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Simple Summary: Ovarian cancer is highly malignant with a poor prognosis, and there is still a lack
of effective treatment methods. The exploration of modulating cell death processes has facilitated
cancer treatment. Cuproptosis and ferroptosis are two novel forms of dying, and we sought to
explore new biomarkers associated with them to guide the treatment of ovarian cancer. Our study
established specific molecular types based on 39 genes related to cuproptosis and ferroptosis. And
we systematically evaluated the differences in prognosis, drugs, and immunotherapy response
between different subtypes of ovarian cancer. Molecular subtypes and risk model showed superior
prognosis prediction and immune response prediction capabilities, which can provide a reference for
personalized treatment of ovarian cancer.

Abstract: (1) Background: Ovarian cancer (OV) presents a high degree of malignancy and a poor
prognosis. Cell death is necessary to maintain tissue function and morphology. Cuproptosis and
ferroptosis are two novel forms of death, and we look forward to finding their relationship with
OV and providing guidance for treatment. (2) Methods: We derived information about OV from
public databases. Based on cuproptosis-related and ferroptosis-related genes, a risk model was
successfully constructed, and exceptional subtypes were identified. Next, various methods are
applied to assess prognostic value and treatment sensitivity. Besides, the comprehensive analysis of
the tumor environment, together with immune cell infiltration, immune function status, immune
checkpoint, and human HLA genes, is expected to grant assistance for the prognosis and treatment
of OV. (3) Results: Specific molecular subtypes and models possessed excellent potential to predict
prognosis. Immune infiltration abundance varied between groups. The susceptibility of individuals
to different chemotherapy drugs and immunotherapies could be predicted based on specific groups.
(4) Conclusions: Our molecular subtypes and risk model, with strong immune prediction and
prognostic prediction capabilities, are committed to guiding ovarian cancer treatment.

Keywords: cuproptosis; ferroptosis; ovarian cancer; prognosis; immune infiltration; immunotherapy

1. Introduction

Ovarian cancer, a malignant tumor of reproductive organs, ranks third in incidence
after cervical and uterine cancer. A total of 70% of OV patients are advanced at the
presentation, and resistance to chemotherapy drugs makes treatment options limited and
ineffective. Unfortunately, effective screening and early diagnostic measures are still lacking.
Therefore, there is an urgent need to explore pathogenesis and more effective treatments [1].

The exploration of modulating cell death processes has recently facilitated cancer
treatment, mainly including apoptosis [2], necroptosis [3], and pyroptosis [4]. Ferroptosis
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is an iron-mediated death characterized by excessive accumulation of lipid peroxides and
reactive oxygen species (ROS), ultimately leading to cell membrane damage [5,6]. As of now,
ferroptosis is regarded as a potential therapeutic target for OV. The proliferative capacity of
ovarian cancer cells is significantly inhibited by the activation of ferroptosis. Of significance,
the report has revealed that PARP inhibitors (PARPi) can also promote ferroptosis, which
provides new insights for treating OV patients with wild-type BRCA1/2 [7].

The proposal of ferroptosis has brought attention to the role of metal ions in can-
cer progression. Subsequently, Peter Tsvetkov et al. demonstrated a new type of cell
death pathway prompted by copper named cuproptosis [8]. Copper binds directly to
the lipoylated components of the tricarboxylic acid cycle (TCA) in mitochondrial respi-
ration, resulting in an abnormal accumulation of lipoylated proteins. Protein-toxic stress
responses are produced, which eventually lead to cell death. Currently, chemotherapy
is still a chief treatment for OV, and a combination of platinum and paclitaxel remains a
primary chemotherapy regimen; interestingly, previous reports have corroborated that
copper transporters have a unique contribution to platinum resistance. Ctr1, the primary
copper inflow transporter, can transport cisplatin, and the two external copper transporters,
ATP7A and ATP7B regulate cisplatin’s outflow [9,10].

In summary, both cuproptosis and ferroptosis play crucial roles in OV [11,12]. How-
ever, whether cuproptosis combined with ferroptosis-related genes can be used as a marker
of prognosis, drug sensitivity, and immunotherapy response in OV has yet to be elucidated.

Constructing molecular subtypes and exploring the characterization of the correspond-
ing immune microenvironment is extremely necessary for predicting the prognosis and
selecting treatment regimens. Therefore, this study combined genes associated with cuprop-
tosis and ferroptosis to explore their expression and roles in OV comprehensively. Specific
molecular subtypes were identified for prognosis prediction and drug response assessment.
We hope our study will guide the precise treatment of OV.

2. Materials and Methods
2.1. Data Processing

We downloaded RNASeq data and relevant clinical details from the UCSC Xena,
Genotype-Tissue Expression Project (GTEx), GDC Data Portal, and GEO databases. We
converted and normalized the FPKM values of TCGA-OV (376 OV patients) and GTEx-
ovary (88 normal samples) to TPM values and finally combined GSE26712 data (185 OV
patients) to obtain an integrated expression matrix. The clinical information of the patients
included in this experiment is shown in Supplementary Table S1. Moreover, we adopted
16 cuproptosis-related genes (CRGs) and 60 ferroptosis-related genes (FRGs) based on
previous reports [13–16], listed in Supplementary Table S2. HALLMARK gene set was
gained from the MSigDB. Tumor Immune Single Cell Hub [17] was applied to explore gene
expression at single-cell level.

The flowchart of the study design was illustrated in Figure 1.
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Figure 1. The flowchart of the study design.

2.2. Tissue Collection

Cancer and normal tissues came from ovarian cancer patients from Tongji Hospital,
Huazhong University of Science and Technology. This study was approved by the Ethical
Committee of Tongji Medical College, Huazhong University of Science and Technology
(2021-S136)

2.3. Cell Culture

Ovarian cancer cell lines C13K, OVCAR-8, HOC7, A2780, SKOV3, and ES2 were
included in our study. C13K, OVCAR-8, A2780, and HOC7 were maintained in RPMI-1640.
SKOV3 and ES2 were cultured in McCoy’5A. A humidified 5% CO2 incubator at 37 ◦C has
been utilized to culture all cells.

2.4. Real Time PCR

The TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was applied
to extract RNA, while cDNA was synthesized using HiScript III reverse transcriptase (Vazyme,
Nanjing, China). The relative mRNA expression level was measured by the 2−∆∆CT method.
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The primer sequences were FDX1-F: 5′-TTCAACCTGTCACCTCATCTTTG-3′, FDX1-R: 5′-
TGCCAGATCGAGCATGTCATT-3′; GFPT2-F: 5′-ATGTGCGGAATCTTTGCCTAC-3′, GFPT2-
R: 5′-ATCGAGAGCCTTGACTTTCCC-3′; VSIG4-F: 5′-ACCAAGACTGAGGCACCTAC-3′,
VSIG4-R: 5′-TCCAAGGTAGCCATCCATGT-3′; HOXA5-F: 5′-AACTCATTTTGCGGTCGCTAT-3′,
HOXA5-R:5′-TCCCTGAATTGCTCGCTCAC-3′; GAPDH-F:5′-GTATGACAACAGCCTCAAGAT-3′,
GAPDH-R: 5′-GTCCTTCCACGATACCAAAG-3′.

2.5. Protein Level Analysis

Western blot: After lysing cells with RIPA lysis buffer, we isolated the total protein on
SDS-polyacrylamide gel and transferred it to PVDF membranes. Antibody was purchased from
FDX1/ADX Rabbit mAb (#A20895, Abconal, Wuhan, China) and diluted in a ratio of 1:1000.

Immunohistochemical staining (IHC) and immunofluorescence (IF): After cutting the
sample tissues immersed in formalin to a thickness of 5 µm, we placed them on glass
slides. Subsequently, we blocked the tissues in goat serum for one hour with endogenous
peroxidase activity blocked. Tissues covered with the diluted anti-FDX1 at a ratio of 1:100
were stored at 4 ◦C overnight. A secondary antibody was manipulated to visualize.

2.6. Consensus Clustering and Immune Infiltration Evaluation

First, based on the TCGA-OV and GTEx-ovary, we screened out 16 differentially
expressed CRGs (Figure 2A) and 57 differentially expressed FRGs via the “limma” package
(Supplementary Figure S1A). Then the effect of 57 FRGs and 16 CRGs was evaluated on OV
prognosis through Kaplan-Meier analysis performed by the “survival” and “survminer”
R package. Finally, 39 prognosis-related genes (PRGs) were identified for our subsequent
analysis (Supplementary Table S3, Supplementary Figure S2).

The “ConsensusClusterPlus” package was used to distinguish the individuals into
exceptional subtypes according to the expression of PRGs. Similarly, KM analysis was
employed to examine curves of OS in different subtypes. Following this, we conducted
GSVA functional enrichment assay in subtypes based on the kegg.v7.4.symbols.gmt. The
“clusterProfiler” package was used to complete statistical analysis [18]. Furthermore, using
single-sample gene set enrichment analysis (ssGSEA), we examined immune cell infiltration
and TME differences in two subtypes. ESTIMATE algorithm [19] was adopted to calculate
tumor purity based on immune and stromal cell ratios for transcriptome expression data.
Next, we explored the sensitivity of subtypes to drug treatments according to the Genomics
of Drug Sensitivity in Cancer (GDSC) database [20]. Paclitaxel, Gemcitabine, Etoposide,
Docetaxel, Lapatinib, Doxorubicin, and Cisplatin were considered in our study.
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and GTEx-ovary. (B) Expression of 16 CRGs at the cellular level based on GSE156400. (C) FDX1 
expression in ovarian cell lines at the transcriptional and (D) protein levels. Immunohistochemical 
staining (E) and immunofluorescence (F) results of FDX1 protein in OV and normal samples. Orig-
inal blots see Supplementary File S1. 

The "ConsensusClusterPlus" package was used to distinguish the individuals into 
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employed to examine curves of OS in different subtypes. Following this, we conducted 
GSVA functional enrichment assay in subtypes based on the kegg.v7.4.symbols.gmt. The 

Figure 2. Expression of CRGs in OV. (A) Differential profile of expression of 16 CRGs in TCGA-OV
and GTEx-ovary. (B) Expression of 16 CRGs at the cellular level based on GSE156400. (C) FDX1
expression in ovarian cell lines at the transcriptional and (D) protein levels. Immunohistochemical
staining (E) and immunofluorescence (F) results of FDX1 protein in OV and normal samples. Original
blots see Supplementary File S1.

2.7. Identification of DEGs and Functional Enrichment Analysis

The “limma” package was used to identify the differential expression genes (DEGs)
between different subtypes with an adj. p < 0.05 and |log2FC|≥ 0.585. The “clusterProfiler”
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package was adopted for enrichment analysis to further complement the gene function
associated with DEGs.

2.8. Risk Model Construction

Prognosis-associated DEGs were confirmed by univariate Cox analysis. For a more
comprehensive evaluation, the second Consensus Clustering was computed based on these
prognosis-related DEGs to separate individuals into specific gene clusters. As mentioned
earlier, we thoroughly analyzed the differences between the immune microenvironments
of different clusters. At the same time, principal component analysis (PCA) was applied to
further compare the composition of different clusters. Ultimately, the TCIA database was
scanned to evaluate the response based on TCGA-OV.

We then attempted to construct a cuproptosis- and ferroptosis-related signature of
prognosis. First, a 1:1 ratio was considered to assign all individuals to train and test
groups randomly (Supplementary Table S4). Based on the training group, a prognostic
COX model was identified, and the test group was utilized to confirm the model’s efficacy.
To minimize the possibility of overfitting the model, the least absolute shrinkage and
selection operator (LASSO) was computed. The trajectory of change in each independent
variable was analyzed and significant genes were obtained using 10× cross-validation to
establish risk signature. Formula: risk score = Σ (gene Exp × coefi) was fulfilled using Cox
regression analysis to compute the risk score. Individuals were categorized into different
risk groups according to the median risk score of the training group, and ROC curves and
Kaplan–Meier analysis were evaluated. The R “glment” package was executed.

2.9. Risk Signature Validation

A “heatmap” package was adopted to demonstrate differences between two risk
cohorts expressing prognosis-related PRGs. Next, to evaluate the implication of clinical
features and risk score on overall survival (OS), univariate and multivariate Cox analysis
were conducted. In addition, we performed the “RMS” package to plot a nomogram
containing clinical information and risk score for predicting the OS, and the nomogram
effectiveness was evaluated using a calibration curve.

2.10. Association of Risk Model with Immune-Related Factors

The differences between immune microenvironments of the high-risk and low-risk
groups were compared by ssGSEA analysis. PCA and tSNE analysis were applied to gain a
thorough result. The “ggalluvial” package was used to draw the association among different
PRGclusters, gene clusters, risk layers, and fustat status. Next, the “estimate” package was
carried out to assess the differences between immune checkpoint gene (ICP) expression
and the immune microenvironment in the riskhigh and risklow groups. The association
between prognosis-related hub genes and immune cells was similarly explored. For Gene
Set Enrichment Analysis (GSEA), GSEA_4.2.3 was used (University of California San Diego,
La Jolla, CA, USA and Broad Institute, Cambridgeu, MA, USA). Somatic mutation profiles
in patients with different risk layers were done using the maftools program.

2.11. Drug and Immunotherapy Potential Detection in the Risk Model

The “pRRophetic” package and TCIA database were applied to detect the potential
drugs for individual treatment. Besides, the immunotherapy value of the model was
validated in the IMvigor210 cohort (a public dataset of immunotherapy for urinary urothe-
lial tumors) [21] and GSE35640 (immunotherapy dataset for metastatic melanoma and
non-small cell lung cancer).

2.12. Statistical Analysis

Pearson’s correlation coefficient test and two-tailed Student’s t-test were adopted to
conduct expression analysis. HR and p-value were used as indicators of survival. Moreover,
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data integration and processing were completed in R 4.1.2 (R Foundation for Statistical
Computing, Vienna, Austria) and R studio.

3. Results
3.1. Expression Landscape of 16 CRGs in Ovarian Cancer

We first evaluated the expression profile of 16 CRGs in ovarian cancer combined TCGA-
OV with GTEx-ovary samples. In the tumor, a heatmap revealed that DLD, PHDB, ATP7B,
SLC31A1, CDKN2A, FDX1, DLAT, ATP7A, MTF1, and DBT expression upregulated, despite
LIAS, LIPT1, GCSH, DLST, PDHA1, and GLS yielding the contrary trend (Figure 2A).

Additionally, based on GSE154600, we analyzed the expression of 16 CRGs at the
cellular level (Figure 2B).

FDX1, the dominant gene of cuproptosis, plays an essential role in cuproptosis. We
then verified the expression of FDX1 in ovarian cancer cells at the transcription and protein
levels (Figure 2C,D). The mRNA level was inconsistent with protein expression in some
cell lines, possibly due to post-transcriptional protein modifications. IHC results implied
that, in contrast to normal tissues, FDX1 expression in malignant tissues appeared to be
higher (Figure 2E). Figure 2F depicts the expression of FDX1 in OV patients.

3.2. Molecular Subtypes Identification for Prognosis Prediction

As depicted above, we finalized the identification of 39 genes for cuproptosis and
ferroptosis associated with prognosis for our subsequent analysis, including 7 CRGs and
32 FRGs, and Figure 3A demonstrates their interaction.

Based on the expression of 39 PRGs, the individuals were divided into molecular
subtypes A (n = 327) and B (n = 234) through cluster analysis (Figure 3B, Supplementary
Figure S3). The OS of individuals in the two subtypes differed significantly. Individuals
in subtype B had shorter OS (Figure 3C). Heatmap implied the expression discrepancy of
39 PRGs and their links to clinically relevant information (Figure 3D). We also explored
the differences in the expression of ICP genes between individuals with two subtypes,
and we discovered that subtype B was positively correlated with ICP (Figure 3E). In the
GSVA analysis, we found that subtype B was associated with more tumor-associated signal
pathways, such as focal adhesion and cell adhesion molecules cams pathways (Figure 3F). It
probably explained the poor prognosis for patients despite having higher levels of immune
infiltration in subtype B (Figure 3G,H). Similarly, compared with subtype A, a higher
stromal score was exhibited in subtype B.

At the same time, in drug susceptibility analysis, different subgroups responded dif-
ferently to chemotherapy drugs. Of the seven commonly used medications for OV that we
included, individuals in subtype B were sensitive to Doxorubicin and Gemcitabine, while
individuals in subtype A were more sensitive to Etoposide and Docetaxel. Unfortunately,
the two subtypes implied no significant difference in sensitivity to Cisplatin and Paclitaxel
data now shown, the first-line chemotherapy drugs for OV (Figure 3I).
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Figure 3. Prognosis subtypes identification. (A) Network diagram of 39 PRGs. (B) Consensus
matrixes for all samples were clustered into specific subtypes (k = 2). (C) Prognostic differences
between two subtypes. (D) Heatmap of the correlation of subtypes with clinical features. (E) Heatmap
of the correlation of subtypes with ICPs. (F) GSVA analysis of two subtypes. (G) Overview of immune
infiltration between the two subgroups. (* p < 0.05; ** p < 0.01; *** p < 0.001). (H) Different subtypes
differ in immune microenvironment scores (stromal and immune scores). (*** p < 0.001). (I) Sensitivity
of subtypes to the chemotherapeutic drugs.

3.3. Secondary Clustering: Prognostic-Related DEGs Identification; Quantifying Cuproptosis and
Ferroptosis Patterns Substantiate Strong Support for Predicting Prognosis

First, we obtained 322 DEGs based on the gene expression between two subtypes
(Figure 4A). Subsequently, GO enrichment analysis was scanned to explore further the
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gene function associated with DEGs. The results implied DEGs were intimately related to
extracellular matrix organization (Figure 4B).

Figure 4. Prognosis-related gene clusters identification. (A) The DEGs of subtype A and subtype B.
(B) GO analysis of 322 DEGs. (C) The consensus matrix identifies two gene clusters (k = 2). (D) PCA
analysis demonstrated significant transcriptome differences between the two clusters. (E) Gene
clusters were closely related to OS in OV. (F) GSVA analysis of the KEGG pathways in gene clus-
ters. (G) Different clusters differ in TME scores (stromal score and immune score). (*** p < 0.001).
(H) Immune function analysis of two sets. (* p < 0.05; *** p < 0.001).
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We then strived to search prognosis-related DEGs by applying univariate Cox regres-
sion analysis and eventually screened out 152 genes associated with prognosis. Subse-
quently, according to the expression of the 152 genes, we assigned individuals to gene
cluster A (n = 298) and B (n = 263) using Consensus Clustering analysis (Figure 4C,
Supplementary Figure S4). And considerable differences existed between the two groups
in the PCA model (Figure 4D). Meanwhile, the gene cluster presented an excellent predic-
tive value for individual survival. In the KM analysis of OS, the survival time of group B
was significantly extended. (Figure 4E).

Like PRGcluster, functional analysis outcomes implied group A was positively con-
nected with tumor-related pathways, such as KEGG-pathways-in-cancer and KEGG-cell-
adhesion-molecules-cams (Figure 4F). Of note, while group A individuals have higher
levels of immune infiltration, more matrix components in the immune microenvironment
were occupied (Figure 4G,H). Similarly, in drug susceptibility analysis, we found differ-
ences in the sensitivity of individuals in the two clusters to chemotherapy drugs. Group B
patients were more likely to benefit from Etoposide and Paclitaxel.

For the A cluster, Gemcitabine and Docetaxel were better options (Figure 5A). Further-
more, many chemotherapy-resistant patients have demonstrated immune checkpoint block
(ICB) efficacy against PD-1/PD-L1 and CTLA4 [22,23]. Reassuringly, cluster A presented a
better therapeutic response (Figure 5B).

3.4. Prognostic Risk Model Establishment

We randomly divided individuals into train (n = 264) and test (n = 264) groups on
average. Among them, the training group was utilized for subsequent analysis. We applied
LASSO regression to analyze the 152 DEGs checked above. As illustrated in Supplementary
Figure S5A, the trajectory of change in each independent variable was analyzed. After
cross-validation, we identified nine genes (GFPT2, OLFML3, VSIG4, ADH1B, STAB1, ID1,
HOXA5, CXCL9, and LYPD1) for the later multivariate Cox regression analysis. In the end,
five genes were recognized as significant prognostic factors and measured in constructing
the predictive risk model. The risk score was computed based on the formula: Risk score =
(0.2720×GFPT2 expression) + (0.2125× VSIG4 expression) + (0.1053×HOXA5 expression)
+ (–0.2408 × CXCL9 expression) + (–0.0705 × LYPD1 expression) (Figure 5C–E).

3.5. The Risk Model Performs A Substantial Predictive Prognostic Value

For the entire set, through KM analysis, it was observed that OS was considerably
prolonged in the low-risk group (Figure 5F). According to the ROC curve, the prognostic
model possessed a satisfying potential to predict 1, 3, and 5-year OS values (Figure 5G).
The results of PCA and tSNE analysis for the high- and low-risk groups are displayed in
Figure 5H,I. Specific details of the train and test sets were displayed in Supplementary
Figure S5B. Figure 5J was drafted using the “ggalluvial” package to visually analyze the
connections between PRGclusters, gene clusters, risk layers, and survival status. Risk
scores differed significantly between the two PRGclusters and gene clusters (Figure 5K).
Patients with PRGcluster B and gene cluster A had significantly higher risk scores.

Notably, with univariate and multivariate Cox analysis, we determined a unique
contribution of risk scores for predicting OS (Figure 6A, all p < 0.001). In addition, as
illustrated in Figure 6B, we defined a nomogram to predict the OS better. The closer the
calibration curve is to the diagonal, the better the predictive performance of the nomogram
(Figure 6C). Subsequently, we assessed the clinical characteristics of patients in different
risk groups (Figure 6D).
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Figure 5. Construction of risk model associated with CRGs and FRGs. (A) Sensitivity of two gene-
clusters to the chemotherapeutic drug commonly targeted OV. (B) Response of different clusters to
immune checkpoint inhibitors. (C) Exhibition of a risk model in the entire cohort. (D) Overview of
the survival time and status of the entire cohort between the two risk groups. (E) A heatmap of 5 hub
genes expression in the entire cohort. (F) Differences in OS between different risk groups in the entire
set. (G) ROC analysis predicts OS at 1, 3, and 5 years according to the risk score in the entire set.
(H) PCA and (I) tSNE analysis results for different risk layers in the entire set. (J) Association with
PRGcluster, gene cluster, risk score, and survival outcome. (K) Distribution profile of risk scores in
different PRGsubtypes and gene clusters.
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Figure 6. The predictive value of the risk model. (A) Uni-Cox and multi-Cox analysis between OS
and related factors. (B) A nomogram was established for OS prediction. (** p < 0.01; *** p < 0.001).
(C) Calibration curve for evaluating nomogram performance. (D) Overview of clinical information
for different risk individuals. (E) Correlation of five hub genes and immune cell infiltration. (F) Risk
score correlation of immune infiltration abundance.
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3.6. Immune Infiltration Abundance in the Risk Model

First, we analyzed the link between five dominant genes used to build the model and
immune infiltration. We found that CXCL9 regulated a positive role in immunity; as shown
in Figure 6E, CXCL9 was positively correlated with M1, CD8+T cells, dendritic cells (DC),
CD4+T cells, and Th cells. In contrast, VSIG4 and GFPT2 were associated with M2 and
negatively correlated with activated NK cells.

Tumor-associated macrophages (TAMs) are involved in the formation of the TME. They
are widely present in various tumors to promote tumor growth, invasion, metastasis, and
drug resistance. M1 maintains an anti-tumor effect, while M2 promotes cancer proliferation
and aggression, and the two forms are in a state of continuous transition [24,25]. Through the
CIBERSORT algorithm, we noticed an inverse connection between risk score with macrophage
M1 and trended positively with M2. Similarly, the risk score is negatively connected with
CD8+T cells, CD4+T cells, and NK cells (Figure 6F, Supplementary Figure S6).

Furthermore, we probed that infiltration of immune cells was more significant in the
low-risk group, including CD8+T cells, NK cells, DC cells, Th1, and Th2 cells. A similar
phenomenon also appeared in the analysis of immune function; abundant, powerful anti-
tumor immune functions were generated in the low-risk cohort (Figure 7A,B).

HLA genes control mutual recognition between cells and regulate the immune re-
sponse. In addition, prior investigations have queried that the abnormal expression of
HLA genes is highly associated with OV. For example, one of the mechanisms of ovarian
cancer evading immune surveillance is to upregulate human leukocyte antigen-G (HLA-G)
expression [26,27]. Hence, we explored the expression of HLA genes in different risk layers
to help treat OV. Results showed that individuals with low scores showed a notable increase
in HLA gene expression (Figure 7C). Moreover, the expression of ICP genes was remarkably
upregulated in the low-risk cohort (Figure 7D).

3.7. Benefits from Drugs and Immunotherapy

In our experiment, IMvigor210 and GSE35640 data were referenced for validating
the correlation between risk scores and ICB responses, and we were pleased to find that
immunotherapy was more effective in the low-risk cohort. (Figure 7E). Additionally, in-
dividuals with low-risk scores responded stronger to receiving anti-PD1, anti-CTLA4, or
anti-PD1 and anti-CTLA4 combination therapy (Figure 7F). The drug sensitivity analy-
sis strengthens that, except for Docetaxel, chemotherapy drugs were more sensitive to
individuals in the low-risk group (Figure 7G).
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Figure 7. Comprehensive analysis of the TME of risk cohorts. (A,B) Differences in immune cell infiltra-
tion and immune function between two risk groups. (C) The two groups have differences in immune
HLA gene expression and (D) ICP gene expression. (* p < 0.05; ** p < 0.01; *** p < 0.001). (E) Validate
the predictive value of the model in the immunotherapy group. (F) Immunotherapy responsiveness
of the two groups. (G) Association between risk score and susceptibility to chemotherapy.

3.8. Somatic Mutation, TMB, Stemness Scores Analysis

Figure 8A,B shows that low-risk individuals owned a higher somatic mutation fre-
quency (97.46% vs. 94.74%). Additionally, TP53 is the most commonly mutated gene, and
TP53 mutations are present in at least 80% of patients with OV. Especially in high-grade
serous ovarian cancer, about 96% of patients are reported to occur TP53 mutations [28,29].
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In our model, TP53 occupied the highest mutation frequency in both groups, 90% in the
low-risk cohort and 83% in the high-risk set.

Likewise, predicting the efficacy of ICB still needs a definitive biomarker. TMB, consistent
with PD-L1 expression, is a proxy for neoantigen burden. Clinical studies have exhibited that
patients with lower TMB levels have more prolonged survival and higher response rates after
ICB treatment [30]. In our study, although the difference in TMB was not prominent, we still
observed that individuals with low scores and high TMB retained a longer OS (Figure 8C–F).
Furthermore, a significant negative correlation was presented in the correlation analysis of the
risk score with tumor stemness scores (Figure 8F, R = 0.39, p < 0.001).

Figure 8. Comprehensive analysis of the risk model in OV. (A,B) Somatic mutation landscape in different
risk sets. (C) TMB comparison of two groups. (D,E) Relevance of TMB and risk scores to prognosis.
(F) Correlation of risk scores and Stemness Scores. (G) KEGG pathways enriched in the high-risk set.
(H) GO-BP enrichment results in the low-risk cohort. (I) The expression of five hub genes is based on
GSE154600. (J) Verification of three hub genes’ expression in ovarian cancer cell lines.
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Subsequently, we found that the high-risk cohort enriched multiple tumor-associated
pathways through the KEGG pathway analysis. In contrast, the low-risk cohort enriched
more immune-related pathways via GO-BP analysis (Figure 8G,H).

In summary, individuals with low scores had a higher degree of immune infiltration,
a stronger response to drugs and immunotherapy, and a longer survival time.

3.9. Expression Verification of Five Hub Genes at the Cell Level

As a supplement, we validated the expression of five dominant genes at the cell level
relying on GSE154600. As Figure 8I depicted, GFPT2 was mainly expressed in fibroblasts,
VSIG4 and CXCL9 were primarily expressed in monocytes, and LYPD1 was expressed in
malignant epithelial tissues. As for HOXA5, it was weakly expressed on both fibroblasts
and monocytes. Finally, we selected three genes in the model and verified their expression
in ovarian cancer cell lines (Figure 8J).

4. Discussion

Ovarian cancer is the deadliest gynecological malignancy with an alarmingly poor
prognosis due to late detection and chemotherapy resistance. The concept of molecular
typing provides a new basis for exploring heterogeneity, prognostic assessment, and
individualized treatment options in OV. Therefore, we urgently need to construct molecular
subtypes to provide more personalized treatment options and prolong OS.

Although numerous studies have shown the importance of cuproptosis and ferropto-
sis in OV, there are currently no studies that combine the two for a more comprehensive
analysis. Here, 76 CRGs and FRGs were included in this study. We aggregated data from
GTEx-ovary, TCGA-OV, and GSE26712 for systematic analysis. The prognosis-related
subtypes were established based on the expression of 39 PRGs selected from 76 FRGs and
CRGs. The prognosis and TME of individuals varied significantly between subtypes. Simul-
taneously, OV individuals were divided into gene clusters for more thorough consideration.
Depending on the molecular subtypes, the prognosis and drug sensitivity of individuals
could be better predicted.

Furthermore, LASSO and Cox regression analysis identified a risk model centered
on GFPT2, VSIG4, HOXA5, CXCL9, and LYPD1. Patients were split into different risk
layers. Remarkably, individuals with lower risk scores displayed a stronger correlation
with immune-related factors and made it easier to benefit from chemotherapy and im-
munotherapy, explaining why the low-risk group presented a more satisfying outcome
than the high-risk group. Moreover, ICP genes expressed drastically enhanced, including
PD-L1 and PD-1 in the low-risk group. Conversely, the high-risk group was associated
with more carcinogenic mechanisms via GSEA_4.2.3.

In the past few years, molecularly targeted therapies and immunotherapies have led
to longer-term survival for OV patients. For example, as a key signaling factor affecting
angiogenesis, vascular endothelial growth factor receptor (VEGFR) has become an important
target against tumors [31]. However, primary and acquired resistance is also emerging. In
recent years, the immunosuppressive effect of VEGF has been gradually elucidated [32].
The study has reported increased Tregs infiltration and enhanced expression of PD-L1 in
tumor tissues after receiving antiangiogenic therapy [33]. The functional inhibition of T cells
and the inhibitory effect of myeloid-derived suppressor cells (MDSCs), mast cells, and DCs
deserve our attention, so the combination therapy of VEGFR inhibitors and immunotherapy
is a research direction worth exploring [34]. Moreover, clinical studies of anti-PD-1/PD-L1
also suggest that high PD-L1 expression appears more responsive in OV [35]. In our study,
differences in PD-L1 expression and immune status of individuals in different molecular
types showed good differentiation, which has relatively far-reaching implications.

However, some limitations remain in this study. First, only 76 CRGs and FRGs were
considered. But in clinical trial design and enrolments, we should think more about
genome-directed stratification. Currently, genetic testing is recommended for front-line
treatment in OV, including BRCA1/2, HRD, PALB2, BARD1, etc. Studies have proved
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that higher mutational burden and PD-L1 expression in ovarian cancer are associated with
BRCA mutations [36], which may make these cancers more suitable for ICB therapy [37].
Additionally, wild-type BRCA ovarian cancer is known to be more aggressive and has a
worse prognosis, especially in HRD-negative patients. Therefore, in the future, we will
fully consider the BRCA status of patients and try to provide more effective personalized
treatment for patients. In a word, more consideration should be taken in the future. Second,
this study solely pertains to conducting superficial experimental verification, and we need
more experiments to verify the biological function of the five core genes in the model.
Third, the correlation between cuproptosis and the carcinogenic mechanism of OV deserves
further exploration, which in turn provides a new approach to treating OV.

5. Conclusions

Our study is the first to combine CRGs with FRGs to explore their roles in OV. We
performed cluster analyses twice to confirm different molecular types based on the genes
associated with cuproptosis and ferroptosis. A risk model of five dominant genes was
established through Lasso analysis. The results show that our molecular subtypes and risk
model present potential prognosis and immune prediction ability. This study aimed to
provide a reference for the individualized treatment of patients with ovarian cancer.
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