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Simple Summary: Head and neck tumors (HNTs) are associated with a high mortality due to
their commonly insidious and asymptomatic development. Regarding risk stratification and long-
term patient outcome prediction, routine clinical evaluation by radiologists has several limitations.
Numerous researchers have assessed the usefulness of radiomics and artificial intelligence in the
context of head and neck tumor imaging given the exponential development of these technologies in
medical imaging. These were geared at the creation of reliable and reproducible models based on
quantitative data. Even if there are still a few obstacles to their widespread usage in clinical practice,
it is clear that they have the potential to be revolutionary. In this paper, we provide a thorough
overview of radiomics and artificial intelligence applications in head and neck tumor imaging.

Abstract: Recent advances in machine learning and artificial intelligence technology have ensured
automated evaluation of medical images. As a result, quantifiable diagnostic and prognostic biomark-
ers have been created. We discuss radiomics applications for the head and neck region in this paper.
Molecular characterization, categorization, prognosis and therapy recommendation are given special
consideration. In a narrative manner, we outline the fundamental technological principles, the overall
idea and usual workflow of radiomic analysis and what seem to be the present and potential chal-
lenges in normal clinical practice. Clinical oncology intends for all of this to ensure informed decision
support for personalized and useful cancer treatment. Head and neck cancers present a unique
set of diagnostic and therapeutic challenges. These challenges are brought on by the complicated
anatomy and heterogeneity of the area under investigation. Radiomics has the potential to address
these barriers. Future research must be interdisciplinary and focus on the study of certain oncologic
functions and outcomes, with external validation and multi-institutional cooperation in order to
achieve this.

Keywords: head and neck tumors; radiomics; diagnostic imaging; artificial intelligence

1. Introduction

Head and neck tumors (HNTs) account for over 830,000 cases annually worldwide [1]
and are associated with a high mortality due to their commonly insidious and asymptomatic
development. This often leads to a late diagnosis of disease, in more advanced stages.
HNTs comprise a large spectrum of tumors and tumor-like conditions [2], which can
arise from different tissues included in this anatomical region, such as paranasal sinuses,
pharynx, oral cavity, larynx, thyroid, lymph nodes and associated soft tissues and bones.
Squamous cell carcinomas (SCCs) represent the most common histological type, accounting
for 90% of all HNTs [3]. Risk factors include tobacco and alcohol use [4] as well as, more
recently identified, human papillomavirus (HPV) infection [5]. The latter represents the
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main cause of an increasing incidence of head and neck squamous cell carcinoma (HNSCC)
in the USA [6], mainly consisting of oropharyngeal squamous cell carcinoma (OPSCC)
and nasopharyngeal carcinoma (NPC). Among HNSCCs, NPC represents a peculiar entity
with a distinct epidemiology. It is a rare malignant epithelial tumor [7] arising from
the superior region of the pharynx’s mucosa, usually from the lateral pharyngeal recess
(i.e., Rosenmüller’s fossa) [8], with evidence of squamous differentiation. An interplay
of different causes is involved in the etiology of this disease, including genetic, viral and
environmental risk factors, such as nitrosamine-containing food consumption and smoking.
Its strong association with the Epstein–Barr virus infection makes the incidence of NPC
significantly higher in some endemic regions, including southeast Asia and China [9].
According to the 2017 World Health Organization (WHO) Classification of HNTs, NPCs
are classified into three subtypes, non-keratinizing (NK-NPC), keratinizing (K-NPC) and
basaloid [10], as also confirmed in the recent 5th edition of the WHO Classification. NK-
NPC represents the most common histologic subtype. Magnetic resonance imaging (MRI) is
the modality of choice for diagnosis, staging and in the evaluation of response to treatment
in HNTs, as its high soft tissue contrast allows a more accurate delineation of tumor
margins compared to computed tomography (CT) and spectral photon-counting CT [11].
Furthermore, the emerging field of radiomics has shown that a large amount of additional
quantitative information, otherwise undetectable, can be extracted from medical images of
these patients.

Radiomics is a quantitative method of approaching medical imaging, which seeks to
augment the data already available to doctors through sophisticated mathematical analysis.
Using analytical techniques, radiomics quantifies textural information by mathematically
extracting the spatial distribution of signal intensities and pixel inter-relationships [12].
Numerous imaging studies from different fields have already been published using this
approach. The use of radiomics in the study of the head and neck region, particularly
for neoplastic pathology, is one of the newer use areas. This is achievable through the
characterization of pixel gray level distribution patterns, which can then be analyzed by
machine-learning (ML) algorithms, potentially providing information on tumor physiology,
which could have an important impact on the management and improve prognosis of these
tumors in the near future. Figure 1 shows a classic “radiomic workflow” involving a series
of steps for reproducible and consistent extraction of imaging data. These steps include
image acquisition, feature extraction and feature selection. This may be possible through
deep-learning (DL) radiomics, handcrafted radiomics and delta radiomics.

Based on how images are converted into data that can be mined, radiomics has two
primary branches: “deep-learning” and “handcrafted radiomics”. In contrast to deep learn-
ing, which uses complex networks to “extract and analyze” its own features, handcrafted
features are obtained by formulae that are mostly based on intensity histograms, shape
attributes and texture matrices, which can be used to identify phenotypical properties of
the radiological image [13]. Delta radiomics is the study of characteristics throughout time
and how they change in order to predict a patient’s response to treatments [14]. Finally, the
selected features are used to test the final model.

In this review, we will provide an overview of radiomics and machine-learning studies,
focusing on the different research areas in which these techniques can be implemented in
relation to HNTs, such as lesion segmentation, grading, differential diagnosis, prediction
of prognosis, evaluation of treatment response and prediction (Figure 2). Tables 1 and 2
present a summary of the studies discussed in the text, arranged by subtopic.
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Figure 1. The “radiomic workflow” involves a series of iterative steps for reproducible and consistent
extraction of imaging data. These steps include image acquisition, feature extraction and feature
selection. This may be possible through deep-learning radiomics, handcrafted radiomics and delta
radiomics. Finally, the selected features are used to test the final model.

Figure 2. The outline of our paper is shown in Figure 2. In particular, we describe the main steps of a
radiomic workflow (segmentation and characterization) in order to obtain predictions of survival,
metastasis and recurrence, and treatment responses.
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Table 1. Overview of study characteristics, divided by topic.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint
Statistical
Findings Conclusion

Segmentation

C. Parmar et al. Robust
Radiomics Feature

Quantification Using
Semiautomatic

Volumetric
Segmentation [15]

20 Lung NSCLC CT Segmentation

56 3D radiomic
features,

quantifying
phenotypic

differences based
on tumor

intensity, shape
and texture

Radiomic features extracted
from 3D slicer

segmentations had
significantly higher

reproducibility, were more
robust and overlapping
with the feature ranges
extracted from manual

contouring.

Kuhl, C.K.; Truhn, D.
The Long Route to

Standardized
Radiomics: Unraveling

the Knot from the
End [16]

51 Soft-tissue
sarcoma

CT, MRI and
PET Segmentation 169 preselected

features

167 features demonstrated
good to excellent

reproducibility and 71 were
reproducible after a

comprehensive inter- and
intra-CT image acquisition

analysis.

Gitto, S. et al. Effects of
Interobserver Variability
on 2D and 3D CT- and

MRI-Based Texture
Feature Reproducibility
of Cartilaginous Bone

Tumors [17]

30 Bone tumors CT and MRI Segmentation
783 and 1132
features were

extracted

The features extracted were
reproducible.

3D and 2D MRI-based
texture analyses provided

similar rates of stable
features.

Huan Yu et al.
Coregistered FDG

PET/CT-Based Textural
Characterization of

Head and Neck Cancer
for Radiation Treatment

Planning [18]

40

Head and
neck cancer

and lung
cancer

F-FDG PET
and CT Segmentation Texture features

Gray-tone difference
matrices (NGTDM)

(PET coarseness, PET
contrast and CT coarseness)

provided good
discrimination performance.

Yu, H. et al. Automated
Radiation Targeting in

Head-and-Neck Cancer
Using Region-Based

Texture Analysis of PET
and CT Images [19]

10 Head and
neck cancer

F-FDG PET
and CT Segmentation

Co-registered
multimodality

pattern analysis
segmentation

system
(COMPASS)

Tumor delineation was
similar to those of the
radiation oncologists.

Characterization

Buch, K. et al. Using
Texture Analysis to
Determine Human

Papillomavirus Status
of Oropharyngeal

Squamous Cell
Carcinomas on CT [20]

40 Oropharyngeal
carcinoma CT Characterization

A t-test evaluated
differences in 42
texture features

between
HPV-positive and

-negative
carcinoma

There are statistically
significant differences in

some texture features
between human-

papillomavirus-positive and
human-papillomavirus-
negative oropharyngeal

tumors.

Fujita, A et al.
Difference Between
HPV-Positive and

HPV-Negative
Non-Oropharyngeal

Head and Neck
Cancer [21]

46

Oral cavity,
larynx and

hypopharynx
cancer

CT Characterization

Texture analysis
program

extracted 42
texture features

16 texture parameters
showed significant

differences in relation to
HPV status.

Vallieres, M. et al.
FDG-PET

Image-Derived Features
Can Determine HPV

Status in
Head-and-Neck

Cancer [22]

67 Hypopharynx FDG-PET Characterization

Six texture
features, two SUV

measures and
three shape

features were
extracted, and

logistic regression
and support

vector machine
were performed

It is possible to predict HPV
status and treatment failure

in HNSCC using a
combination of FDG-PET

texture and morphological
features.
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Table 1. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint
Statistical
Findings Conclusion

Payabvash, S. et al.
Differentiation of
lymphomatous,
metastatic, and
non-malignant

lymphadenopathy in
the neck with
quantitative

diffusion-weighted
imaging: Systematic

review and
meta-analysis [23]

Review (27
studies and

1165 patients)

Neck lymph
nodes

MRI
(Diffusion
Weighted
Imaging,

DWI)

Characterization

Random-effects
models,

pooled diagnostic
odds ratio (DOR),
summary receiver

operating
characteristics
(sROC), area

under the curve
(AUC) were
determined

Quantitative valuation of
ADC can help with

differentiation of cervical
lymph nodes.

Lower ADC values are
linked to malignancy and

HPV positive status.

Payabvash, S. et al.
Quantitative diffusion

magnetic resonance
imaging for prediction

of human
papillomavirus status in

head and neck
squamous-cell

carcinoma: A systematic
review and

meta-analysis [24]

Review (5
studies and

264 patients)
HNSCC MRI (DWI) Characterization Meta-analysis

HPV-positive HNSCC
primary lesions have lower

ADC.

Marzi, S.et al.
Multifactorial Model

Based on
DWI-Radiomics to

Determine HPV Status
in Oropharyngeal

Squamous Cell
Carcinoma [25]

144 Oropharyngeal
carcinoma MRI (DWI) Characterization

Different families
of

machine-learning
(ML) algorithms

and five-fold
cross-validation

DWI-based radiomics can
help in differentiating

HPV-positive from
HPV-negative patients.

Suh, C.H. et al.
Oropharyngeal
squamous cell

carcinoma: Radiomic
machine-learning

classifiers from
multiparametric MR

images for
determination of HPV

infection status [26]

60 Oropharyngeal
carcinoma MRI Characterization

1618 quantitative
features

extraction,
features selection,

three
machine-learning
classifiers (logistic

regression,
random forest
and XG boost)

The highest diagnostic
accuracies were achieved
when using all sequences,

and the difference was
significant only when the

combination did not include
the ADC map.

Sohn, B. et al. Machine
Learning Based
Radiomic HPV
Phenotyping of

Oropharyngeal SCC: A
Feasibility Study Using

MRI [27]

62 Oropharyngeal
carcinoma MRI Characterization 170 radiomic

features

Six radiomic features with
strong association with HPV
status of SCC were selected

using least absolute
shrinkage and selection

operator (LASSO).

Aerts, H.J.W.L. et al.
Decoding tumour

phenotype by
noninvasive imaging
using a quantitative

radiomics approach [28]

1019
Lung or head-

and-neck
cancer

CT Characterization 440 features

Some radiomic features had
prognostic power associated

with underlying gene
expression patterns.

Zwirner, K. et al.
Radiogenomics in head

and neck cancer:
Correlation of radiomic

heterogeneity and
somatic mutations in

TP53, FAT1 and
KMT2D [29]

20 HNSCC CT Characterization
Radiomic features

and genetic
analysis

Somatic mutations in FAT1
and smaller primary tumor

volumes were associated
with reduced radiomic

intra-tumor heterogeneity.
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Table 1. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint
Statistical
Findings Conclusion

Huang, C. et al.
Development and

validation of radiomic
signatures of head and

neck squamous cell
carcinoma molecular

features and
subtypes [30]

113 HNSCC CT Characterization
540 features,

logistic
regression, AUC

Quantitative image features
can distinguish several
molecular phenotypes.

Zhu, Y. et al.
Imaging-Genomic
Study of Head and

Neck Squamous Cell
Carcinoma:

Associations Between
Radiomic Phenotypes

and Genomic
Mechanisms via

Integration of The
Cancer Genome Atlas

and The Cancer
Imaging Archive [31]

126 HNSCC CT Characterization

Linear regression
and gene set
enrichment

analysis

Associations between
genomic features and

radiomic features

Chen, R.-Y. et al.;
Associations of Tumor

PD-1 Ligands,
Immunohistochemical
Studies, and Textural
Features in 18F-FDG

PET in Squamous Cell
Carcinoma of the Head

and Neck [32]

53 HNSCC 18F-FDG PET Characterization

Associations of
tumor PD-1

ligands, immuno-
histochemical
studies and

textural features

PD-L1 expressions were
positively correlated with

Ki-67 c-Met and p16.

Brown, A.M. et al.;
Multi-institutional

validation of a novel
textural analysis tool for

preoperative
stratification of

suspected thyroid
tumors on

diffusion-weighted
MRI [33]

Thyroid
tumors MRI (DWI) Characterization 21 textural

features

Textural analysis (TA) could
characterize thyroid nodules

using diffusion-weighted
MRI (DW-MRI).

Jansen, J.F. Texture
analysis on parametric

maps derived from
dynamic

contrast-enhanced
magnetic resonance
imaging in head and

neck cancer [34]

19 HNSCC

Dynamic
contrast

enhanced
(DCE)-MRI

Characterization

Image texture
analysis was
employed on
maps of Ktrans

and ve,
generating two

texture measures

Chemoradiation treatment
in HNSCC significantly

reduced the heterogeneity
of tumors.

Kim, S. et al. Prediction
of Response to

Chemoradiation
Therapy in Squamous
Cell Carcinomas of the
Head and Neck Using

Dynamic
Contrast-Enhanced MR

Imaging [35]

33 HNSCC DCE-MRI Characterization

The data were
analyzed by

using SSM for
estimation of

Ktrans, ve and τi

Pretreatment DCE-MR
imaging can potentially be

used for prediction of
response to chemoradiation

therapy.
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Table 1. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint
Statistical
Findings Conclusion

Shukla-Dave et al.
Dynamic

Contrast-Enhanced
Magnetic Resonance

Imaging as a Predictor
of Outcome in

Head-and-Neck
Squamous Cell

Carcinoma Patients
with Nodal

Metastases [36]

64 HNSCC DCE-MRI Characterization

DCE-MRI data
were analyzed
using the Tofts

model

Important role of
pretreatment DCE-MRI

parameter K{sup trans} as a
predictor of outcome

Dang, M. et al.; MRI
Texture Analysis

Predicts p53 Status in
Head and Neck
Squamous Cell
Carcinoma [37]

16 HNSCC MRI Characterization Texture analysis MR imaging texture analysis
predicted p53 status.

Staging

Wang, F. et al. Radiomic
Nomogram Improves

Preoperative T Category
Accuracy in Locally

Advanced Laryngeal
Carcinoma [38]

211 Laryngeal
carcinoma CT Staging

1390 radiomic
features

extracted and
analyzed

Eight features were found
associated with

preoperative T category.

Ren, J. et al.; Magnetic
resonance imaging

based radiomics
signature for the

preoperative
discrimination of stage
I-II and III-IV head and

neck squamous cell
carcinoma [39]

127 HNSCC MRI Staging

Radiomics
signatures were
constructed with

least absolute
shrinkage and

selection operator
(LASSO) logistic
regression and

analyzed

Radiomics signature based
on MRI could discriminate
stage I–II from stage III–IV

HNSCC.

Romeo, V. et al.
Prediction of Tumor

Grade and Nodal Status
in Oropharyngeal and

Oral Cavity
Squamous-cell

Carcinoma Using a
Radiomic

Approach [40]

40
Oropharyngeal

oral cavity
carcinoma

CT Staging TA features
Tumor grade (TG) and

nodal status (NS) could be
predicted.

Wang, H. et al.; Machine
learning-based

multiparametric MRI
radiomics for predicting

the aggressiveness of
papillary thyroid

carcinoma [41]

120
Papillary
thyroid

carcinoma
MRI Staging 1393 features

Aggressive and
non-aggressive PTC could

be distinguished
preoperatively through
machine-learning-based

multiparametric MR
imaging radiomics.
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Table 2. Overview of study characteristics, divided by topic.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Treatment

Fave X et al.
Delta-radiomics features

for the prediction of
patient outcomes in

non-small cell lung cancer
[42]

107 NSCC (lung) CT

Overall survival,
distant

metastases and
local recurrence

Multivariate models were
built for overall survival,

distant metastases and local
recurrence using only clinical

factors, clinical factors
combined with pretreatment

radiomics features, and a
combination of clinical
factors, pretreatment

radiomics features and delta
radiomics features

For overall survival and
distant metastases,

pretreatment compactness
improved the c-index. For

local recurrence,
pretreatment imaging

features were not prognostic,
while texture strength
measured at the end of
treatment significantly

stratified high- and low-risk
patients.

Jansen JF et al. Texture
analysis on parametric

maps derived from
dynamic

contrast-enhanced
magnetic resonance

imaging in head and neck
cancer [34]

19 HNSCC CT and
MRI

Prediction of
treatment
response

Image texture analysis was
employed on maps of Ktrans

and Ve, generating two
texture measures: energy (E)

and homogeneity

Chemoradiation treatment in
HNSCC significantly reduced
the heterogeneity of tumors.

Brown AM et al.
Multi-institutional

validation of a novel
textural analysis tool for

preoperative stratification
of suspected thyroid

tumors on
diffusion-weighted

MRI [33]

44 Thyroid
cancer MRI Preoperative

stratification

Apparent diffusion
coefficients (ADCs) were
obtained from regions of
interest (ROIs) defined on

thyroid nodules. TA, linear
discriminant analysis (LDA)
and feature reduction were
also performed using the 21
MaZda-generated texture

parameters that best
distinguished benign and

malignant ROIs

TA classified thyroid nodules
with high sensitivity and

specificity.

Zhang B et al. Radiomics
Features of

Multiparametric MRI as
Novel Prognostic Factors

in Advanced
Nasopharyngeal
Carcinoma [43]

118 Nasopharynx
carcinoma MRI Progression-free

survival (PFS)

A total of 970 radiomics
features were extracted from

T2-weighted (T2-w) and
contrast-enhanced

T1-weighted (CET1-w) MRI.
Least absolute shrinkage and
selection operator (LASSO)
regression was applied to

select features for
progression-free survival

(PFS) nomograms

Multiparametric MRI-based
radiomics nomograms

provided improved
prognostic ability in

advanced NPC.

Wang, G et al.
Pretreatment MR imaging
radiomics signatures for
response prediction to

induction chemotherapy in
patients with

nasopharyngeal
carcinoma [44]

120 Nasopharynx
carcinoma MRI

Pretreatment
prediction of

early response to
induction

chemotherapy

Radiomics signatures were
obtained with the least
absolute shrinkage and

selection operator method
(LASSO) logistic regression

model

Pretreatment morphological
MR imaging radiomics

signatures can predict early
response to induction

chemotherapy in patients
with NPC.

Liu, J et al. Use of texture
analysis based on

contrast-enhanced MRI to
predict treatment response
to chemoradiotherapy in

nasopharyngeal
carcinoma [45]

53 Nasopharynx
carcinoma MRI

Pretreatment
prediction of
response to

chemotherapy

Quantitative image
parameters were extracted
and statistically filtered to

identify a subset of
reproducible and

non-redundant parameters,
which were used to construct

the predictive model.
Internal validation was

performed using stratified
10-fold cross-validation in the

training set, and external
validation was performed in
the testing set. McNemar’s

test was used to test the
statistical difference between

the performances of the
extracted parameters in
predicting the treatment

response

Texture analysis based on T1
W, T2 W and DWI could act

as imaging biomarkers of
tumor response to

chemoradiotherapy in NPC
patients.
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Table 2. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Romeo, V. et al. Prediction
of Tumor Grade and Nodal

Status in Oropharyngeal
and Oral Cavity

Squamous-cell Carcinoma
Using a Radiomic

Approach [40]

40

Oropharyngeal
(OP) and oral
cavity (OC)
squamous-

cell
carcinoma

(SCC)

CT

Prediction of
tumor grade (TG)
and nodal status

(NS)

CT images were
post-processed to extract TA
features from primary tumor
lesions. A feature selection
method and different ML

algorithms were applied to
find the most accurate subset
of features to predict TG and

NS

A radiomic ML approach
applied to PTLs was able to

predict TG and NS in patients
with OC and OP SCC.

Hawkins, P.G. et al.
Sparing all salivary glands

with IMRT for head and
neck cancer: Longitudinal
study of patient-reported

xerostomia and
head-and-neck quality of

life [46]

252 HNSCC Radiation
Therapy

Prediction of
xerostomia

Longitudinal regression was
used to assess the

relationship between
questionnaire scores and

mean bilateral parotid gland
(bPG), contralateral

submandibular gland (cSMG)
and oral cavity (OC) doses.

Marginal R2 and Akaike
information criterion (AIC)

were used for model
evaluation

Reducing doses to all salivary
glands maximized PROMs. A

cSMG dose constraint of
≤39Gy did not increase

failure risk.

Sheikh, K. et al. Predicting
acute radiation induced
xerostomia in head and

neck Cancer using MR and
CT Radiomics of parotid

and submandibular
glands [47]

266 HNSCC CT and
MRI

Prediction of
xerostomia

CT and MR images were
registered, on which glands

were contoured. Image
features were extracted for

glands relative to the location
of the primary tumor.

Dose-volume-histogram
(DVH) parameters were also

acquired. Features were
preselected based on
Spearman correlation

Baseline CT and MR image
features may reflect baseline
salivary gland function and
potential risk of radiation

injury.

Liu, Y. et al. Early
prediction of acute
xerostomia during

radiation therapy for
nasopharyngeal cancer

based on delta radiomics
from CT images [48]

35 Nasopharynx
cancer CT Prediction of

xerostomia

RidgeCV and recursive
feature elimination (RFE)

were used for feature
selection, while linear

regression was used for
predicting SA30F

Investigating
radiation-induced changes of
computed tomography (CT)
radiomics in parotid glands

(PGs) and saliva amount (SA)
can predict acute xerostomia

during the RT for
nasopharyngeal cancer

(NPC).

van Dijk, L.V. et al. Parotid
gland fat related Magnetic

Resonance image
biomarkers improve

prediction of late
radiation-induced

xerostomia [49]

68 HNSCC MRI Prediction of
xerostomia

The performance of the
resulting multivariable

logistic regression models
after bootstrapped forward

selection was compared with
that of the logistic regression

reference model

Pretreatment MR-imaging
biomarkers were associated

with radiation-induced
xerostomia, which supported

the hypothesis that the
amount of predisposed fat

within the parotid glands is
associated with Xer12m. In

addition, xerostomia
prediction was improved

with MR-IBMs compared to
the reference model.

van Dijk, L.V. et al. CT
image biomarkers to

improve patient-specific
prediction of

radiation-induced
xerostomia and sticky

saliva [50]

249 HNSCC CT Prediction of
xerostomia

The potential IBMs represent
geometric, CT intensity and
textural characteristics of the
parotid and submandibular

glands. LASSO
regularization was used to

create multivariable logistic
regression models, which

were internally validated by
bootstrapping

Prediction of XER12m and
STIC12m was improved by

including IBMs representing
heterogeneity and density of

the salivary glands,
respectively. These IBMs
could guide additional

research into the
patient-specific response of
healthy tissue to radiation

dose.

Thor, M. et al. A magnetic
resonance imaging-based

approach to quantify
radiation-induced normal
tissue injuries applied to
trismus in head and neck

cancer [51]

10 HNSCC MRI Prediction of
trismus

Univariate logistic regression
with bootstrapping (1000

populations) was applied to
compare the muscle mean
dose and textures between

cases and controls (ipsilateral
muscles); candidate

predictors were suggested
with an average p ≤ 0.20

across all bootstrap
populations

TA identified the critical
muscle(s) for

radiation-induced trismus.
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Table 2. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Abdollahi, H. et al.
Cochlea CT radiomics

predicts
chemoradiotherapy

induced sensorineural
hearing loss in head and
neck cancer patients: A
machine learning and

multi-variable modelling
study [52]

47 HNSCC CT
Prediction of
sensorineural
hearing loss

Different ML algorithms and
LASSO logistic regression

were implemented on
radiomic features for feature
selection, classification and

prediction

A combination of radiomic
features with clinical and
dosimetric variables can

model radiotherapy outcome,
such as sensorineural hearing

loss.

Kann, B.H. et al.
Pretreatment Identification
of Head and Neck Cancer

Nodal Metastasis and
Extranodal Extension
Using Deep Learning
Neural Networks [53]

270 HNSCC CT

Identification of
metastasis

(nodal metastasis
and tumor
extranodal
extension)

Three-dimensional
convolutional neural network

using a dataset of 2,875
CT-segmented lymph node

samples with correlating
pathology labels,

cross-validated and tested on
a blinded test set

The model has the potential
for clinical decision making.

Kann, B.H. et al.
Multi-Institutional
Validation of Deep

Learning for Pretreatment
Identification of

Extranodal Extension in
Head and Neck Squamous

Cell Carcinoma [54]

200 lymph
nodes HNSCC CT

Identification of
metastasis

(extranodal
extension ENE)

Deep-learning algorithm
performance

Deep learning successfully
identified ENE in

pretreatment imaging.

Zhang, L. et al.
Development and

validation of a magnetic
resonance imaging-based

model for the prediction of
distant metastasis before

initial treatment of
nasopharyngeal carcinoma:

A retrospective cohort
study [55]

176 Nasopharyngeal
carcinoma MRI Identification of

metastasis

Features of primary tumors
were extracted; then,

minimum
redundancy–maximum
relevance, LASSO and

selection operator algorithms
were performed. To select the
strongest features, a logistic

model for DM prediction was
built

The model could be used as a
prognostic model and can

improve treatment decisions.

Bogowicz, M. et al.
Computed Tomography
Radiomics Predicts HPV
Status and Local Tumor
Control After Definitive
Radiochemotherapy in

Head and Neck Squamous
Cell Carcinoma [56]

149 HNSCC CT

Prediction of local
tumor control
(LC) after ra-

diochemotherapy
and HPV status

317 CT radiomic features
were calculated. Cox and
logistic regression models

were built. The quality of the
models was assessed using
the concordance index (CI)

for modeling of LC and
receiver operating

characteristics area under the
curve (AUC)

Heterogeneity of HNSCC
tumor density is associated

with LC after
radiochemotherapy and HPV

status.

Li, S. et al. Use of
Radiomics Combined With
Machine Learning Method
in the Recurrence Patterns
After Intensity-Modulated

Radiotherapy for
Nasopharyngeal

Carcinoma: A Preliminary
Study [57]

306 Nasopharyngeal
carcinoma MRI, PET

Prediction of
recurrence and
radio resistance

1117 radiomic features were
quantified from the tumor

region intraclass correlation
coefficients (ICC), and

Pearson correlation
coefficient (PCC) was

calculated to identify the
influential feature subset.
Kruskal–Wallis test and

receiver operating
characteristic (ROC) analysis
were employed to assess the

ability of each feature in
NPC-in-field recurrences

prediction. Artificial neural
network (ANN), k-nearest

neighbor (KNN) and support
vector machine (SVM)

models were trained and
validated by using stratified

10-fold cross-validation

In-field and high-dose region
relapses were the main

recurrence patterns, which
may be due to the

radioresistance. After
integration with the clinical

workflow, radiomic analyses
can serve as imaging

biomarkers to facilitate early
salvage for NPC patients
who are at risk of in-field

recurrence.

Kuno, H. et al. CT Texture
Analysis Potentially

Predicts Local Failure in
Head and Neck Squamous

Cell Carcinoma Treated
with

Chemoradiotherapy [58]

62 HNSCC CT Prediction of
local failure Texture analysis

Independent primary tumor
CT texture analysis features

are linked to local failure
after chemoradiotherapy in

patients with HNSCC.
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Table 2. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Metastases and Recurrence

MDACC Head.
Investigation of radiomic

signatures for local
recurrence using primary
tumor texture analysis in
oropharyngeal head and
neck cancer patients [59]

465 Oropharyngeal
cancer

CT, MRI,
PET

Prediction of
local recurrence

Two texture analysis features
from pre-therapy imaging

were extracted, and the
resultant groups were

analyzed

There is robust
discrimination of recurrence
probability and local control

rate (LCR) differences
between “favorable” and
“unfavorable” clusters.

Zhang, L. et al. Radiomic
Nomogram: Pretreatment

Evaluation of Local
Recurrence in

Nasopharyngeal
Carcinoma based on MR

Imaging [60]

140 Nasopharyngeal
carcinoma MRI Prediction of

local recurrence

970 radiomic features were
extracted. Univariate and

multivariate analyses were
used. Eight CET1-w image

features and seven T2-w
image features were selected
to build a Cox proportional

hazard model in the training
cohort

This study demonstrates that
MR-imaging-based radiomics

can be used to categorize
patients into low- and

high-risk groups.

Survival

Shen, H. et al. Predicting
Progression-Free Survival

Using MRI-Based
Radiomics for patients

with nonmetastatic
Naso-pharyngeal
Carcinoma [61]

327 Nasopharynx
carcinoma MRI

Prediction of
progression-free
survival (PFS)

The clinical and MRI data
were collected. The least

absolute shrinkage selection
operator (LASSO) and

recursive feature elimination
(RFE) were used to select
radiomic features. Five

models were constructed.
The prognostic performances

of these models were
evaluated by Harrell’s

concordance index (C-index).
The Kaplan–Meier method

was applied for the survival
analysis

The model incorporating
radiomics, overall stage and

Epstein–Barr virus DNA
showed better performance

in predicting PFS in
non-metastatic NPC patients.

Yuan, Y. et al. MRI-based
radiomic signature as
predictive marker for

patients with head and
neck squamous cell

carcinoma [62]

85 HNSCC MRI Prediction of
prognosis

LASSO Cox regression model
was used to select the most
useful prognostic features

with their coefficients, upon
which a radiomic signature

was generated

MRI-based radiomic
signature is an independent

prognostic factor for HNSCC
patients.

Parmar, C. et al. Radiomic
Machine-Learning

Classifiers for Prognostic
Biomarkers of Head and

Neck Cancer [63]

196 HNSCC CT Prediction of
overall survival

A total of 440 radiomic
features were extracted from
the segmented tumor regions

in CT images. Feature
selection and classification
methods were compared

using an unbiased evaluation
framework

The study identified
prognostic and reliable

machine-learning methods
for the prediction of overall
survival of head and neck

cancer patients.

Agarwal, J.P. et al. Tumor
radiomic features

complement
clinico-radiological factors

in predicting long-term
local control and

laryngectomy free survival
in locally advanced
laryngo-pharyngeal

cancers [64]

60 Laryngopharynx
cancer CT

Prediction of
long-term local

control and
laryngectomy-
free survival

(LFS)

The ability of texture analysis
to predict LFS or local control

was determined using
Kaplan–Meier analysis and

multivariate Cox model

Medium texture entropy is a
predictor for inferior local

control and
laryngectomy-free survival in

locally advanced
laryngo-pharyngeal cancer,
and this can complement

clinico-radiological factors in
predicting the prognosis of

these tumors.

Liu, Z. et al.
Radiomics-based

prediction of survival in
patients with head and

neck squamous cell
carcinoma based on pre-

and post-treatment
18F-PET/CT [65]

171 HNSCC PET-CT Prediction of
survival

Receiver operating
characteristic (ROC) curves
and decision curves were

used to compare the
predictions of ML models

with those of a model
incorporating only

clinicopathological features

Combining
clinicopathological
characteristics with

radiomics features of
pre-treatment PET/CT or
post-treatment PET/CT

assessment of primary tumor
sites as positive or negative
may substantially improve

the prediction of overall
survival and disease-free

survival of HNSCC patients.
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Table 2. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Metastases and Recurrence

Zhai, T.-T. et al. The
prognostic value of

CT-based
image-biomarkers for head

and neck cancer patients
treated with definitive
(chemo-)radiation [66]

444 HNSCC CT

Prediction of
local control (LC),
regional control

(RC), distant-
metastasis-free

survival (DMFS)
and disease-free
survival (DFS)

Models were created from
multivariable Cox

proportional hazard analyses
based on clinical features and
IBMs for LC, RC, DMFS and

DFS

For prediction of HNC
treatment outcomes, image
biomarkers performed as

well or slightly better than
clinical variables.

Leijenaar, R.T.H. et al.
External validation of a

prognostic CT-based
radiomic signature in

oropharyngeal squamous
cell carcinoma [67]

542 Oropharyngeal
carcinoma CT Prognosis

prediction

Signature model was tested
and fit in a Cox regression

and assessed model
discrimination with Harrell’s

c-index. Kaplan–Meier
survival curves between high

and low signature
predictions were compared

with a log-rank test

Signature had significant
prognostic power, regardless
of whether patients with CT

artifacts were included.

Liu, J. et al. Use of texture
analysis based on

contrast-enhanced MRI to
predict treatment response
to chemoradiotherapy in

nasopharyngeal
carcinoma [45]

53 Nasopharyngeal
carcinoma MRI Treatment

prediction

Quantitative image
parameters were extracted
and statistically filtered to

identify a subset of
reproducible and

non-redundant parameters,
which were used to construct

the predictive model.
McNemar’s test was used to
test the statistical difference
in predicting the treatment

response

Texture analyses based on T1
W, T2 W and DWI could act

as imaging biomarkers of
tumor response to

chemoradiotherapy in NPC
patients and serve as a new
radiological analysis tool for

treatment prediction.

Bogowicz, M. et al.
Perfusion CT radiomics as

potential prognostic
biomarker in head and

neck squamous cell
carcinoma [68]

45 HNSCC
CT

perfusion
(CTP)

Prediction of local
tumor control

Each feature was assigned to
a principal component group

based on feature–principal
component correlation.

Univariate Cox regression
analysis was used to define

the best prognostic feature in
each group

CTP radiomics is a
prognostic factor for local

tumor control after definitive
radiochemotherapy.

Zhang, H. et al. Locally
Advanced Squamous Cell

Carcinoma of the Head
and Neck: CT Texture and
Histogram Analysis Allow
Independent Prediction of

Overall Survival in
Patients Treated with

Induction
Chemotherapy [69]

72 HNSCC CT Prediction of
overall survival

CT texture and histogram
analyses of primary mass on
pretherapy CT images were

performed by using TexRAD
software before and after

application of spatial filters at
different anatomic scales,

ranging from fine detail to
coarse features. Cox

proportional hazards models
were used to examine the

association between overall
survival and the baseline CT
imaging measurements and

clinical variables

Independent of tumor size, N
stage and other clinical

variables, primary mass CT
texture and histogram

analysis parameters were
associated with overall

survival in patients with
locally advanced squamous
cell carcinoma of the head
and neck who were treated

with induction TPF.

Mao, J. et al. Predictive
value of pretreatment MRI
texture analysis in patients

with primary
nasopharyngeal
carcinoma [70]

79 Nasopharyngeal
carcinoma MRI

Prediction of
progression-free
survival (PFS)

The Cox proportional
hazards model was used to
determine the association of

texture features, tumor
volume and the tumor node
metastasis (TNM) stage with

PFS. Survival curves were
plotted using the

Kaplan–Meier method. The
prognostic performance was
evaluated with the receiver

operating characteristic
(ROC) analyses and C-index

A texture parameter of
pretreatment CE-T1WI-based

uniformity improved the
prediction of PFS in NPC

patients.
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Table 2. Cont.

Article Number of
Patients Subsite Imaging Analyzed

Endpoint Statistical Findings Conclusion

Metastases and Recurrence

Cheng, N.-M. et al.
Textural Features of

Pretreatment 18 F-FDG
PET/CT Images:

Prognostic Significance in
Patients with Advanced
T-Stage Oropharyngeal

Squamous Cell
Carcinoma [71]

70 Oropharyngeal
carcinoma PET-CT Prediction of

prognosis

Uniformity extracted from
the normalized gray-level

co-occurrence matrix
represents an independent

prognostic predictor in
patients with advanced

T-stage OPSCC

Uniformity extracted from
the normalized gray-level

co-occurrence matrix
represents an independent

prognostic predictor in
patients with advanced

T-stage OPSCC.

Park, V.Y. et al. Association
Between Radiomics

Signature and Disease-Free
Survival in Conventional

Papillary Thyroid
Carcinoma [72]

768 Thyroid
carcinoma Ultrasound

Identification of
biomarkers for

risk stratification

A radiomics signature
(Rad-score) was generated by

using the least absolute
shrinkage and selection

operator (LASSO) method in
Cox regression

Radiomics features from
pretreatment US may be

potential imaging biomarkers
for risk stratification in

patients with conventional
papillary carcinoma.

Zdilar, L. et al. Evaluating
the Effect of

Right-Censored End Point
Transformation for

Radiomic Feature Selection
of Data From Patients With
Oropharyngeal Cancer [73]

529 Oropharyngeal
carcinoma -

Prediction of
overall survival

(OS) and
relapse-free

survival (RFS)

Radiomic signatures
combined with clinical

variables were used for risk
prediction. Three metrics for

accuracy and calibration
were used to evaluate eight

feature selectors and six
predictive models

Random regression forest
and random survival forest
performed best for OS and

RFS, respectively.

Zhuo, E.-H. et al.
Radiomics on

multi-modalities MR
sequences can subtype

patients with
non-metastatic

nasopharyngeal carcinoma
(NPC) into distinct

survival subgroups [74]

658 Nasopharyngeal
carcinoma MRI

Revelation of
distinct survival

subtypes

Each patient in the validation
cohort was assigned to the

risk model using the trained
classifier. Harrell’s

concordance index (C-index)
was used to measure the

prognosis performance, and
differences between

subgroups were compared
using the log-rank test

Quantitative
multi-modalities MRI image
phenotypes revealed distinct

survival subtypes.

Haider, S.P. et al. Potential
Added Value of PET/CT
Radiomics for Survival
Prognostication beyond

AJCC 8th Edition Staging
in Oropharyngeal

Squamous Cell
Carcinoma [75]

311 Oropharyngeal
carcinoma CT/ PET

Definition of
staging scheme

for survival
prognostication

and risk
stratification

Harrell’s C-index quantified
survival model performance;

risk stratification was
evaluated in Kaplan–Meier

analysis

Radiomics imaging features
extracted from pretreatment

PET/CT may provide
complementary information
to the current American Joint
Committee on Cancer staging

scheme for survival
prognostication and risk

stratification of
HPV-associated OPSCC.

Leijenaar, R.T. et al.
Development and

validation of a radiomic
signature to predict HPV

(p16) status from standard
CT imaging: A multicenter

study [76]

778 Oropharyngeal
carcinoma CT

Identification of
the HPV status
(p16) of OPSCC
and prognosis

Multivariable modeling was
performed using least

absolute shrinkage and
selection operator.

Kaplan–Meier survival
analysis was performed to
compare HPV status based
on p16 and radiomic model

predictions

Radiomics has the potential
to identify clinically relevant

molecular phenotypes
influencing the prognosis.

2. Segmentation

Grouping portions of a picture that belong to the same class of objects is known as
segmentation. Because it establishes a tumor’s region of interest (ROI), from which imaging
data are collected and processed into machine-readable quantitative attributes, segmenta-
tion is essential to the creation of a radiomic workflow. Depending on the approach used,
the tumor lesion may be delineated as a two-dimensional or three-dimensional ROI or
volume of interest (VOI), respectively [77]. Segmentation can be performed with different
methods: manual, semi-automatic and automatic. There are advantages and disadvantages
of each method [78]. Precision definitions of ROIs and/or VOIs are possible with manual
segmentation using a mouse or a graphic tablet, especially when trained radiologists apply
it to small datasets. However, this method involves time-consuming procedures and may
be subject to high intra- and inter-observer variability, resulting in bias in radiomic pipeline
results. Applying algorithms that make use of various image delineation strategies, such as
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region-growing, level set, graph cut and active contour (snake) techniques, is the process of
semi-automatic segmentation [79]. Despite the fact that this technique reduces labor tasks
and improves radiomic feature robustness [15], the stability of radiomic models remains
susceptible to subjective bias, especially in cases of intensive user correction. Medical image
segmentation has recently used a completely automated technique. In the identification and
segmentation of lesions, it has shown excellent results, and it has also eliminated potential
intra- and inter-observer differences [78]. Large data requirements and the generalizability
of the taught algorithms are the key drawbacks [79]. On the one hand, these approaches
could help reduce the workload and increase reproducibility in craft radiomic research.
On the other hand, they do not need picture segmentation for classification. Given the
absence of standardized segmentation techniques, which might result in inconsistently
replicable models, tumor segmentation presents a significant barrier to the robustness
of radiomic characteristics, particularly for manual and semi-automated approaches [15].
Indeed, emerging exploratory work has been aimed at assessing the extent to which the
stability of radiomic features may be affected by segmentation variability [17]. Texture
analysis has also been applied to create automated segmentation models. Using radiomics
to distinguish between normal and pathologic tissue in HNTs, Yu et al. developed a multi-
variate model, which could identify pathological pixels using a combination of positron
emission tomography (PET) and CT gray-tone difference features [18]. Using this approach,
a co-registered multimodality pattern analysis segmentation system (COMPASS) has been
developed to identify the radiation therapy target using PET and CT images. This is able
to identify the tumoral area with results comparable to manual segmentation by expert
radiation oncologists [19], possibly reducing inter-observer variability and improving treat-
ment planning accuracy. In a recently published paper, Prezioso et al. provide another
example of automatic segmentation of head and neck lesions using a DL-based framework
for automatic segmentation of salivary gland tumors [80].

3. Characterization

Recent radiomics research works have demonstrated the correlation between bio-
imaging traits (human papilloma virus (HPV) status, somatic mutations, methylation,
subtypes of gene expression and PD-L1 protein expression levels) in HNSCC. The subject
that has generated the most attention among them is HPV status. Younger patient age
at presentation, unique tumor morphology (smaller original tumors, significant cervical
adenopathy) and a better response to radiation treatment are all related to the virus’ ex-
istence [81]. If supported by sufficient evidence, radiomics-based biomarkers could be
used in the future as a viable alternative to confirm HPV status after positive p16 immuno-
histochemical tests [81]. Several studies have been conducted to define HPV status in
HNSCC using texture analysis. To date, the majority of these have investigated the value
of CT-based radiomics. For example, both Buch et al. and Fujita et al. examined the associ-
ation of individual texture features with HPV status. The first research group identified
three features (histogram-derived median and entropy and gray-level co-occurrence matrix
(GLCM) entropy) on contrast-enhanced CT images of primary oropharyngeal squamous
cell carcinoma, which showed statistically significant differences in relation to patient HPV
status [20]. Similarly, Fujita et al. were able to identify 16 texture parameters with the
potential to distinguish HPV status in non-oropharyngeal carcinoma [21]. Regarding other
imaging modalities, Vallieres et al. reported on the value of Fludeoxyglucose (FDG)-PET
features as HPV status biomarkers when used in combination with different machine-
learning algorithms [22]. With regard to MRI-based biomarkers, some studies assessed
that MRI radiomics models could be used in future as an effective imaging biomarker
to confirm HPV status after positive p16 immunohistochemical tests [81]. Differences
in the apparent diffusion coefficient (ADC) value have been reported in some previous
MRI-based studies [23,24,82]. Moreover, Marzi et al. obtained good results in differentiat-
ing HPV status in OPSCC using a multifactorial model incorporating diffusion-weighted
imaging (DWI) and clinical features. They extracted first- and second-order radiomic
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features from ADC maps and trained different machine-learning algorithms from that
dataset [25]. Chong Hyun Suh et al. conducted a retrospective study in 60 patients with
new histological diagnosis of OPSCC. They manually delineated the tumor area in four
sequences (axial T1 weighted images (WI), fat-suppressed T2 WI, axial fat-suppressed
contrast-enhanced T1 WI and ADC maps from DWI) and then demonstrated that three
machine-learning classifiers (logistic regression, random forest and XGboost) trained with
quantitative radiomics features extracted from those variously combined sequences were
accurate in predicting HPV status [26]. Additionally, Sohn et al. developed a model for
diagnosing HPV status in patients with oropharyngeal cancer using six MRI radiomic
features (post-contrast 3D T1WI and T2 WI sequences) [27]. Beyond HPV status, the use of
radiomics biomarkers has also been proposed to identify HNSCC molecular subtypes in
several studies. Aerts et al. [28] associated three radiomics features with the presence of
mutations in as many driver genes (TP53, FAT1 and KMT2D) and found that FAT1 had a
significant association with all of them [29]. Huang et al. [30] studied several molecular
HNSCC “phenotypes” (five DNA methylation subtypes, four previously identified HNSCC
gene expression subtypes and five common somatic gene mutations) and considered 540
CT radiomics features extracted from pretreatment scans of 113 patients. Zhu et al. [31]
reported a correlation between radiomic features extracted from contrast-enhanced CT
images and genome data in a public cohort of 126 HNSCC patients, identifying over 5000
statistically significant associations. Interestingly, Chen et al. [32] reported a significant
association between FDG PET textural features and expression of PD-L1, which correlate
with response to PD-1 blockers, such as nivolumab or pembrolizumab [83], in patients
with oropharyngeal and hypopharyngeal SCC. In the field of preoperative stratification of
thyroid tumors, an algorithm that used linear discriminant analysis focused on DWI and
ADC data was proposed. The authors report a greater performance of textural features
in differentiating between benign and malign lesions (area under the curve (AUC) = 0.97,
sensitivity = 92%, specificity = 96%) compared to ADC alone (AUC = 0.73, sensitivity = 70%,
specificity = 63%) [33]. Jansen et al. analyzed the parametric maps of Ktrans and Ve, which
are indices of tumor vascularity, in HNSCC patients before and during the treatment,
obtained with dynamic contrast-enhanced perfusion imaging. They showed a significantly
higher energy feature in the scans performed during the treatment, suggesting that texture
analysis could be used together with standard MRI perfusion maps to provide additional
information in head and neck oncological patients [34–36]. In addition, some studies aim to
predict p53 status, as a positive status is associated with poor prognosis [84–86]. Dang et al.
showed that MRI texture analysis could predict p53 status in oropharyngeal squamous cell
carcinoma with an accuracy of 81.3% (p < 0.05). The variables that stood out significantly
were those thought to be due to differences in vascularity between p53(+) and p53(−)
status [37].

4. Staging

Pre-treatment staging is an important point in diagnosis and therapeutic planning,
as well as a factor closely related to tumor prognosis. The main treatment is surgery, but
there are also several treatment options, including induction chemotherapy, concomitant
chemoradiotherapy, targeted therapy or immunotherapy [87,88]. Studies have shown that
the T-stage of head and neck tumors and lymph node status greatly influence the treatment
choice, and thus, the prognosis of cancer patients [89,90]. Prior to therapy, a reliable
radiomics evaluation of the tumor’s stage can assist direct treatment decisions, ensuring
lower risk of adverse effects and recurrence. Radiomics could be used to successfully
establish a T-staging model of locally progressed laryngeal cancer [88]. In particular,
MRI radiomic signature was shown to be a supplemental tool for preoperative staging,
differentiating stage III–IV from stage I–II squamous cell carcinoma [89]. Romeo et al. [40]
predicted tumor grade and lymph node status (N) in squamous cell carcinoma of the
oropharynx and oral cavity using a radiomic approach based on contrast-enhanced CT
images. The determination of extra-nodal extension (ENE) of the tumor is important,
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since it represents an unfavorable prognostic factor and is associated with a higher risk
of developing recurrent disease [91], as will be discussed in the next sections. Finally,
a prospective study of a cohort of 96 patients with papillary thyroid carcinoma (PTC)
enrolled patients who underwent neck MRI and subsequent thyroidectomy during the
study interval. Aggressive and non-aggressive cancers can be distinguished using machine-
learning MRI-based prediction algorithms. This is crucial before surgery, since it makes it
easier to create individualized treatment strategies [91].

5. Treatment

Leaving out the prediction of surgical treatment outcomes (which can be predicted
by the surgeon based on planned resection according to current guidelines), it would be
appropriate to focus on the predictive ability of radiomics models regarding radiotherapy
and chemotherapy outcomes [42].

5.1. Pre- and Intra-Treatment Imaging

Oncologists can devise individualized treatment plans and implement preventative
measures to enhance therapy outcome and patient’s tolerance to therapy.

During radiation therapy (RT) for NSCLC, features computed from pre-treatment and
weekly intra-treatment CT alter dramatically [42].

Cone beam CT (CBCT) systems may be able to conduct delta radiomics for image-
guided radiation, enabling extensive research on tumor response to total dose, fractionation
and fraction dosage. It has been demonstrated that repeatable characteristics from CBCT are
just as effective in predicting overall survival in NSCLC patients as features from CT [92].
However, studies on CBCT delta radiomics are still only capable of evaluating repeatability
and feasibility.

During pre- and intra-treatment evaluations, the preferred MRI sequences differed
across investigations. The sequences selected vary, though; for instance, some authors
utilize DCE-MRI to integrate pharmacokinetic modeling [34], while others employ DWI
to increase the precision of lesion stratification [33]. The repeatability of pictures and, by
extension, the textural qualities obtained from them may vary between MRI modalities in
addition to sequence selection due to differences in scanner features. The possibility of bias
from characteristics taken from a single sequence can be decreased using multiparametric
techniques [43].

5.2. Short-Term Outcome and Adverse Events

A few studies aiming to estimate early response to induction chemotherapy and
chemoradiotherapy (CRT) [44,45] in nasopharyngeal carcinoma have been conducted. In
addition, it might also be useful to predict outcomes in adjacent non-cancerous tissues,
such as glandular tissues (parotid and major salivary glands). A general decrease in parotid
tissue complexity and heterogeneity has been observed in the literature [90]. The change
in mean volume and intensity was found to be correlated with pre-treatment dosimetric
parameters, suggesting a relationship between the dose schedule and estimated structural
change after radiotherapy [93].

5.3. Long-Term Outcome and Adverse Events

CRT represents a usual treatment regimen [91]; however, adverse symptoms are
occasionally seen, even in the long term. These include hearing loss, trismus and xerostomia.
Radiation xerostomia is a common side effect and poses a challenge in the long-term
management of patients [46,94]. A number of studies with heterogeneous endpoints
have been performed in this regard: Sheikh et al. [47] predicted a binary endpoint of
xerostomia at 3 months after radiation therapy; Liu et al. [48] applied regression analysis
for the prediction of acute xerostomia; van Dijk et al. [49,50] used three different imaging
modalities (CT, MRI, FDG-PET) for the classification of the binary outcome of long-term
xerostomia. Although these results appear promising, their clinical application is limited
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due to lack of external validation, heterogeneity in image processing, statistical analysis
and treatment outcome measures. Trismus may result from involvement of masticatory
muscles in radiation therapy treatment fields, surgery or tumor invasion into mastication
structures, or neural innervation of masticatory muscles [95]. Thor et al. [51] compared
24 imaging features extracted from post-contrast T1 WI sequences of four masticatory
muscles in 10 patients with radiation-induced trismus after treatment with 10 control
subjects. The medial pterygoid muscle was shown to have the greatest radiomic predictor
discriminative capacity. The outcome is not statistically significant, but it may be a hint
of how well radiomic biomarkers can predict post-radiation trismus. Cochlear radiomics
may be used to anticipate hearing loss brought on by chemotherapy and radiation therapy,
according to Abdollahi et al. They showed that the combination of radiomic features with
clinical and dosimetric variables can predict radiotherapy-induced neural sensory hearing
loss.

In the context of long-term outcome, we reserve the right to address “metastases and
recurrence” and “survival” separately in the following sections.

6. Metastases and Recurrence

ENE of cervical lymph node metastases is an adverse prognostic feature linked to a
higher probability of recurrent illness. This supports the use of chemotherapy in combi-
nation with adjuvant radiotherapy [40]. In individuals who are likely to need adjuvant
chemoradiation, the detection of ENE might assist direct treatment decisions, lower morbid-
ity and prevent surgery. Quantitative imaging methods were created and validated by Kann
et al. for the identification of ENE prior to surgery [51,95]. On contrast-enhanced CT images,
they segmented more than 600 lymph nodes and extracted 99 radiomic characteristics.
These provided AUC values for ENE identification and lymph node metastases detection
close to 0.9 by training ML classifiers. These results highlight the potential for quantitative
imaging to enhance radiologist’s performance and guide the treatment of HNSCC. Zhang
et al. [55] developed a model for pre-treatment risk assessment of distant metastasis in
patients with nasopharyngeal carcinoma using MRI. They extracted 2780 radiomic features,
among which 7 were selected to build a logistic regression model to classify patients at low
or high risk of distant metastasis. They trained the model using a retrospective cohort of 123
untreated patients with non-metastatic status (AUC 5.827) and validated the trained model
using an independent retrospective cohort of 53 patients (AUC 5.792). Other studies suggest
the use of MRI, CT and/or PET imaging radiomics and ML to predict tumor recurrence
after radiotherapy and/or chemotherapy for several HNTs [56–58]. Through the study of
a large dataset of pre-treatment contrast-enhanced CT scans (465 cases of oropharyngeal
squamous cell cancer), a model capable of significantly discriminating between high and
low probability of recurrence groups was analyzed by the M.D. Anderson Cancer Center’s
Quantitative Head and Neck Imaging Working Group [59]. Finally, in relation to recurrence,
it was possible, through the selection of eleven imaging features, to construct a radiomic
score (Rad-score) capable of predicting local recurrence-free survival (LRFS). Rad-scores
were generated using Cox’s proportional hazards regression model and can reliably predict
LRFS in patients with non-metastatic T4 stage [60].

7. Survival

With the development of medical diagnosis and treatment technology, great progress
has been made in the treatment of HNTs [96–98]. However, at the time of first diagno-
sis, many patients are already in an advanced stage of disease. With five-year survival
rates ranging from 25% for hypopharyngeal carcinoma (HPC) to 80% for nasopharyngeal
carcinoma (NPC), the prognosis is still poor [61,62]. In order to create even more correct
treatment programs, it is necessary to predict patients’ survival rates more precisely.

In research reports on the use of radiomics in HNC, radiomic models related to sur-
vival prediction are the most numerous. Shen et al. [61] sought to explore the predictive
value of the radiomic model based on MRI features. Out of 327 patients, they established
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five models. The prognostic performance of these models was evaluated by Harrell’s
concordance index (C-index). It was found that the best model was the one incorporating
radiomics, global health stage and DNA in non-metastatic tumors. Yuan et al. [62] found
that radiomic signature based on MRI is an independent prognostic factor for patients
with HNSCC, as also highlighted by another study [63]. In addition, others have used
pre- and post-operative PET/CT radiomic features for HNSCC and found that combining
clinico-pathological features with pre- and post-treatment PET/CT radiomic features can
substantially improve the prediction of overall survival (OS) of HNSCC patients [64,65].
Zhai et al. [66], using 240 contrast-enhanced CT data, reported significantly better prog-
nostic performance with a combined model than a model based on clinical variables alone
for disease-free survival in HNSCC. Using 542 cases of oropharyngeal SCC from Canada,
Leijenaar et al. [67] validated a radiomics model previously devised by Aerts et al. [28] on
422 cases, which showed significant prognostic differentiation in Kaplan–Meier analysis
of OS in all sub-cohorts. Radiomics-based outcome prediction used CT with and without
contrast, T1WI and T2WI MRI sequences (with contrast) and FDG-PET, as well as DWI [45],
18F-fluorothymidine PET [99] and perfusion CT [68]. Most of the studies applied multivari-
ate Cox proportional hazard models. The performance, expressed by the hazard ratio of the
Cox model, and the accuracy, expressed by the C-index, of the radiomic or combined mod-
els were superior to the clinical models with respect to the prediction of various outcomes.
An investigation by Parmar et al. [63], analyzing features extracted from pre-treatment CT
images of four independent cohorts of HNTs (878 patients in total), showed that radiomic
clusters are significantly associated with patient survival and tumor stage. Parmar et al.
analyzed 13 feature selection methods and 11 machine-learning classification methods
chosen for simplicity, efficiency and popularity in the literature. Specifically, they identified
three classifiers and feature selection methods that demonstrated high performance and
stability in predicting 3-year OS in head and neck cancer, suggesting that these machine-
learning methods should be the starting point for radiomics-based prognostic analyses
due to their consistency. El Naqa et al. [100] examined the characteristics of pre-treatment
PET images of nine HNT patients. Using the most predictive features, they were able to
construct a two-metric model predicting OS with an AUC of 1. In a retrospective study of
72 patients using 2D CT texture analysis, textural features were found to be associated with
OS in patients with locally advanced HNSCC treated with induction chemotherapy [69].
In addition, texture analysis of CT, PET or MR images before treatment has been used to
predict progression-free survival or OS in several HNTs of the mucosa or thyroid [70–75].
Leijenaar et al., using contrast-enhanced CT radiomic features, assessed that p16 and the
radiomics-based classifier had the same potential to differentiate the risk of patients in the
survival curve using Kaplan–Maier analysis [76].

8. Limitations of Radiomics
8.1. Current Issues

Radiomic analyses are very promising in assessing several characteristics of head and
neck malignancies, but there are a number of limitations that must also be considered [77].
The majority of recent radiomics research works have a retrospective, monocentric design,
which advocates for caution in interpreting the reported findings. In particular, the small
sample size frequently characterizing these works may lead to a patient selection bias, not
accurately reflecting the overall population [101]. Furthermore, few device manufacturers
and data acquisition techniques are often employed, and this could also result in random
patterns that add biases into the models. Unfortunately, these are difficult to identify
without access to larger and more varied datasets. In general, these issues may lead to
models that cannot duplicate their performance in new research trials. The low level
of uniformity of radiological imaging protocols, which may also have an impact on the
generalizability of the models and, consequently, their clinical application, represents
another issue somewhat related to the latter [102]. Another problem is the extremely
frequent lack of external validation, which may cause the predictive model to overfit.
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Extreme variability in the segmentation, feature extraction and selection, as well as the
adopted modeling procedures still represent further drawbacks. In general, rather than the
underlying biological lesion features, all the aforementioned issues constitute a possible
source of unwelcome heterogeneity brought on by the traits of the patient cohort and
imaging data. Instead of identifying this heterogeneity as the noise it actually is and
dismissing it, radiomics pipelines run the risk of seeing it as a source of information and
including it in the model’s classification process. Future works should therefore focus
on radiomics pipeline standardization and prospective multicenter trial designs. Despite
being in its early stages, efforts are being made to increase awareness of the methodological
problems affecting current radiomics research, to encourage editors and reviewers to focus
more on the technical details and clinical applicability of this work, to educate potential
customers about commercial solutions based on radiomics and to gather curated, open
medical images [103].

8.2. Potential Solutions

Briefly, the main limitations of radiomics are due to bias in three main steps: data
collection and handling; model development; performance metrics. To lessen such bias, it
is essential to be aware of it [104–106].

Careful data collection is critical to ML model development. Estimating the types,
features and sizes of the data required is essential for locating and gathering the right
datasets. First, a comprehensive study of the literature that incorporates advice from
medical experts aids in the task [107]. The minimal dataset size required to demonstrate an
effect and guarantee the brilliance of the trained model may be determined using statistical
power estimate approaches and knowledge of similarly created ML models [108].

Training a heterogeneous model can help machine-learning systems perform bet-
ter [109]. To this goal, data collection from several institutions with various patient com-
positions is beneficial. This issue can be improved thanks to the development of data
de-identification technologies, federated learning and cloud data storage. The second strat-
egy is to obtain information from many suppliers (such as imaging equipment or electronic
medical records) while staying within the same organization. It might be beneficial to amass
many brands and models, even older ones. Using open datasets is the third strategy [106].

Regarding model development, frequent bias is caused by overfitting. Early stopping,
which tracks the model’s performance on the validation set and halts training when the
validation measure drops or its validation loss rises over a few steps, is one method to lessen
overfitting [110]. Model capacity reduction is another strategy for reducing overfitting.
Fewer parameters limit the network’s ability to learn erroneous characteristics, pushing
it to focus on learning the most crucial ones [111]. Regularization is another strategy to
lessen overfitting. Regularization techniques include dropout layers and regularizations.
Ensemble modeling might also help address overfitting [112]. The risk of overfitting
is reduced by oversampling and undersampling, which prevent the model from seeing
significantly more instances of one class than others during training [113].

Finally, attention must be paid to performance metrics to minimize bias [105]. Predic-
tive models for head and neck cancer have been developed using twelve distinct classi-
fiers [63]. A multi-classifier model that makes the most of the data gleaned from various
classifiers can be used to lessen bias. This technique states that if one classifier is re-
garded as “expert”, aggregating the judgments of numerous “experts” will result in a more
trustworthy outcome [114].

The three types of classification tasks that can be performed are binary, multiclass
and multilabel.

A confusion matrix can be created by adding the outcomes of a binary classifier [115].
Metrics are typically produced based on combinations of values in the confusion matrix to
reduce bias because each number represents a different facet of performance, and focusing
on just one of them can introduce bias [116,117]. Additionally, the clinical context of the
condition has a significant impact on the metrics of choice. High sensitivity is crucial, for
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instance, if a model is intended to screen for cancer; however, if the goal is to confirm
cancer, a more specific model would be preferable. Setting up a relevant threshold for
metrics is therefore crucial. If there is a significant imbalance in the data, relying on the
“accuracy” statistic to assess model performance may result in bias. The ROC curve may
more effectively illustrate model performance on uneven data than accuracy [118].

9. Conclusions

HNTs represent real challenges for clinicians and radiologists due to the complex
regional anatomy, their often small sizes, the oncologic pathology variability, as well as the
modifications of the anatomical site after treatment. Numerous promising studies have
focused on radiomics and machine-learning applications for HNTs. While these techniques
have the potential to overcome the current limitations of imaging in the head and neck area,
future efforts must be directed toward robust external validation within multi-institutional
collaborative efforts to standardize, refine and finally implement radiomics and machine-
learning software in clinical practice.
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