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Figure S1. Comparison between depth measures: scatterplots of the Mahalanobis, Tukey, Simplicial 
depths on non-standardized data (left panel) compared to standardized data (right panel). Of note, 
Mahalanobis measure provides more dispersed results with respect to Tukey and Simplicial depths, 
whether they are applied to standardize data or not. Tukey depth values are flatted towards zero, 
while Simplicial depths assume more discrete values, due to rounding policies. Regardless of the 
depth definition, radiomic views present very low correlations, with higher values between GLRLM 
and GLZLM. 
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Figure S2. Dependency of information provided by the radiomic views, according to ranking agree-
ment analysis (SuperRanker). The sequential rank agreement (sra) methods for comparison of 
ranked lists was used: the sra metrics is the pooled standard deviation of the sets of items ranked 
less than or equal to a value d in any of the ranking lists. The sra metrics can be analyzed by letting 
d vary from 0 to the number of elements to compare. Values of sra close to zero at any depth d 
suggest that the ranking lists agree while larger values suggest disagreement. In figure, the sra rank 
agreement plot for Mahalanobis and Halfspace depths on both non standardized (left) and stand-
ardized data (right) is displayed: in none of the four cases plots are close to zero. This disagreement 
should not be interpreted as absence of correlation between the radiomic groups, which was proved 
to be positive; instead, the ranking of lesions induced by view-specific depths is never equal, as 
expected, suggesting that radiomic groups capture different, yet not independent, aspects of texture 
description. 
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Figure S3. Lesions’ similarity-based clustering was doublechecked with a ranking aggregation pro-
cedure. Specifically, depth measures of lesions were transformed into ordered lists as to sort obser-
vations from the more central to the furthest. Each lesion was thus described by six positional in-
dexes, one per radiomic group, providing a ranking of observations. The package RankAggreg was 
used to perform aggregation of the ranking lists using two different aggregating algorithms – Cross-
Entropy Monte Carlo (CE) algorithm and Genetic algorithm (GA) – and two types of distances – 
Spearman footrule and Kendall’s tau. The aggregated ranking list provides the consensus among 
all radiomic views of the lesions’ ordering and was used to confirm the similarity between lesions 
and their clustering in phenotypes. In figure, the radiomic-specific rankings of the n lesions of one 
sample patient are aggregated in four super ranking lists through the four weighted rank aggrega-
tion algorithms: lesions are then ordered from the deepest (Rank 1) to the outer (Rank 10). Colors 
delimit the three clusters of phenotypes as computed by the clustering similarity measures. Of note, 
lesions with consecutive ranks are found within the same cluster, enforcing the imaging subtyping 
policy. The same checking procedure was carried out successfully in each patient. 


