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Simple Summary: Glioblastoma is a complex and aggressive primary brain tumour that is rapidly
fatal. Timely and accurate diagnosis is therefore crucial. Here, we explore the newly emerging
field of epitranscriptomics to understand the modifications that occur on RNA molecules in the
healthy and diseased brain, focusing on glioblastoma. RNA modifications are modulated by various
regulators and are diverse, specific, reversible, and involved in many aspects of brain tumour biology.
Epitranscriptomic biomarkers may therefore be ideal candidates for clinical diagnostic workflows.
This review summarises the current understanding of epitranscriptomics and its clinical relevance in
brain cancer diagnostics.

Abstract: RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gain-
ing attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic
mechanisms. The exciting emerging field of ‘epitranscriptomics’ is predominantly centred on study-
ing the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar
to many other RNA modifications, is strictly regulated by so-called ‘writer’, ‘reader’, and ‘eraser’
protein species. The abundance of genes coding for the expression of these regulator proteins and
m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This
review explores our current understanding of RNA modifications in glioma biology and the potential
of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify
these highly complex and heterogeneous brain tumours.

Keywords: glioma; epitranscriptomics; m6A RNA methylation; RNA regulation; diagnostics

1. Introduction

Analogous to the epigenome, the epitranscriptome comprises a vast, dense, and com-
plex web of chemical modifications on RNA molecules that facilitate the fine-tuning of gene
expression regulation [1,2]. RNA modifications are reversible and highly controlled by
protein regulators. These protein regulators include ‘writers’ that deposit chemical modifica-
tions on RNA molecules, ‘readers’ that recognise different RNA modifications, and ‘erasers’,
which oppose the writers’ function by removing changes from RNA molecules [3,4]. There
have been more than 100 RNA modifications identified to date, with the n6-methyladenine
(m6A) modification being the most well studied, perhaps owing to its highest frequency of
detection [5]. The m6A mRNA modifications are typically identified on 6–7 nucleotides per
3000-nucleotide-long mRNA and are presumed to have crucial regulatory roles [6,7]. While
the exact downstream impacts of epitranscriptomic modifications on gene expression and
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biological function are not well understood, epitranscriptomic alterations are known to in-
fluence the nuclear transport of RNA molecules, the decay and translation of mRNA [8–12],
and mRNA processing mechanisms such as splicing [13] and 3′ end processing, as well as
miRNA processing [14–17].

Alterations in the genome, epigenome, and/or epitranscriptome are understood to
underpin cancer molecular pathology, with implications for all aspects of cancer biology,
including tumourigenesis and disease progression [18,19]. Glioblastoma (GBM), the most
common and deadliest brain tumour in adults, is no exception [18,20,21]. While genomic
and epigenomic alterations have been extensively investigated in GBM, the epitranscrip-
tome remains largely unexplored.

Although RNA modifications in mammalian cells were first described almost 50 years
ago [7], it is only until the recent emergence of new state-of-the-art technologies that
large-scale explorations of epitranscriptomic modifications have been facilitated. It is now
recognised that RNA modifications are diverse, dynamic, and of reversible nature, and this
facilitates their role as fine tuners of RNA structure and function. There is also a growing
appreciation of their regulation by various environmental factors. Therefore, a more
thorough understanding of the epitranscriptome and its intricacies, particularly in cancer,
will likely lead to innovative diagnostic tools and adjuncts for personalised therapeutics.
In this review, we will discuss epitranscriptomics with a focus on m6A regulators and their
roles, m6A modifications in the healthy and cancerous brain, and the current and future
perspectives of epitranscriptomics in neurological disease and GBM diagnostics.

2. Epitranscriptomic Diversity and the Cellular Roles of RNA Modifications

There is great diversity among the RNA modification types, with more than 100 differ-
ent chemical modifications reported in RNA species [22], which are precisely regulated by
RNA-binding proteins. The most well-known RNA modifications, their epitranscriptomic
regulators, and their roles are presented in Figure 1 and summarised below. Epitran-
scriptomic regulators and RNA modification types vary enormously, rendering biological
pathways both complex and well regulated.
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their roles in different aspects of RNA biology; (B) m6A writers; (C) m6A erasers; (D) proteins
repelled by m6A methylation; (E) m6Am regulators and their known roles; (F) m1A regulators and
their main role during tRNA and mitochondrial tRNA life; (G) m5C and hm5C regulators; (H) known
adenosine-to-inosine (A–I) regulators; (I) Ψ regulators.

2.1. N6-Methyladenosine (m6A) RNA Modification

The methylation of adenosine (A) at the N6 position generates N6-methyladenosine
(m6A), the most abundant and reversible epitranscriptomic modification in mammalian
mRNA and noncoding RNAs (ncRNA). There are usually 1–3 m6A sites per mRNA
molecule, which comprises approximately 0.2% of the overall transcript [7,23]. The m6A
modification is preferentially found at RRACH positions (R = guanine (G) or adenosine (A);
H = adenosine (A), cytosine (C), or uracil (U)) of consensus sequences [24], although this
modification is not defined strictly by the presence of these sequences [25]. The distribution
of m6A modifications occurs preferentially in different regions along the mRNA length,
including around stop codons, long internal exons, and the 3′UTR end. m6A modifications
at the 5′UTR end are less frequent; when present, m6A acts to promote mRNA translation
at the 5′UTR [11,24,26]. Nevertheless, m6A distribution patterns along the mRNA sequence
can change with environmental stressors, such as UV or heat shock [11].

2.1.1. m6A Writers

The m6A methylation mark (in eukaryotes) is deposited by RNA methylation regula-
tors (protein complexes with methyltransferase function) termed ‘writers’ (Figure 1B) dur-
ing transcription in the nucleus. The m6A ‘writer’ complex comprises three main subunits—
(1) methyltransferase-like 3 (METTL3), the catalytic subunit; (2) methyltransferase-like 14
(METTL14), the noncatalytic subunit that has a role in maintaining the integrity of this
complex and ensuring RNA-binding [27]; and (3) Wilms’ tumour 1-associating protein
(WTAP), which acts to recruit the methyltransferase complex to a target RNA by specifi-
cally binding to the Rm6ACH motif of mRNA molecules. The methyltransferase complex
formed by METTL3, METTL14, and WTAP regulators preferentially targets internal adeno-
sine residues and is termed WTAP-dependent methylation [15,28]; however, there are
specific WTAP-independent methylation sites present around the RNA cap structure [28].
In addition to these subunits, there are proteins that interact with the m6A ‘writer’ com-
plex and appear to be essential for methylation, such as KIAA1429. However, KIAA1429
knockdown experiments yielded a smaller reduction in methylation than WTAP-silencing
experiments [28]. This knockdown investigation revealed the relationship between gene
levels and methylation densities. Low-expression genes are more likely to be methylated
than highly expressed genes; typically, ‘housekeeping’ genes lack methylation sites. WTAP-
dependent mediated methylation is inversely correlated with mRNA stability [28], and
through methyltransferase complex regulation, WTAP and METTL3 are implicated in the
expression and alternative splicing of genes associated with transcription and RNA process-
ing. Unexpected new evidence shows that METTL3 can also bind to non-m6A-modified
RNA and enhance the translation of epigenetic factors [29].

In various coding and noncoding RNAs, i.e., pre-mRNAs and small nuclear RNA
(snRNA), methyltransferase-like 16 (METTL16) was found to be a cytoplasmic RNA-
binding ‘writer’ protein but also promoted translation in an m6A-independent man-
ner [30–33]. In mouse embryonic stem cells (mESC), additional components of the ‘writer’
methyltransferase complex were identified, such as Zc3h13 and Hakai. These two compo-
nents were found to interact with WTAP and Virilizer (the mouse homolog of KIAA1429,
also named VIRMA in humans), suggesting the involvement of these components in the
m6A methylation process [34]. In human cells, it was also shown that VIRMA interacts
with WTAP/HAKAI/ZC3H13 to recruit METTL3 and METTL14 to the methyltransferase
complex [35]. The interaction between HAKAI and WTAP is implicated in cell cycle regu-
lation [36]. Two other possible interactor components of the ‘writer’ complex include the
RNA-binding motif protein 15 (RBM15) and RBM15B, identified around the methylated
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DRACH motif. This suggests a role in recruiting additional writer proteins to specific
sites in X-inactive specific transcript (XIST) RNA [37]. The m6A ‘writer’ complex is mainly
comprised of METTL3, METTL14, WTAP, HAKAI, ZC3H13, VIRMA, RBM15, and RBM15B,
while other diverse proteins (e.g., METTL16) with specific functions can have ‘writer’ role,
as described in the literature to date.

2.1.2. m6A Readers

The YTH protein family members contain the YTH domain that specifically recog-
nises or ‘reads’ the m6A mark on mRNA molecules compared to unmethylated adenosine
residues [38]. With affinity proteomic experiments, it was shown that three members of the
YTH ‘reader’ protein family (YTHDF1, YTHDF2, and YTHDF3) selectively bind to m6A
sites, suggesting a possible physical interaction between writers and readers [28]. YTHDF1
has binding sites around stop codons, which are regions enriched in m6A modification
sites. The function of YTHDF1 in RNA translation was elucidated by knockdown in HeLa
cells showing reduced translation efficiency and the number of ribosome-bound reads of
the target genes. The YTHDF1 and YTHDF2 have targets that are regulated separately, of
which 50% are in common, with YTHDF1 responsible for translating methylated mRNA
while YTHDF2 mediates mRNA degradation [9,39]. Another ‘reader’ from the same family,
YTHDF3, interacts with YTHDF1 to facilitate protein synthesis and with YTHDF2 to de-
grade methylated RNA. While these three members of the ‘readers’ (YTHDF1, YTHDF2,
and YTHDF3) perform highly dynamic and reversible modulations of mRNA in the cyto-
plasm, another ‘reader’, YTHDC1, oversees methylated RNA transport from the nucleus
to the cytoplasm [10,40]. YTHDC1 is also involved in mRNA splicing by promoting exon
inclusion through the SRSF3 splicing factor recruitment and blocking the SRSF10 binding
to mRNA [41]. The YTHDC2 is another ‘reader’ of the YTH protein family that contains
RNA helicase domains and regulates its targets through a 3’→5’ RNA helicase activity [42].
YTHDC2 also facilitates the translation efficiency of m6A-marked targets [43]. In genetic
disorders such as fragile X syndrome, the fragile X mental retardation protein (FMRP) has
been found to bind to m6A sites and interact with YTHDF2 in the cerebral cortex of mice.
The FMRP ensures RNA stability, while YTHDF2 promotes RNA decay. This suggests that
FMRP has a ‘reader’ role and, through its interaction with YTHDF2, contributes to the
fragile X syndrome phenotype, a common inherited intellectual disability known to be
driven by the loss of functional FMRP [44].

In addition to the YTH protein family members, numerous other m6A readers have
been characterised (Figure 1A). The eukaryotic initiation factor 3 (eIF3) is a specific ‘reader’
of m6A in the 5′UTR region, where it directly binds m6A to promote cap-independent
translation [11]. Several heterogeneous nuclear ribonucleoproteins (hnRNPs) family mem-
bers are also known as ‘readers’. One such m6A reader, HNRNPA2B1, has an essential
role in primary microRNA (pri-miRNA) processing [17]. HNRNPA2B1 directly interacts
with DGCR8, a miRNA processing complex (Microprocessor) member, to facilitate pri-
miRNA processing into the precursor (pre)-miRNA form [17]. Interestingly, pri-miRNAs
that have m6A marks deposited by METTL3 are more efficiently processed by the Micro-
processor complex than those that are unmethylated [16]. Another RNA-binding protein,
HNRNPC, is also a ‘reader’ involved in pre-mRNA processing, where HNRNPC binding is
facilitated by m6A modifications to adjacent mRNAs and long noncoding RNA (lncRNA)
structures [45]. Similarly, it was found that m6A modifications provide better accessibility
for HNRNPG binding in a study that identified more than 10,000 m6A sites regulating
this RNA-HNRNPG interaction, suggesting possible effects on expression changes and
splicing [46]. RNA-binding insulin-like growth factor 2 (IGF2BP) protein family mem-
bers (IGF2BP1/2/3) are also novel m6A methylation ‘readers’, which protect RNA from
degradation by enabling translation and RNA stability. Some IGF2BPs target, stabilise, and
translate oncogenic mRNAs, such as MYC [47], highlighting the role of m6A methylation
and regulation in cancer cell biology.
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2.1.3. m6A ‘Erasers’

The m6A methylation mark can be removed by m6A demethylase enzymes, termed
‘erasers’ (Figure 1C). The obesity-associated protein (FTO) was one of the first m6A regula-
tors to be identified for its essential role in demethylation; FTO knockdown was shown to
increase m6A levels, whereas FTO overexpression decreased the relative m6A methylation
in HeLa and 293FT cells [48]. Furthermore, FTO was found to mediate m6A demethylation
on internal nucleotides along the RNA, as well as other demethylation activities in the cap
region (m6Am) and in small nuclear RNA (snRNA; m6A and m6Am) and transfer RNA
(tRNA; m1A). Interestingly, the FTO-mediated m6A demethylation significantly influences
the levels of target transcripts that have internal m6A and a combination of both inter-
nal and cap region methylation but does not influence transcripts with only cap m6Am
modifications. FTO was shown to target nuclear and cytoplasmic m6A sites; however, it
preferentially demethylates m6Am modifications [49], thus reducing the stability of tran-
scripts methylated in the 5′ cap region (m6Am) [50]. Another m6A demethylase, ALKBH5,
was also found to remove m6A oxidatively and affect RNA metabolism and RNA export to
the cytoplasm [8].

2.1.4. Repelled Proteins

Some RNA-binding proteins are repelled by the m6A mark and instead preferentially
bind nonmethylated adenosine, influencing RNA stability and degradation (Figure 1D).
The two most well-known m6A-repelled proteins are the stress granule proteins, G3BP1
and G3BP2, that regulate mRNA stability and are involved in embryonic development [51].
ELAV-like RNA-binding protein 1 (ELAVL1), also known as human antigen R (HuR), is
another RNA-binding protein repelled by m6A. It is a well-known RNA stabiliser protein. If
an m6A mark is proximate to the ELAVL1 binding site on an mRNA molecule, it promotes
the binding of ELAVL1, leading to RNA stabilisation. However, if the m6A mark is further
from the ELAVL1-binding site, the spatial distance will not allow ELAVL1-binding and will
result in RNA degradation [52,53].

2.2. Other RNA Modifications

2.2.1. N6,2-O-Dimethyladenosine: m6Am Modifications

N6, 2′-Odimethyladenosine (m6Am) methylation is abundant in human mRNA (92%)
and occurs at the transcription start site just after the N7-methylguanosine (m7G) mRNA
cap. M6Am methylation is mediated by phosphorylated CTD interacting factor 1 (PCIF1),
a cap-specific adenosine-N6-methyltransferase (CAPAM), and facilitates the translation
of capped mRNAs [54,55] (Figure 1E). Where m6A modification is associated with RNA
degradation, m6Am modifications are important for RNA stabilisation. This methylation
mark can also be catalysed by methyltransferase 4, N6-Adenosine (METTL4), a protein
encoded by the METTL4 gene. METTL4 is well characterised in GBM as harbouring a high
frequency of missense mutations [19,56]. The m6Am mark can be removed by the m6A
‘eraser’ FTO and can be ‘read’ by decapping MRNA 2 (DCP2) [19].

2.2.2. N1-Methyladenosine: m1A Modifications

M1A modifications play a critical role in tRNA stability and have been detected in
mitochondrial transcripts, mRNA, and ribosomal RNA (rRNA). M1A modifications are
added to tRNA by specific m1A writers, tRNA methyltransferase 61A (TRMT61A), and
tRNA methyltransferase 6 noncatalytic subunits (TRMT6), and to mitochondrial tRNAs
by tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C), and tRNA
methyltransferase 61B (TRMT61B) (Figure 1F). The erasers for this mark are alkB homolog
1, histone H2A dioxygenase (ALKBH1) and alkB homolog 3, and alpha-ketoglutarate
dependent dioxygenase (ALKBH3) [57].
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2.2.3. 5-Methylcytosine (m5C) and 5-Hydroxymethylcytidine (hm5C) Modifications

DNA methylation is one of the most well-known epigenetic modifications that mainly
occurs on cytosine residues (m5C) [58]. While this modification is less known in RNA,
several recent studies describe the importance of m5C in diverse functions of mRNA,
ncRNA, rRNA, and tRNA. m5C is enriched in the 5′UTR and 3′UTR regions, and it is
regulated by writers (including NOP2/Sun RNA methyltransferase 1–7 (NSUN1–7) and
tRNA aspartic acid methyltransferase (DNMT2)), readers (Aly/REF export factor (ALYREF)
and Y-box binding protein 1 (YBX1)), and erasers (tet methylcytosine dioxygenase 1–3
(TET1–3) and ALKBH1) (Figure 1G) [59,60]. Similar to DNA, the m5C can be oxidized
in RNA, resulting in 5-hydroxymethylcytidine (hm5C) [61]. M5C ‘erasers’ from the TET
family have a dual role as hm5C ‘writers’.

2.2.4. Adenosine-to-Inosine (A-to-I) Modifications

RNA sequences can undergo specific editing, resulting in the synthesis of protein
isoforms that are different to what is encoded by the original genomic sequences [62]. Such
editing events include base modifications through deamination reactions, i.e., uridine (U)
substitution of cytidine (C) or adenosine (A) converted to inosine (I) [63]. The adenosine
deaminase RNA specific (ADAR) family members perform adenosine-to-inosine RNA
editing and are also known to have an epitranscriptomic ‘writer’ role; the I ‘writer’ proteins
are ADAR, ADARB1, and ADARB2 (Figure 1H).

2.2.5. Pseudouridine (Ψ) Modifications

Pseudouridine (Ψ), termed the fifth RNA nucleotide [19], is the 5-ribosyl isomer of
uridine and was the first RNA modification to be discovered. Ψ is the most abundant RNA
modification and can be found in diverse RNA types, including mRNA, rRNA, tRNA,
small nucleolar RNA (snoRNA), and snRNA [64,65]. The Ψ modification is catalysed in
eukaryotes by several pseudouridine synthases (Pus enzymes), and its most well-known
writer is dyskerin pseudouridine synthase 1 (DKC1) (Figure 1I).

3. Epitranscriptomics in Neurobiology and Brain Cancer

Although the abundance and roles of some RNA modifications are still in dispute, the
epitranscriptome is thought to have specific relevance to stem cell biology and neurobiology.
Human genetic analysis and animal model studies have revealed that alterations in RNA
regulatory programs have critical roles in the aetiology of neurogenerative disorders,
intellectual disability, mental disorders, and brain cancers [59,66–69]. To date, m6A in
fragile X syndrome is the most well-characterised interaction, and a growing number of
studies have linked mutations in epitranscriptomic enzymes with intellectual disability [44].
m6A modifications are highly abundant in the brain and play essential roles in embryonic
stem cell differentiation, neural development, and neurodevelopmental disorders [70].
The roles of m6A regulators in neural development, glioma stem cells (GSCs), glioma
progression, and treatment are expanded on below.

3.1. m6A Regulators in Neural Development and Physiology

In mammals, the brain shows the highest abundance of m6A methylation in the body,
where it is linked to several dynamic developmental and physiological processes such
as neurogenesis, axonal growth, synaptic plasticity, circadian rhythm, cognitive function,
and stress response [71]. Several studies show that m6A methylation is developmentally
altered. Temporal-specific m6A-methylation features were identified in lncRNA in the de-
veloping cortex [72], and levels of m6A in mRNA were observed to remain low throughout
embryogenesis but dramatically increase by adulthood [11,24,26]. A transcriptome-wide
m6A methylation study revealed differences in the distribution of this epitranscriptomic
modification, where m6A levels were twice as high in the mouse cerebellum compared
to the cortex [73]. Moreover, the temporal regulation of the m6A methylation regulators
METTL3, METTL14, WTAP, ALKBH5, and FTO is essential for the precise control of postna-
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tal cerebellar development [74]. m6A methylation is also biased toward neuronal transcripts
relative to glial cells, which are localised in axons and dendritic shafts, indicating their role
in neuronal-activity-dependent gene regulation [71,75,76]. In addition to spatiotemporal
and cell type preferences, m6A methylation is essential in governing direct reprogramming
into neuronal cells [77] (Figure 2A).
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specific to developmental stage, region, lineage, and cell type. (B) The main functions attributed to
RNA methylations in the human brain are associated with cell fate conversion, neurodevelopment,
memory, and learning. The knockdown of m6A ‘writers’ (METTL3 and METTL4) causes a decrease
in m6A methylation, which is thought to play a role in GSC growth and cell renewal. The m6A
methylation levels can influence the GSC fate decision towards differentiation (increase; red upward
arrow) or proliferation (decrease; blue downward arrow). RNA modifications detected in GBM
tissue reflect treatment-related responses, which could have great importance for clinical monitoring
of GBM.

During gliogenesis, when neural stem cell (NSC) populations are replaced by glial,
astrocyte, and oligodendrocyte precursor cells (GPC, APC, and OPCs, respectively) [78],
several m6A methylation-related changes take place. This was evidenced by Mettl3 and
Mettl14 knockouts in embryonic mice brains, leading to ablation of RNA m6A levels and
prolonged radial glia cell cycles, with the extension of cortical neurogenesis into postnatal
stages [79]. Similarly, m6A signalling was also demonstrated to regulate neurogenesis in
human forebrain organoids, where human ‘brain-disorder risk genes’ were observed to be
enriched in m6A-tagged transcripts [79]. Dynamic RNA methylation also plays important
regulatory roles in oligodendrocyte development and CNS myelination [80]. Conditional
inactivation of Mettl14 in mice disrupted oligodendroglial maturation with the selective
depletion of oligodendrocytes where OPC numbers were within normal limits, with distinct
effects on OPC and oligodendrocyte transcriptomes [80]. Oligodendrocyte specification
and myelination are also influenced by epitranscriptomic regulators, such as m6A ‘reader’
Prrc2a (Proline rich coiled-coil 2 A) [81]. While key regulators of m6A methylation have
been implicated in various neurological, neurodevelopmental, and neuropsychiatric disor-
ders, m6A has specific roles in glioblastoma.

3.2. m6A Regulators in Glioma Stem-like Cells (GSCs) and Tumourigenicity

Glioblastomas are highly heterogeneous primary brain tumours consisting of diverse
cellular populations, including glioma stem-like cells (GSCs). GSCs are a subset of distinct
aberrant neural stem cells that possess glioma self-renewal potential and are thought to be
responsible for driving GBM initiation, progression, treatment resistance, and recurrence.
Interestingly, m6A mRNA methylation machinery was demonstrated to play a vital role
in GSC self-renewal and tumourigenesis (Figure 2B) [82]. In knockdown experiments of
m6A ‘writers’, METTL3 and METTL14 reduced m6A levels and dramatically enhanced
GSC growth and self-renewal. Conversely, METLL3 overexpression or inhibition of the
m6A ‘eraser’, FTO, increased m6A methylation levels and suppressed GSC self-renewal,
proliferation, and tumour progression, resulting in prolonged survival of GSC-grafted
mice [82]. To extrapolate, m6A methylation in GSCs may direct cell fate decisions, with
higher m6A levels promoting GSC differentiation, whereas reduced m6A levels enhance
GSC proliferation and tumourigenesis.

Indeed, GSCs and differentiated GBM cells have distinct patterns of m6A methyla-
tion [83]. However, a set of common transcripts from primary GSC spheroid cultures
that were observed to lose RNA methylation during cell differentiation correlated with
increased translation rates during the GSC transition to differentiated GBM cells. Moreover,
miRNA-binding sites were observed to overlap with areas rich in RRACH motifs, i.e., m6A
binding sites, which led to the identification of specific tumour-suppressive RRACH bind-
ing miRNAs that facilitate FTO-dependent, transcript-specific demethylation [83]. Taken
together, this study showed that specific miRNAs may directly influence mRNA stability
without engaging in expected miRNA mediated transcript downregulation, facilitating a
fast and accurate adaptation to meet the cellular requirements of GSC differentiation [83].

The other m6A ‘eraser’, ALKBH5, has also been linked to GSC self-renewal and
tumourigenesis [84] through its regulation of FOXM1 expression, a pivotal cell cycle regula-
tion transcription factor that functions to maintain GSC properties [85] and is overexpressed
and associated with poor survival in GBM [86]. ALKBH5 cooperates with a nuclear lncRNA,
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FOXM1-AS, to demethylate FOXM1 nascent transcripts and stimulate FOXM1 expression
in GSCs, with the inhibition of ALKBH5 repressing GSC proliferation. In this process,
ELAVL1, a nuclear RNA-binding protein that preferentially binds nonmethylated RNA,
plays an important role in regulating FOXM1 expression by recruiting ALKBH5 to bind
to the 3′UTR of unmethylated FOXM1 transcripts and promoting FOXM1 expression,
contributing to GSC tumourigenicity [84].

Contrary to reports demonstrating positive associations between reduced m6A methy-
lation and increased GSC tumourigenicity [82,84,87–89], several studies implicate an onco-
genic role for METTL3 in cancer stem cells [90–93]. One such study purported that high
levels of METTL3 and METTL3-dependent m6A modification are essential for GSC mainte-
nance and dedifferentiation, with the preservation of a stem-like phenotype mediated by
SOX2 mRNA stabilisation via the recruitment of ELAV1 to m6A-modified SOX2 [91]. The
function of SOX2 as a transcription factor essential for embryonic and neural stem cell main-
tenance is well established. This study also implicates METTL3 in DNA repair efficiency,
radiation resistance of GSCs, and survival outcomes in a GBM orthotopic mouse model.

Discrepancies between different studies might be explained by the diversity of cell
types and m6A-modified RNA species analysed, as well as the intra- and intertumoural
heterogeneity of GBM. Future experimental work must be context- and compartment-
dependent to explain these inconsistencies and further our understanding of m6A RNA
methylation and the interplay among regulator proteins in GSCs [91].

3.3. m6A Modifications and Regulators in Glioblastoma with Potential Therapeutic Implications for
Improving Treatment Response

RNA modifications play increasingly important roles in the tumourigenesis and devel-
opment of GBM; several ‘writers’, ‘erasers’, and even ‘readers’ of RNA modifications are
proposed as potential diagnostic biomarkers and novel targets for treatment [19]. Yet, there
are striking inconsistencies in m6A RNA methylation levels and m6A regulator expression
reported in GBM [4,19]. In paediatric medulloblastoma, high METTL3 expression is associ-
ated with increased m6A levels and low survival, and a specific inhibitor of METTL3 slowed
tumour progression in a medulloblastoma mouse model [94]. In line with the observed
inverse correlation between GSC tumourigenicity and the general levels of m6A RNA
methylation explored above [82], Li et al. reported that glioma tumours have lower global
m6A RNA methylation levels relative to normal brain tissue, with decreased METTL3
and increased FTO levels in glioma tissues offered as a causative link [87]. Here, METTL3
overexpression in an established GBM cell line increased m6A levels and reduced cell
proliferation and migration in vitro, perhaps related to a disruption in HSP90 chaperone
activity and enhanced apoptosis [87]. Other studies corroborated the association between
high METTL3 expression and reduced glioma proliferation; however, METTL3 silencing
was shown to suppress vasculogenic mimicry, important for tumour angiogenesis [95,96].
Meanwhile, overexpression of another m6A writer, METTL4, was shown to promote
glioma cell proliferation and migration [95,97]. Recently, FTO knockdown or inhibition was
shown to suppress GBM proliferation via an m6A-dependent depletion of MYC levels [98].
Moreover, targeted FTO inhibition enhanced the efficiency of temozolomide (TMZ), the
standard-of-care chemotherapy, in killing GBM cells [98]. Promisingly, FTO inhibition also
shows antitumoural effects within tumour microenvironments, enhancing T cell-mediated
cytotoxicity and reducing immune evasion by suppressing immune checkpoint genes [99].
While seemingly a promising novel therapeutic target, there are conflicting reports, in-
cluding reduced FTO expression levels in more aggressive glioma tumour subtypes, with
low FTO expression levels significantly associated with poor survival outcomes [100,101].
Similarly, specific inhibitors of another m6A ‘eraser’, ALKBH5, have been tested and show
efficient inhibition of GBM cell proliferation [102] enhanced radiosensitivity and reduced
invasiveness of GSCs [103], and improved anti-PD1 treatment efficiency in a preclinical
glioma model [104]. While ALKBH5 was reported as a significant negative prognostic
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factor for GBM patients [105,106], reported ALKBH5 expression levels in GBM tissue are
inconsistent [100,101,105,107].

Another approach to sensitise glioma cells to treatment was explored by modulating
m6A ‘reader’ and member of the YTH protein family, YTHDF1. Relative to normal brain
tissue, YTHDF1 has the highest expression in GBM, and is stabilised by musashi RNA-
binding protein 1 (MSI1). GBM cell proliferation and migration are enhanced by the MSI1
stabilisation of YTHDF1, and high expression of these genes in GBM is associated with
reduced survival [108]. Notably, YTHDF1 knockdown increased the sensitivity of glioma
cells to the antiproliferative effects of TMZ, demonstrating its potential as a synergistic
target for improved treatment response in GBM. Another YTH family member, YTHDF2,
is also a potential target for glioma treatment, with studies linking YTHDF2 expression
to glioma progression [97,109]. Increased in GSCs, YTHDF2 plays a vital role in stem
maintenance, and it enhances tumour growth in mice through stabilising MYC (YTHDF2-
MYC) and targeting IGFBP3. Interestingly, YTHDF2 expressing GSC have an increased
sensitivity to cell killing by linsitinib, an IGF1/IGF1R inhibitor. As NSC cell viability is
unaffected by linsitinib treatment, this drug is proposed as a potentially specific anti-GBM
treatment [110].

Epitranscriptomic regulators and RNA modifications are extensively involved in
essential functions of the healthy brain and play various roles in brain disease. This
is well shown in glioblastoma, where m6A can also have a role in treatment response.
Unfortunately, there are several inconsistencies in the literature regarding the expression
levels of the regulators and global m6A levels, and more in-depth studies are required to
decipher the intricate web of RNA modifications in glioblastoma.

3.4. Other RNA Modifications Implicated in Glioblastoma Biology and Treatment

Beyond m6A methylation, other forms of RNA methylation also play important roles
in GBM biology. For instance, the downregulation of m6Am writer, PCIF1, promotes glioma
cell proliferation and tumour growth in mice [111]. m5C methylated mature miRNAs
are linked to poor GBM patient outcomes through a mechanism where this modification
inhibits miRNA gene silencing [112]. hm5C methylation was found to have a significant
role in GBM formation through a mechanism involving ‘eraser’ TET1, while TET2 and
TET3 downregulation is linked to GBM tumourigenesis [113–115]. Transcript levels of I
‘writers’ ADAR, ADARB1, and ADARB2 are reduced in different grades and types of brain
tumours [116]; ADAR2 was found to inhibit GBM cell growth, and an abnormally expressed
splice variant supressed adenosine-to-inosine RNA editing [117,118]. Upregulation of the
Ψ writer, DKC1, was also shown to promote glioma cell proliferation, migration, and
invasion [119,120]. Likewise, a Ψ regulator, pseudouridine synthase 7 (PUS7), is highly
expressed in glioma tissue, associated with poor survival, and PUS7 inhibitors could
suppress tumour growth in mice [121].

4. Epitranscriptomics in Diagnosis
4.1. RNA Methylation Detection Methods

The field of epitranscriptomics is rapidly expanding and is anticipated to impact
clinical diagnostics. The search for rapid, simple, and reliable methods to explore and
detect new disease classification and therapeutic targets are essential steps for precision
medicine. Currently, several RNA methylation detection methods exist, with diverse
sensitivity, sample input requirements, and data analytical processes. Epitranscriptomics
platforms may be antibody-based or employ mass spectrometry, polymerase chain reaction
(PCR), next-generation sequencing (NGS), or nanopore direct RNA sequencing [122].

Probably, the simplest, most accessible, and affordable methods are antibody-based,
i.e., m6A or m5C enzyme-linked immunoassay (ELISA). ELISA kits are useful for assessing
global m6A/m5C methylation transcriptome-wide but are unable to distinguish m6A from
m6Am or detect a methylation mark at single-nucleotide or even at gene resolution. The
detection of modifications at a single RNA species level can be measured by Dot-blot,
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another antibody-based method. This is also a relatively inexpensive method, with 100 ng
to 1 µg required starting material, and can be used to detect RNA modifications in diverse
RNA species [123,124].

Mass-spectrometry-based methods, i.e., liquid chromatography–coupled tandem mass
spectrometry (LC–MS/MS), are more sensitive than antibody-based approaches. LC–
MS/MS allows the absolute quantification of modified nucleosides, and, when coupled
with nucleic acid isotope labelling (NAIL–MS), can assess the temporal dynamics of RNA
modifications [125]. A drawback of LC–MS/MS is the high starting material needed
(i.e., more than 1 µg of purified RNA), which may be unfeasible for some experimental
setups [122]. Another method that uses isotope labelling in its workflow for RNA modifica-
tion detection is 2D thin-layer chromatography (2D-TLC) [126]. This method is inexpensive
and requires less starting material (50–200 ng) than LC–MS/MS; however, 2D-TLC can be
adversely impacted by RNA digestion and labelling efficiencies [122].

PCR-based approaches are locus-specific RNA modification detection methods based
on the premise that the queried modification impedes reverse transcription. These methods
have high sensitivity and specificity; thus, they can be used for various RNA species. Some
of the most well-known PCR-based approaches are the m6A-reverse transcription (RT)-
quantitative PCR, single-base-elongation- and ligation-based PCR amplification method
(SELECT), and primer-extension-based method [122,127].

NGS-based detection methods are diverse and frequently used for whole transcrip-
tome profiling at single-nucleotide resolution. Some approaches require antibody cou-
pling, such as m6A-seq or methylated RNA immunoprecipitation sequencing (MeRIP-
seq) [26]. Other standard NGS-based detection methods are m6A individual-nucleotide
resolution crosslinking and immunoprecipitation sequencing (miCLIP-seq), m6A-label-
seq, m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), MazF
RNase-assisted sequencing (MAZTER-seq), and deamination adjacent to RNA modifica-
tion targets (DART-seq) [128–131]. More recent approaches include evolved TadA-assisted
N6-methyladenosine sequencing (eTAM-seq), glyoxal- and nitrite-mediated deamination
of unmethylated adenosines (GLORI), and m6A-selective allyl chemical labelling and se-
quencing (m6A-SAC-seq) [131–135]. m6A-SAC-seq requires very little starting material
(2 ng of poly A+ RNA) but is a particularly laborious process.

One of the most promising epitranscriptomic approaches is Oxford Nanopore Tech-
nologies (ONT) sequencing, which can detect modifications in naïve RNA, such as m6A,
inosine, or pseudouridine [136,137]. Compared to other methods, this method can detect
various modifications in parallel from the same sample, directly from the RNA, without
biases that can be introduced through reverse transcription required by NGS-based meth-
ods. The technology is based on the specific ionic current changes induced by single RNA
molecules while passing through the nanopore. The current fluctuations differ between
modified and nonmodified RNA molecules and can be decoded computationally [138].
Algorithms that can identify and analyse RNA modifications are fast evolving. Epitran-
scriptomic bioinformatic tools of note include—‘Explore the epitranscriptional landscape
inferring from glitches of ONT signals’ (ELIGOS) that can predict known types of RNA
modification sites, ‘ModPhred’ for user-friendly analysis of DNA and RNA modifications
detected by ONT, and ‘MasterOfPores’, a processing pipeline for analysing direct RNA
sequencing reads [139–141].

Beyond the m6A mark, other detection and data analytical methods facilitate the
exploration of m5C, m7G, inosine, pseudouridine, and many other modifications on RNA.
Although RNA modification detection methodology and bioinformatics tools are advancing
rapidly, these techniques will require further adaptation before their implementation in
diagnostic clinical service laboratories where there are real sample quantity and time
constraints for analytical processes and data interpretation.
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4.2. Epitranscriptomics in Current Diagnostic Approaches

The potential use of epitranscriptomic regulators as biomarkers has been explored
across multiple cancer types; however, only a handful of studies have attempted to measure
RNA modifications in body fluids directly. Of note, high global m6A levels are reported as
potential diagnostic markers in the peripheral blood of small-cell lung (NSCLC) and breast
and gastric cancer patients relative to healthy and/or benign cancer controls [142–144].
Here, m6A levels correlated to tumour-staging parameters were depleted following surgery,
and accompanying upregulations in ‘writer’ and/or downregulations in ‘eraser’ genes
were observed [142–144]. Likewise, m6A levels in rheumatoid arthritis (RA) patients’
and ischemic stroke patients’ blood were elevated relative to healthy controls, along with
decreased ‘eraser’ ALKBH5 and FTO levels and increased YTHDF2 ‘reader’ levels in RA
samples [145,146]. In contrast, m6A levels in the peripheral blood of individuals with Type
2 diabetes mellitus (T2DM) are lower than in controls, with concomitantly high m6A ‘eraser’
FTO gene expression [147]. Similar trends are observed in ageing, COVID-19 infection, and
smoking [148–150]. A summary of studies investigating global m6A methylation status
and gene expression of m6A regulators as diagnostic tools across a range of pathologies are
presented in Table 1.

Table 1. m6A regulators expression direction and global m6A methylation status with biomarker
value detected from blood. Increased and decreased m6A levels are depicted by up and down arrows,
respectively.

Disease/Condition Upregulated Downregulated m6A Levels Ref.

Non-small-cell lung carcinoma METTL3, METTL14, RBM15 ALKBH5, FTO ↑ [142]
Breast cancer METTL14 FTO ↑ [143]
Gastric cancer ALKBH5, FTO ↑ [144]

Acute myeloid leukaemia WTAP [151]
Colorectal cancer IGF2BP2 ↑ [152]

Rheumatoid arthritis ALKBH5, FTO, YTHDF2 ↑ [145]
Diabetes FTO ↓ [147]

Spinal cord injury
FTO, METTL14, RBMX,

YTHDF2, YTHDC2,
HNRNPA2B1

[153]

Systemic lupus erythematosus METTL3, METTL14, WTAP,
FTO, ALKBH5, YTHDF2 [154]

COVID-19 METTL3, FTO ↓ [149]
Aging ↓ [148]

Smoking and air pollution ↓ [150]
Myocardial infarction (in rats) ↑ [155]

Ischemic stroke ↑ [146]

In recent epitranscriptomics studies exploring new diagnostic classification mark-
ers, investigations often stem from in silico analyses of public sequencing datasets (i.e.,
TCGA, CCGA) to identify the predictive and prognostic significance of the diverse reg-
ulators of RNA modifications. For instance, in lung adenocarcinoma, high HNRNPC
and IGF2BP3 levels correlate with reduced overall survival [156,157], and a six-gene risk
signature (KIAA1429, ALKBH5, METTL3, HNRNPC, YTHDC2, and YTHDF1) strongly cor-
related with various clinical and pathological features [158]. A further study also identified
METTL3, YTHDF1, and YTHDF2 as prognostic lung adenocarcinoma biomarkers [159].
In lung squamous cell carcinoma, reduced KIAA1429, ALKBH5, METTL3, and HNRNPC
expressions were predictive of better responses to chemotherapy and immunotherapy. Iden-
tified m6A regulators with significant prognostic value in a diverse range of cancer types
are presented in Table 2. There is no clear consensus for a pan-cancer epitranscriptomic
regulation profile but rather a range of epitranscriptomic players that are differentially
modulated across conditions, suggesting that the expression of epitranscriptomic patterns
is cancer subtype-specific.
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Table 2. Expression of epitranscriptomic regulators and their observed roles in diverse conditions.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Smoking and
air pollution Global m6A levels Peripheral blood

Decreased global m6A levels
were found in smokers

compared to non-smokers.
[150]

Aging Global m6A levels PBMCs

Decrease in overall m6A
with aging.

m6A-modified transcripts have
higher expression than the

nonmodified ones. DROSHA
and AGO2 have high
methylation levels in

younger subjects.

[148]

COVID-19 m6A levels, METTL3, FTO PBMCs

Increased METTL3 and FTO in
COVID-19 patients. m6A

modification has an essential
role in the clinical status of

COVID-19 patients

[149]

Spinal cord injury (SCI)
FTO, METTL14, RBMX,

YTHDF2, YTHDC2,
HNRNPA2B1

PBMCs, GEO data

METTL14, FTO, RBMX,
YTHDF2, HNRNPA2B1, and
YTHDC2 downregulated in

SCI. AKT2/3 and PIK3R1 are
potential m6A-related

therapeutic targets.

[153]

Myocardial
infarction (MI)

5mdC, 5mrC,
m6A levels

Heart tissue and blood
(rats)

Increased levels of 5mdC,
5mrC, and m6A in heart tissue

eight weeks after surgery.
[155]

Rheumatoid arthritis ALKBH5, FTO, YTHDF2,
m6A levels Peripheral blood

Decreased ALKBH5, FTO, and
YTHDF2 as risk factors. Global

m6A is increased and
negatively correlates with

decreased FTO
gene expression.

[145]

Type 2 diabetes (T2DM) FTO Peripheral blood

m6A levels are lower in T2DM
patients, probably caused by
the higher FTO expression.

Higher FTO level is associated
with T2DM risk.

[147]

Systemic lupus
erythematosus (SLE)

METTL3, WTAP, FTO,
ALKBH5, YTHDF2 Peripheral blood

Decreased METTL3, WTAP,
FTO, ALKBH5, and YTHDF2

gene expression in the blood of
SLE patients. ALKBH5 as a

risk factor and involved in SLE
pathogenesis.

[160]

Systemic lupus
erythematosus (SLE) METTL14, ALKBH5, YTHDF2 PBMCs

Decreased expression of
METTL14, ALKBH5, and

YTHDF2 in SLE.
[154]

Endometriosis FTO,
HNRNPC, HNRNPA2B1 GSE6364 data

FTO, HNRNPC, and
HNRNPA2B1 have

biomarker potential.
[161]



Cancers 2023, 15, 1232 14 of 31

Table 2. Cont.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Lung adenocarcinoma HNRNPC, METTL3, YTHDC2,
KIAA1429, ALKBH5, YTHDF1 Tissue

HNRNPC, METTL3, YTHDC2,
KIAA1429, ALKBH5, and
YTHDF1 linked to clinical

features, pathological stages,
gender, and survival.

[158]

Lung adenocarcinoma HNRNPC Tissue

HNRNPC high expression
correlates with gender, age,

ethnicity, lymph node
metastasis, smoking history,

TNM staging, and poor
prognosis.

[156]

Lung adenocarcinoma IGF2BP3 Tissue

IGF2BP3 correlates with poor
prognosis, tumour length,

differentiation, T stage, and
gender. IGF2BP3 is an

independent prognosis factor
and potential oncogene.

[157]

Lung adenocarcinoma
KIAA1429, RBM15, METTL3,

HNRNPC, HNRNPA2B1,
YTHDF1, YTHDF2

Tissue

METTL3, YTHDF1, and
YTHDF2 are prognostic

biomarkers and suggest better
OS and RFS.

[159]

Lung adenocarcinoma

METL3,
VIRMA, RBM15, YTHDF1,

YTHDF2, LRPPRC,
HNRNPA2B, IGFBP3, RBMX,

FTO, ALKBH5, WTAP,
METTL16, METTL14,

ZC3H13

Tissue Risk factors that predict worse
prognosis. [162]

Non-small-cell lung
carcinoma (NSCLC)

m6A levels, METTL3,
METTL14, RBM15, ALKBH5,

FTO
Peripheral blood

Leukocyte m6A levels
potential biomarker for

NSCLC screening, diagnosis,
and monitoring.

[142]

Non-small cell lung
cancer (NSCLC)

YTHDC2, METTL3, RBM15,
HNRNPC, YTHDF2, YTHDF1,

ZC3H13
Tissue Gene signatures classify

prognostic groups. [163]

Non-small cell lung
cancer (NSCLC) HNRNPC Tissue

HNRNPC predicts poor
prognosis and correlates with
lymph node metastasis and

tumour invasion.

[164]

Lung squamous cell
carcinoma

ALKBH5, METTL3, HNRNPC,
KIAA1429 Tissue

T follicular helper cells have a
prognostic signature role in
predicting the survival and

treatment response.

[165]

Breast cancer METTL14, FTO, m6A levels Peripheral blood m6A levels are elevated in
advanced tumour stages.

[143]

Hepatocellular
carcinoma (HCC) ALKBH5 Tissue and cells

Loss of ALKBH5 is an
independent prognostic factor.

ALKBH5 inhibits HCC
proliferation in vitro and

in vivo.

[166]
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Table 2. Cont.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Hepatocellular
carcinoma (HCC) YTHDF1 Tissue

YTHDF1 is upregulated in
HCC and correlates with stage.

Lower YTHDF1 expression
results in better OS. YTHDF1 is

involved in HCC cell cycle
progression and metabolism

regulation.

[167]

Hepatocellular
carcinoma (HC)

YTHDF1, YTHDF2, METTL3,
KIAA1429 Tissue

m6A regulators differentially
expressed in HC. Independent

prognostic risk signature:
YTHDF1, YTHDF2, METTL3,

and KIAA1429.

[168]

Hepatocellular
carcinoma (HCC) METTL14 Tissue

METTL14 expression
correlates with the expression

and regulates m6A
methylation of hub genes,
CSAD, GOT2, and SOCS2.

[169]

Hepatocellular
carcinoma (HCC) m5C-related lncRNAs Tissue Prognosis value established for

8 m5C-related lncRNAs. [170]

Gastric cancer (GC)
and benign gastric

disease (BGD)

m6A levels,
ALKBH5, FTO

Peripheral blood

m6A levels are elevated in
advanced tumour stages. m6A
decreases after surgery. FTO in

stage IV disease < stage I.

[144]

Gastric cancer m6A levels, YTHDF1 Tissue and cell

Constructed a diagnostic m6A
score that can distinguish
cancer from normal tissue.

YTHDF1 expression correlates
with high-risk subtype

patients, and it is a possible
oncogene.

[171]

Gastric cancer (GC) m6A levels Tissue

m6A score is an independent
prognostic biomarker. Lower

m6A scores have EBV and MSI
patients that are sensitive to
checkpoint immunotherapy.

Negative correlation between
m6A score and mutation. EMT

has the lowest m6A score.

[172]

Gastric cancer (GC) m6A levels, METTL3 Tissue

High METTL3 expression
increases m6A levels and is

associated with GC
proliferation, liver metastasis,

and poor prognosis.

[173]

Gastric cancer (GC) FTO, ALKBH1 Tissue

High expression of FTO and
ALKBH1 transcripts associated

with low survival. Low
ALKBH1 protein expression
correlates with larger tumour

size and advanced TNM stages.
Low FTO protein expression
correlates with shorter OS.

[174]
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Table 2. Cont.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Gastric cancer (GC)

RBM15, WTAP, METTL3,
YTHDF2, YTHDF1, YTHDC1,
YTHDC2, KIAA1429, ZC3H13,

HNRNPC

Tissue

Hub genes associated with
m6A regulators have

prognostic values: AARD,
ASPN, SLAMF9, MIR3117, and

DUSP1. ASPN is also
upregulated in GC cells.

[175]

Pancreatic cancer
KIAA1429, HNRNPC,

METTL3, YTHDF1, IGF2BP2,
IGF2BP3

Tissue,
cell line m6A-regulator risk signature. [176]

Pancreatic
adenocarcinoma RBM15 Tissue Various significant prognostic

parameters. [177]

Colonic
adenocarcinoma

YTHDF1, METTL3, KIAA1429,
YTHDF3, YTHDC2, METTL14,

ALKBH5
Tissue

YTHDF1, YTHDF3, and
YTHDC2 are promising
biomarkers for detection,

progression, and prognosis.

[178]

Colon cancer ALKBH5 Tissue, cells

ALKBH5 has a tumour
suppressor role in CC.

Overexpression of ALKBH5
can inhibit CC invasion and

metastasis and has prognostic
significance.

[179]

Colorectal cancer
(CRC) m6A levels, IGF2BP2

PBMCs,
GEO data

m6A in the blood is a
prospective biomarker for CRC

and a possible therapeutic
target. IGF2BP2 has high
expression in CRC blood.

Monocytes have the most m6A
modification.

[152]

Colorectal
adenocarcinoma

METTL3, YTHDF1, IGF2BP1,
IGF2BP3, EIF3B, HNRNPA2B,
YTHDF1, IGF2BP1, IGF2BP3

Tissue Potential biomarkers YTHDF1,
IGF2BP1, IGF2BP3, and EIF3B.

Acute myeloid
leukaemia WTAP

Peripheral blood,
bone marrow

cells

Patients were classified into
two risk groups based on

WTAP expression. High WTAP
more common in older

patients.

[151]

Acute myeloid
leukaemia

ZC3H13, RBM15, LRPPRC,
METTL14, YTHDC2 Tissue

METTL14, YTHDC2, ZC3H13,
and RBM15 expression

correlates with OS.
[180]

Neuroblastoma METT14, WTAP, HNRNPC,
YTHDF1, IGF2BP2 Tissue

Risk prediction signature:
METT14, WTAP, HNRNPC,

YTHDF1, and IGF2BP2.
[181]

Head and neck
squamous cell

carcinoma.
YTHDC2 Tissue

YTHDC2 correlates with
prognosis and immune

infiltration level (CD4+ T cell
subpopulation). YTHDC2 has
a possible tumour suppressor

role.

[182]
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Table 2. Cont.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Head and neck
squamous cell

carcinoma
IGF2BP2 Tissue

IGF2BP2 was identified as a
hub m6A regulator, and its

high expressions are correlated
with poor prognosis.

[183]

Melanoma ALKBH5, YTHDF1, KIAA1429 Tissue

Prognostic risk signature:
ALKBH5, YTHDF1, and

KIAA1429 divides patients
into high- and low-risk OS

groups.

[184]

Melanoma YTHDF1, HNRNPA2B1 Tissue

Tumour stage and treatment
response differ between
patients with/without

mutations in m6A regulatory
genes.

[185]

Uveal melanoma RBM15B, IGF2BP1, IGF2BP2,
YTHDF3, YTHDF1 Tissue

m6A regulators with
prognostic value: RBM15B,

IGF2BP1, IGF2BP2, YTHDF3,
and YTHDF1. RBM15B is an

independent prognostic factor
and correlates with
clinicopathologic

characteristics.

[186]

Osteosarcoma

KIAA1429, HNRNPA2B1
METTL3, YTHDF3,

METTL14, FTO,
YTHDF2

Tissue Prognostic signatures. [187]

Papillary thyroid
carcinoma

HNRNPC, WTAP, RBM15,
YTHDC2, YTHDC1, FTO,

METTL14, METTL3, ALKBH5,
KIAA1429, YTHDF1, ZC3H13

Tissue Prognostic signature RBM15,
KIAA1429, FTO. [188]

Endocrine system
tumours

IGF2BP1, METTL14, RBMX,
HNRNPC, IGF2BP3,

HNRNPA2B1 ICBLL1,
RBM15B, KIAA1429, WTAP

Tissue Prognostic signatures. [189]

Adrenocortical
carcinoma

RBM15, ZC3H3, YTDHF1,
YTDHF2, ALBH5, KIAA1429,
YTHDC1, HNRNPC, WTAP,

METTL3,
FTO

Tissue
Independent prognostic risk

signature: HNRNPC, RBM15,
METTL14, and FTO.

[190]

Clear cell renal cell
carcinoma METTL3, METTL14 Tissue

METTL3 and METTL14 are
associated with prognosis and
clinicopathological features.

[191]

Clear cell renal cell
carcinoma

FTO, IGF2BP2, IGF2BP3,
KIAA1429, YTHDC1, ZC3H13 Tissue

m6A-related risk signature for
prognosis. m6A regulators’
expression correlates with

histological grade and staging.

[192]

Clear cell renal cell
carcinoma ALKBH5, FTO Tissue

ALKBH5 and FTO decreased
gene expression correlates

with poor OS.
[193]
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Table 2. Cont.

Disease/Condition RNA Modification or
Epitranscriptomic Regulator Sample Type Observations/Role Ref.

Clear cell renal cell
carcinoma METTL14 Tissue

METTL14 probably methylates
m6A in PTEN, leading to its

expression change. METTL14
gene expression negatively
correlates with the tumour

stages and positively correlates
with KIRC patients’ OS.

[194]

Bladder cancer

HNRNPA2B1 IGF2BP1,
IGF2BP3, METTL3, YTHDF2,

YTHDF1, FTO, ZC3H13,
YTHDF3, YTHDC1, WTAP,

METTL16, METTL14

Tissue

Identified risk factors that
correlate with advanced
clinical stages: RBM15,

HNRNPA2B1, HNRNPC,
IGF2BP2, YTHDF1, and

YTHDF2.

[195]

Bladder cancer METTL3, WTAP, FTO,
YTHDC1 Tissue

Independent prognostic
signature and predictor of

clinicopathology.
[196]

4.3. Epitranscriptomics in Glioma Diagnostics

Like other cancer types, the value of epitranscriptomics as a tool for brain cancer
diagnostics is still in its early days. The WHO classification system for primary brain
tumours has integrated molecular diagnostics with traditional histopathology [197]. While
the identification of molecular alterations, such as isocitrate dehydrogenase IDH1/2 muta-
tions, 1p/19q codeletion, and MGMT promoter methylation, has improved the accuracy
of diagnostics, prognostication, and prediction of treatment response for glioma patients,
there has been no tangible improvement in clinical management and patient outcomes.
Epitranscriptomics of known glioma sub-entities may yield further advances in tumour
stratification and help guide treatment selection for precision medicine, as was shown in
preliminary studies of colon cancer [152]

Several studies explored m6A RNA methylation regulators in public primary brain
cancer sequencing datasets, and these key findings are summarised in Table 3. Many of
these studies are not based on integrated brain tumour diagnostic definitions (WHO 2021
classification), and tumours are often referred to in broad terms (GBM, glioma, astrocytoma,
or low-grade glioma, LGG). In this review, we use the diagnostic terms used by the original
studies; however, caution must be taken when interpreting RNA modification changes
relevant to specific glioma subtypes.

Key findings in glioma patients in relation to m6A ‘readers’ include YTHDF2 over-
expression, induced through the EGFR/SRC/ERK pathway to promote tumourigenesis,
invasiveness, and cell proliferation independently associated with poor prognosis [198].
Similarly, expression of the YTHDF1 paralog is negatively associated with survival and
promotes glioma cell proliferation and growth in vitro [100]. A systematic meta-analysis of
m6A ‘reader’ eIF3 was performed in independent glioma cohorts as several eIF3 subunits
are localised to chromosomes 1p and 19q [199,200], regions co-deleted in IDH-mutant
oligodendroglioma [201]. All 13 eIF3 subunits were significantly differentially expressed
between the glioma subgroups in both TCGA and CGGA datasets [202]. Among other find-
ings, eIF3i expression was shown to be an independent prognostic factor in IDH-mutant
LGG and could also predict the 1p/19q codeletion status [202]. m6A regulators IGF2BP2,
IGF2BP3, HNRNPC, and YTHDF2 and m5C-related long noncoding RNAs CIRBP-AS1,
GDNF-AS1, LINC00265, and ZBTB20-AS4 have prognostic significance in LGG [203,204].

Expression of the m6A ‘writer’ METTL3 was positively associated with a higher malig-
nant grade and poorer prognosis of IDH-wildtype but not IDH-mutant gliomas [205]. An-
other study identified significant fluctuations in m6A regulator expression when comparing
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glioma cohorts comprising different IDH mutational and 1p/19q codeletion states. While
these cohorts represent different glioma sub-entities with distinct molecular pathophysiol-
ogy, the average survival times are vastly different, particularly between oligodendroglioma
(IDH-mutant, 1p/19q co-deleted) and GBM (IDH-wildtype, 1p19q non-co-deleted), and
thus divergent epitranscriptomic regulator expression patterns may relate to the very differ-
ent biology of these distinct pathological entities [101]. In this study, two glioma subgroups
were identified based on the expression of m6A regulators, and a risk signature (ALKBH5,
IGF2BP3, KIAA1429, and YTHDF2) was significantly associated with prognosis, the im-
mune microenvironment and treatment efficacy [101]. A similar risk signature (ALKBH5,
IGF2BP2, IGF2BP3, HNRNPA2B1, YTHDF1, YTHDF2, RBM15, and WTAP) was shown to
be prognostic for glioma patients, and the expression of IGF2BP2 and IGF2BP3 was linked
to tumour occurrence, development, and progression [206]. A recent study also reported
independent prognostic significance of ALKBH5, which is upregulated in glioma and as-
sociated with immune signalling, and inflammatory and metabolic pathways genes [207].
Another study calculated significant prognostic values for four hub genes (EMP3, PDPN,
TAGLN2, and TIMP1) related to m6A regulators, all with high expression in high-grade
glioma, and further correlation to IDH status and transcriptome subtype [208]. Links
between clinical outcomes and m6A regulators function in the tumour microenvironment,
tumour cell stemness, and infiltration have also been established [209]. Likewise, epitran-
scriptomic regulation of lncRNAs are also associated with glioma patient prognosis [210].
Further studies highlighting the close link between m6A RNA methylation regulators and
clinicopathological features and treatment sensitivity of gliomas are outlined in Table 3.

Table 3. m6A regulators identified as biomarkers in glioma.

Increased
m6A Regulator(s)

Decreased
m6A Regulator(s) Data Used Observations/Role Ref.

YTHDF2
TCGA,

REMBRANDT French,
Kawaguchi, Paugh

YTHDF2 is linked to glioma
malignancy and invasiveness. [198]

YTHDF2, YTHDF1,
METTL3, RBM15,

HNRNPC

ALKBH5, WTAP,
YTHDC2, ZC3H13

METTL14, FTO
TCGA

YTHDF1 overexpression correlates
with the advanced stage of disease.

YTHDF1 contributes to glioma
progression.

[100]

eIF3e Oncomine, TCGA

eIF3 subunits show varied
expression in distinct regions of
GBM tumours. eIF3e proteins

expression correlates with glioma
grade, highest expression in GBM,
and increases in recurrences. eIF3e
upregulation in recurrences may

have a role in treatment resistance.

[211]

eIF3b, eIF3i, eIF3k and
eIF3m (poor OS)

eIF3a and eIF3l
(better OS)

CGGA,
TCGA

Expression of eIF3d, eIF3e, eIF3f,
eIF3h, and eIF3l correlates with the
IDH-mutant status of gliomas. eIF3i
and eIF3k expressions increase with

tumour grade and are associated
with poor OS. eIF3i is an

independent prognostic factor in
IDH-mutant LGG and can predict

the 1p/19q codeletion status in
IDH-mutant LGG. High eIF3i
expression correlates with cell

proliferation, mRNA processing,
translation, T-cell receptor signalling,
NF-kB signalling, and many others.

[202]
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Table 3. Cont.

Increased
m6A Regulator(s)

Decreased
m6A Regulator(s) Data Used Observations/Role Ref.

METTL3 CGGA,
TCGA

METTL3 promotes the malignant
progression of gliomas in vitro and

in vivo. METTL3 correlates with
poor OS in IDH-wildtype but not in

IDH-mutant gliomas.

[205]

eIF3A, FMR1, FTO,
METTL14, METTL16,

METTL3, RBMX,
YTHDC, YTHDF3 and

ZC3H13
(IDH-mutant vs.
IDH-wildtype)

ALKBH5, IGF2BP2,
IGF2BP3, RBM15,

WTAP and YTHDF1
(IDH-mutant vs.
IDH-wildtype)

CGGA,
TCGA,

REMBRANDT

Expression of m6A regulators is
associated with

Prognosis, grade, IDH, and 1p/19q
status. Lower m6A regulators

expression (except FTO) is
associated with longer OS. A

prognostic risk signature—ALKBH5,
IGF2BP3, KIAA1429, and YTHDF2.

[101]

ALBKH5, RBM15,
YTHDF and WTAP

(increased tumour grade)
FTO CGGA, TCGA

RBM15, METTL3, METTL14,
ALKBH5, FTO, YTHDC1, and

YTHDF2 are significantly
differentially expressed between
IDH-mutant and IDH-wildtype

LGG. METTL3, FTO, and YTHDC1
are significantly differentially

expressed between IDH-mutant and
IDH-wildtype GBM.

The risk signature comprises RBM15,
WTAP, ALBKH5, FTO, YTHDC1,

YTHDF1, and YTHDF2, all of which
are independent prognostic markers
and predictive of clinicopathological

features and treatment sensitivity.

[105]

RBM15, RBM15B,
METTL3, METTL14,

WTAP, HNRNPA2B1,
HNRNPC, YTHDF1,

YTHDF2, YTHDF3, and
YTHDC2

(gliomas vs. control)
ALKBH5, RBM15, WTAP
and YTHDF2 (in GBM vs.

LGG)

FTO and ZC3H13
(gliomas vs. control)

FTO, KIAA1429,
METTL3, ZC3H13,

HNRNPC, and
YTHDC2

(in GBM vs. LGG)

CGGA

Four m6A-related lncRNAs that
have prognostic values: LINC00900

and MIR155HG, increased in
higher-grade tumours, while

MIR9-3HG and LINC00515 have
lower expression in HGG vs. LGG.

[107]

IGF2BP3 YTHDC2 TCGA, CGGA
cBioportal

IGF2BP3 expression increases with
tumour grade and correlates with

shorter OS.
YTHDC2 and IGF2BP3 are negative
and positive prognostic factors for

OS.

[212]

HNRNPC, WTAP,
YTHDF2 and, YTHDF1 TCGA

Defined prognostic risk signature:
HNRNPC, ZC3H13, and YTHDF2.

HNRNPC plays an important role in
malignancy and contributes to the

development of gliomas.
High expression of HNRNPC
correlates with a favourable

prognosis.

[213]
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Table 3. Cont.

Increased
m6A Regulator(s)

Decreased
m6A Regulator(s) Data Used Observations/Role Ref.

LINC00265 C6orf3, GDNF-AS1,
LINC00925, LINC00237

TCGA,
CGGA

Twenty-four prognostic m6A-related
lncRNAs were identified as

prognostic lncRNAs.
m6A-related lncRNA prognostic

signature (m6A-LPS).

[107]

METTL14, IGF2BP2,
IGF2BP3, HNRNPA2B1,

YTHDF1,
YTHDF3,HNRNPC,

RBMX, WTAP, YTHDF2,
and IGF2BP1

TCGA,
CGGA

Defined prognostic risk signature:
ALKBH5, IGF2BP2, IGF2BP3,

HNRNPA2B1, YTHDF1, YTHDF2,
RBM15, and WTAP.

[206]

Again, there are several conflicting reports of m6A regulator expression levels among
the different brain tumour entities and non-tumour brain tissue, including ALKBH5, WTAP,
METTL14, and YTHDC2 [100,101,105,107,213]. The contradictory findings of m6A RNA
methylation regulating gene expression levels may help to explain the opposing reports of
high and low global m6A in brain tumour tissue relative to ‘normal’ brains [4,87]. There
is some consensus, however, for the relative expressions of several m6A regulator genes,
which are summarised in Table 4. Of these, one of the most discussed is m6A ‘erasers’ FTO,
which is frequently observed to be downregulated in GBM relative to other tumours and
control tissue [100,101]. If taken to be true, this suggests that GBM tumours have increased
global m6A levels.

Table 4. Diverse m6A regulators and the direction of their expression in different glioma grades with
a possible role in diagnostics (these regulators do not have contradictory expressions in the studies
presented in Table 3). Regulators in bold were detected in more than one study; relative increases
and decreases in m6A regulator levels are indicated by up and down arrows, respectively.

m6A Regulators
GBM vs.

NT
GBM vs.

AST
GBM vs.

LGG
High vs. Low

Grade Refs.

FTO ↓ ↓ ↓ ↓ [100,105,107]
METTL3 ↑ ↓ ↓ [100,101,107,205]
RBM15 ↑ [100,105,107]
RBM15B ↑ [107]
ZC3H13 ↓ ↓ ↓ [100,107]

KIAA1429 (VIRMA) ↓ [107]
eIF3A ↓ ↓ [101,202]
eIF3B ↑ ↑ ↑ [202]
eIF3E ↑ [202]
eIF3I ↑ ↑ ↑ [202]
eIF3K ↑ ↑ ↑ [202]
eIF3L ↓ ↓ [202]
eIF3M ↑ ↑ ↑ [202]
FMR1 ↓ [101]

HNRPC ↑ ↓ [100,107,213]
HNRNPA2B1 ↑ [107]

IGF2BP2 ↑ [101]
IGF2BP3 ↑ ↑ ↑ [101,212]

RBMX ↓ [101]
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Table 4. Cont.

m6A Regulators
GBM vs.

NT
GBM vs.

AST
GBM vs.

LGG
High vs. Low

Grade Refs.

YTHDF1 ↑ ↑ [100,101,107,213]
YTHDF2 ↑ [100,107,213]
YTHDF3 ↑ ↓ [101,107,214]

Since this review is largely based on studies that do not strictly comply with WHO 2021 brain tumour clas-
sification [197], the glioma group names are defined based on those used in the included publications: GBM
(IDH-wildtype and -mutant; note, GBM is now a designation of IDH-wildtype tumours only), astrocytoma (AST;
IDH-mutant and -wildtype), low-grade glioma (LGG; different IDH status), and non-tumour brain tissue (NT). In
addition, many cited studies do not include the specific glioma tumour grade.

5. Conclusions and Future Perspectives

Epitranscriptome profiling studies, particularly in cancer research, are becoming more
common. Studies investigating global m6A, m5C, and other RNA methylation profiles
have helped to identify epitranscriptomic regulators and their involvement in cancer biol-
ogy. While the direct assessments of RNA modifications in diagnostic laboratory settings
are technologically challenging, there is a wealth of evidence supporting the significant
relationships between epitranscriptomic regulator gene expressions and clinicopathologi-
cal parameters in cancer, including their use as diagnostic, prognostic and/or predictive
biomarkers. With distinct roles defined in stem cell biology and neural development along
with high levels detected in brain tissue, RNA modifications are, theoretically, highly
relevant to multiple aspects of gliomagenesis and biology. Indeed, multiple studies have re-
ported epitranscriptome regulator signatures that are highly predictive of glioma pathology
and patient outcomes.

Further technological advances are needed to adapt epitranscriptomic approaches for
clinical diagnostics and will likely uncover entirely novel targets for further stratifying
tumour molecular phenotypes, directing treatment(s) and guiding patient management. In
the interim, the detection of regulator genes and global m6A methylation levels in highly
annotated cohorts of discrete tumour types as well as biofluids are warranted.
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