22% and 19%, respectively.

4.2. Radiomics Performance

Our findings reveal promising results for radiomics to distinguish between MB, PA,
and EP. The overall SEN and SPE of the radiomics models for discriminating MB were
93% and 87%, respectively, while for PA, they were 83% and 95%, and for EP, 85% and
90%, respectively.

Comparing our results with the existing literature, we observed a notable improvement
thanks to the discriminative potential of radiomics models. Previous non-radiomics studies
reported a lower SEN and SPE when distinguishing between pediatric posterior fossa
tumors. For instance, one study achieved an SEN of 81.82% and an SPE of 76.47% for MB,
and an SEN of 66.67% and SPE of 89.47% for PA via ADC [25]. Similarly, another study
reported a slightly lower SEN (84.6%) and SPE (80%) to distinguish MB and PA, utilizing
DWI [26]. The radiomics-based approach demonstrates superior performance, suggesting
that the integration of advanced image analysis promises to enhance the accuracy of
tumor differentiation.

Our study demonstrated varying performance across different tumor types. The
radiomics-based models showed a higher SEN in discriminating MB, potentially due to
distinct morphological and textural features associated with this tumor type. In contrast,
the differentiation of PA and EP presented somewhat lower SEN values, which could be
attributed to their overlapping radiological characteristics and variable tumor heterogene-
ity [27]. However, despite these challenges, our study highlights that radiomics still offers
valuable discriminatory power for these complex tumor differentiations.

The study also employed SROC curves for each tumor type that depicted distinct
shapes and trends. Particularly, the SROC curve for PA exhibited a significant shift toward
the upper left corner of the plot, indicating a better diagnostic performance compared to
MB and EP. This shift suggests its potential to be more effective in correctly identifying TPs
while maintaining a reasonable level of TNs. On the other hand, the SROC curves for MB
and EP showed a slightly wider spread, with the curves extending more toward higher
FPRs or lower SEN values. The SROC curves indicated a potential for future improvement,
particularly in the discrimination of PA tumors.

While our findings indicate substantial progress in pediatric posterior fossa tumor
differentiation, there are still areas that warrant further investigation. Future studies should
focus on refining feature extraction methods, exploring hybrid approaches that integrate
radiomics with other advanced imaging techniques, and incorporating larger multicenter
datasets to enhance the generalizability of the developed models.

4.3. Determinants of Performance

While our subgroup analysis did not unveil statistically significant variables influenc-
ing the models’ performance, closer examination of the best-performing features shed light
on specific trends contributing to the enhanced ACC.

For the discrimination of MB, the combination of T1W and T2W sequences emerged as
a potent predictor, yielding an accuracy of 96%. T1W images are proficient at highlighting
anatomical structures and providing information about tissue composition, while T2W
images excel at revealing tissue contrast and edema. The association of these sequences
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could offer a comprehensive portrayal of the tumor’s structural and textural attributes,
thereby enhancing the models’ ability to discern subtle differences between tumor types.

Interestingly, the T2W sequence alone yielded the best performance for PA and EP,
achieving ACCs of 94% and 96%, respectively. The potential of the T2W sequence might
be attributed to its sensitivity in capturing variations in tissue properties, such as cystic
and necrotic regions often present in these tumor types [28,29]. The rich textural informa-
tion conveyed by the T2W sequence could facilitate the identification of unique patterns
associated with PA and EP, contributing to their successful differentiation.

Furthermore, the choice of classifiers appeared to play a role in achieving a high ACC.
The LR with NN classifiers demonstrated exceptional performance in conjunction with the
most informative sequences. LR is known for its simplicity and interpretability, making it
well-suited for scenarios where the relationships between features and outcomes can be
effectively captured linearly [30]. On the other hand, NN possess the capacity to capture
intricate non-linear patterns within data, potentially explaining their efficacy when paired
with the best-performing sequences for PA and EP [30].

The most effective features were textural and geometrical/morphological features.
Textural features play a crucial role in capturing patterns and variations in image textures.
These features provide quantitative information about the spatial arrangement of pixel
intensities in an image, reflecting the underlying tissue properties. Common textural fea-
tures are the Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run-length Matrix
(GLRLM), and Gray-Level Size Zone Matrix (GLSZM) [31]. On the other hand, geometri-
cal/morphological features capture the spatial arrangement and shape characteristics of
the regions within an image. These features can provide insights into the overall structure
of the observed objects. Typical geometrical/morphological features are compactness,
sphericity, and density [31].

Most of the studies adopted cross-validation methodologies (67%), enhancing the
reliability and generalizability of the models. Cross-validation minimizes the risk of
overfitting, a concern when dealing with relatively small datasets. By partitioning the data
into training and validation sets multiple times, cross-validation ensures that the models’
performance metrics are more reflective of their true capabilities when applied to unseen
data [32].

4.4. Limitations

Despite the number of patients included in our study, this meta-analysis was based on
retrospective cohort studies, and thus, it has limitations inherent to retrospective studies.
Given the bivariate model of the meta-analysis, we did not calculate the overall ACC for
the differentiation classes. Moreover, our subgroup analysis was limited by the number of
studies identified.

Nonetheless, to the best of our knowledge, this is the first meta-analysis to picture the
current performance of radiomics for discrimination of pediatric MB, PA, and EP of the
posterior fossa, providing cutting-edge conclusions to pilot future models.

The systematic review also included a risk of bias assessment using the NOS. The
NOS allowed for the evaluation of the quality of the included studies based on the selection
criteria, comparability of the study, and outcome assessment. This assessment ensured that
the included studies were reliable and provided robust evidence for the discrimination
between these tumors. To further reinforce the transparency of our assessment, we have
incorporated a visual representation, shown in Figure 5. This map illustrates the risk of
bias in various domains using a “traffic light plot” derived from the robvis library [33],
displaying risk judgment in each domain for every study. Green indicates low risk, yellow
suggests medium risk (i.e., some concerns), and red highlights high risk. This intuitive
graph offers a visual representation of the risk of biased judgments in each domain for
a clearer understanding of the methodological evaluation. In conjunction with these
graphical representations, our risk-of-bias assessments were conducted leveraging the RoB
2 tool [34].
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5. Conclusions

Our study revealed that radiomics-based models exhibit promising capabilities in
discriminating between the most common pediatric posterior fossa tumor types, with
modest variations in performance observed across MB, PA, and EP.

The T1W and T2W sequences, combined with the LR classifier and textural features,
yielded the highest ACC for distinguishing MB. Conversely, the T2W sequence with LR
and NN classifiers and geometrical/morphological features demonstrated the highest ACC
for PA and EP.

Despite the diversity in methodologies and study designs across the included articles,
our results consistently highlighted the potential of radiomics as a valuable non-invasive
tool for pediatric posterior fossa tumor differentiation. The variability in diagnostic per-
formance across different tumor types underscores the need for tailored approaches in
radiomics model development.

Our study encourages further refinement in feature extraction methods, the explo-
ration of hybrid imaging approaches, and the incorporation of larger multicenter datasets
to enhance model generalizability. Our insights into the significance of sequence selection,
choice of classifiers, and feature extraction guide future investigations.
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