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Simple Summary: Radiation therapy is routinely prescribed for women who undergo breast-sparing
surgery for early breast cancers. Over the years, advancements in diagnosis and treatments have
dramatically improved breast cancer outcomes, now approaching 100% survival at 5 years for those
diagnosed at stage I with favorable clinical and molecular features. In this review, we discuss the
investigations that are underway to identify women with low-risk cancers in whom radiation therapy
can either be completely avoided or delivered in lower intensities. We also review ongoing clinical
trials that are assessing if radiation therapy can increase the capacity of patients’ anticancer immune
responses and discuss if cancer cells that are shed in the blood can guide radiation decisions.

Abstract: Adjuvant whole breast irradiation after breast-conserving surgery is a well-established
treatment standard for early invasive breast cancer. Screening, early diagnosis, refinement in surgical
techniques, the knowledge of new and specific molecular prognostic factors, and now the standard
use of more effective neo/adjuvant systemic therapies have proven instrumental in reducing the rates
of locoregional relapses. This underscores the need for reliably identifying women with such low-risk
disease burdens in whom elimination of radiation from the treatment plan would not compromise
oncological safety. This review summarizes the current evidence for radiation de-intensification
strategies and details ongoing prospective clinical trials investigating the omission of adjuvant whole
breast irradiation in molecularly defined low-risk breast cancers and related evidence supporting the
potential for radiation de-escalation in HER2+ and triple-negative clinical subtypes. Furthermore,
we discuss the current evidence for the de-escalation of regional nodal irradiation after neoadjuvant
chemotherapy. Finally, we also detail the current knowledge of the clinical value of stromal tumor-
infiltrating lymphocytes and liquid-based biomarkers as prognostic factors for locoregional relapse.
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1. Introduction

Breast-conserving surgery consolidated with adjuvant radiation has been the well-
established standard of care for women diagnosed with early invasive breast cancer for
more than three decades [1–4]. The Early Breast Cancer Trialists’ Collaborative Group
patient-level meta-analysis of 17 randomized trials, including more than 10,000 women,
provides compelling evidence favoring adjuvant radiotherapy over no radiotherapy after
breast-conserving surgery for a 10-year absolute risk reduction of 15.7% for any recurrence
and a moderate absolute decrease in breast cancer mortality by 3.8% at 15 years [5]. Supple-
mentation with a tumor bed radiation boost further diminishes the relative risk of local
recurrence by 50% in high-risk patients [6]. Over the past several decades, screening, early
diagnosis, refinements in imaging, surgical techniques, pathological evaluation, improved
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understanding of tumor biology, and now the standard use of more effective neo/adjuvant
systemic therapies have contributed to a steady and substantial improvement in clinical
outcomes [7].

Modern radiotherapy techniques incorporating hypofractionation schedules have
improved quality of life, decreased hospital stay, and lessened side effects compared to
traditional radiotherapy modalities for early breast cancer [8,9]. Furthermore, despite a lack
of proven survival benefits in some instances, optimal locoregional control undoubtedly
contributes to improved quality of life [8].

Similar to systemic therapy decisions, radiotherapy should be evaluated using an
individualized approach to avoid over-treatment for early invasive breast cancer. This
need has prompted re-consideration of radiotherapy indications and has initiated investi-
gations to identify any subset of low-risk women with such a negligible burden of residual
locoregional disease risk following breast-conserving surgery who could be safely spared ra-
diation therapy. In particular, much attention has been focused lately on elderly early-stage
breast cancer patients with favorable prognostic factors [10].

Among these different studies, retrospectively analyzed data by Herskovic et al. has shown
an improvement in overall survival with adjuvant radiation in a cohort of >60,000 women >
65 years of age [11]. In contrast, a series of at least seven first-generation clinical trials were
conducted between 1981–1998 that evaluated rates for local recurrences and overall survival
after breast-conserving surgery with or without radiation. These trials limited the eligibility
criteria for patient enrollment to T1–2 node-negative cancers with microscopically clear resection
margin status. While no survival benefit was observed, a sufficiently low-risk group in terms
of local recurrence could not be identified, signifying the insufficient capacity of standard
clinicopathological factors alone in this regard [12]. This, perhaps, was also compounded by
less established standards for hormone receptor assessment and variability in the definition of
pathologically clear surgical margins at that time.

Among the second generation of relevant phase III clinical trials, noteworthy are the
Cancer and Leukemia Group B 9343 cooperative group (CALGB 9343) and the Postoperative
Radiotherapy in Minimum-risk Elderly (PRIME II) trials that exercised more stringent
eligibility criteria based on age at diagnosis (≥70 years and ≥65 years for CALGB 9343
and PRIME II, respectively) and favorable tumor characteristics. For the CALGB 9343
trial, at 10 years, 98% of women randomized to tamoxifen and radiation after breast-
conserving surgery, versus 90% of those in the tamoxifen-only arm, remained free from
local and regional relapses [13]. PRIME II yielded comparable results at 10 years, showing
an ipsilateral breast tumor recurrence rate of 0.9% with and 9.8% without radiation [14,15].
Even with this statistically significant improvement in the risk of locoregional relapses
with radiation in both these trials, no prominent impact was noted on survival. The
level I evidence thus generated led to a modification in the clinical practice guidelines
allowing radiation omission after breast-conserving surgery in women ≥ 70 years with
T1N0, hormone receptor-positive early breast cancers who are committed to complete
a 5-year course of endocrine therapy [16] as low compliance with endocrine therapy is
associated with poor locoregional control when radiation therapy is also being omitted
from the treatment plan [17].

Regardless of these recommendations, the use of radiation therapy has continued
among elderly women, the decision largely influenced by patients’ age and physicians’
preference [18,19]. Additionally, achieving higher locoregional control with radiation may
be the preferred choice of women to avoid the deterioration in quality of life and the
financial costs associated with locoregional recurrence, particularly in the presence of poor
prognostic factors such as grade 3 histology and positive surgical margins. It has also been
reported that elderly women may prefer to receive radiation therapy (that is delivered
over weeks) over adjuvant endocrine therapy (delivered over 5 years, with often poor
compliance outside clinical trial settings) [17].

Beyond the omission of adjuvant radiation in select indolent tumors in elderly patients,
de-intensification strategies have continued to evolve over the past two decades and have
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positively contributed towards patient convenience and compliance by reducing radiation
duration and toxicities without compromising oncological safety.

Despite its undeniable benefits, radiation therapy is linked with the risk of significant
morbidities. Radiation dermatitis is the most common early complication of adjuvant
radiation following breast-conserving surgery that, if severe, may potentially interrupt
the radiation schedule [20,21]. Furthermore, while the risk of acute radiation toxicity is
significantly lower with partial breast radiation compared to whole breast radiation, the
risk of delayed dermal toxicities, including telangiectasia, fat necrosis, and subcutaneous
fibrosis, has been shown to be increased in some studies [22]. Additionally, both early and
delayed arm lymphedema remains a debilitating morbidity occurring in every fifth breast
cancer survivor, negatively impacting their quality of life and associated with an increased
burden on the health care system [23]. In particular, regional radiation therapy is a risk
factor contributing to the development of late-onset lymphedema (>12 months) [24] and
cardiac and pulmonary complications [25]. However, at least with regard to cardiac toxicity,
the use of CT-based radiotherapy planning greatly mitigates this risk [26,27]. Lastly, despite
encouraging response rates to pre-operative radiation in early-stage breast cancer, wound-
related complications remain a major concern that has prompted further investigations to
optimize radiation doses and schedules [28].

In this review, we will summarize the recent advances in hypofractionated and accel-
erated partial breast irradiation and discuss the ongoing clinical trials that utilize existing
validated genomic classifiers and immunohistochemistry-based assays for risk categoriza-
tion and radiation omission in hormone receptor-positive early breast cancers. We will
also provide an overview of the recent literature supporting the potential for radiation
de-escalation in HER2-positive and triple-negative subtypes. Next, we will discuss clin-
ical trials underway for the de-escalation of regional nodal radiation after neoadjuvant
chemotherapy. Lastly, we will provide an update on current advances in the utilization
of immune biomarkers (specifically stromal lymphocytes) and liquid-biopsy-based ap-
proaches for prognostication of locoregional risk and prediction of radiation benefit.

2. De-Intensification of Radiation in Early Breast Cancer: Hypofractionation and
Accelerated Partial Breast Radiation

Until about a decade ago, the conventional dosage for whole breast irradiation, defined
as 45–50 Gy given in 25 fractions of 1.8–2.0 Gy once a day over 5 weeks, with or without a
tumor bed boost (suggested as 10 Gy in 4–5 fractions) had been the standard of care [29].
This extended duration of treatment has been associated with acute and late radiation-
induced toxicities, poor quality of life, low compliance, increased workload, and high
costs incurred by healthcare systems [30,31]. In addition, several factors, including patient
age, co-morbidities, income, ethnicity, education attainment, distance to the treatment
facility, and the availability of radiation oncologists, have been found to be associated with
disparities in the receipt of radiotherapy [32–35]. These barriers contribute to an increased
rate of mastectomy among women who might otherwise have chosen breast-conserving
surgery with adjuvant radiation [36].

Contrary to the aforementioned conventional radiation, in the hypofractionation
approach, a higher dose (>2 Gy) per fraction is delivered in fewer fractions over a shorter
duration, such that a lower overall total dose is delivered. The radiobiologic rationale for
hypofractionation is based on the concept of fractionation sensitivity (α/β therapeutic ratio)
such that if the fractionation sensitivity of the cancer cells is similar to the fractionation
sensitivity of irradiated normal cells, a higher dose per fraction can be delivered to achieve
tumoricidal effect while limiting toxicities to the normal breast [37].

High-quality, mature follow-up data from multiple phase III randomized clinical trials
have consistently demonstrated non-inferiority of moderate hypofractionated radiation
(40–42.5 Gy in 15–16 fractions of 2.6–2.7 Gy over 3 weeks) compared to conventional
whole breast irradiation, for improving locoregional control, overall survival, and cosmetic
outcomes while reducing normal tissue toxicities [38–41]. Based on the level I evidence
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generated from these clinical trials, guidelines recommend hypofractionation as the stan-
dard of care [29]. As a further radiation de-intensification strategy, more recently, the
5-year results from the FAST FORWARD trial have shown the non-inferiority of an ultra-
hypofractionation regimen (26 Gy in 5 fractions of 5.2 Gy over 1 week versus standard
hypofractionation of 40 Gy in 15 fractions over 3 weeks) for local control of the conserved
breast or chest wall without compromising normal breast tissue [42].

Given that most in-breast recurrences occur in the index quadrant [43], Accelerated
Partial Breast Irradiation (APBI) is an alternative approach to hypofractionation that deliv-
ers targeted radiation (>2 Gy) to the lumpectomy site (and the associated margin) over a
period of 2–5 days and has shown promising results for oncological safety and cosmetic out-
comes, while decreasing the treatment time to 2–5 days. Methods of APBI delivery include
single or multiple catheter brachytherapy [44–48], intraoperative radiotherapy [49–51], and
the use of external beam radiation therapy techniques such as three-dimensional conformal
radiation therapy [42,52–54] and intensity-modulated radiation therapy [55,56].

One caveat to the use of APBI is the careful selection of eligible patients. This is
particularly evident from the phase III NSABP B-39/RTOG 0413 trial, which was unable
to demonstrate non-inferiority of APBI compared to whole breast irradiation with regard
to the ipsilateral breast tumor recurrence rate. This is likely because the trial included a
heterogenous population comprising low-risk as well as high-risk patients with features
such as age < 40, invasive lobular carcinomas, multifocality, tumor size > 2 cm, 1–3 positive
lymph nodes, or hormone receptor-negative status [57]. However, the absolute difference
(1%) in ipsilateral breast tumor recurrence was found to be small and potentially acceptable
to some patients.

Variations in APBI fraction size, delivery methods, and radiation schedules are associ-
ated with different cosmesis and tissue toxicity results. On the one hand, ABPI (compared
to whole breast irradiation) has shown comparable or improved cosmetic outcomes and
toxicity profiles [58–61], while on the other hand, some trials have shown contrary results.
For example, in the OCOG-RAPID trial, compared to whole breast irradiation, APBI deliv-
ered via three-dimensional conformal radiation therapy as 38.5 Gy in 10 fractions twice per
day over 5–8 days was associated with a higher rate of delayed radiation toxicity and poor
cosmesis [53]. The authors noted that this could be the result of short dosing intervals (daily
doses separated by 6–8 h) and that the worse cosmesis could be potentially circumvented by
a once-daily dosing regimen. Likewise, the physician reported cosmetic outcomes at 3 years
were inferior with APBI compared to whole breast irradiation in NSABP B-39/RTOG 0413,
which used a similar fractionation schedule [57].

Intraoperative radiotherapy that delivers a single fraction with electrons or soft X-rays
intraoperatively immediately after tumor resection is yet another strategy to decrease
the radiotherapy time and has been evaluated in two randomized controlled trials. The
European Institute of Oncology’s ELIOT trial showed increased local and regional relapse
rates associated with intraoperative radiotherapy compared to conventional whole breast
radiation at a median follow-up of 12.4 years (11% versus 2%), despite there being no
significant difference in the overall survival rate between the two groups. The exploratory
analysis identified several factors associated with a significantly increased risk of ipsilateral
breast tumor recurrence: tumor size > 2 cm, grade 3,≥4 positive axillary nodes, Ki-67 > 20%,
and luminal B or triple-negative clinical subtype [51]. However, intraoperative radiotherapy
as administered in ELIOT may still be an appropriate option for a subset of patients with
extremely favorable tumor biology (well-differentiated luminal A cancers < 1 cm in size
with Ki-67 < 14%) who experienced a 10-year ipsilateral breast tumor recurrence rate of
<1.3% [51]. The second phase III TARGIT-IORT trial found intraoperative radiotherapy to
be non-inferior to whole breast radiation in terms of five-year oncological outcomes. In
particular, one stratum of the trial was designed to include a risk-adapted approach whereby
patients receiving intraoperative radiotherapy, if found to have high-risk features on final
pathology, would then receive standard whole breast radiation post-operatively; in those
cases, the intraoperative dose was considered as a tumor bed boost [62]. Further detailed
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analyses have shown the oncological safety of the TARGIT-IORT risk-adapted approach
in all relevant subgroups stratified by breast cancer subtype, nodal involvement, tumor
size, and grade. Intriguingly, the results also suggest that contrary to standard whole breast
radiation, local failures occurring in the TARGIT-IOTR arm are not necessarily associated
with poor survival. While the biological mechanisms are not completely understood,
this effect could be partly explained by an abscopal effect of intraoperative radiotherapy
delivered to a well-vascularized tumor bed [63]. Of note, in the second TARGIT stratum,
delayed intraoperative radiotherapy delivered at a median of 37 days at a second surgery
failed to demonstrate non-inferiority to standard whole breast irradiation [64]. Although
the TARGIT-IORT procedure has been incorporated into clinical practice globally [65], by
and large, the intraoperative radiotherapy approach is still regarded as investigational until
mature, long-term data becomes available [66,67].

A recently published meta-analysis of 15 clinical trials, including more than 16,000 pa-
tients, compared partial breast radiation with whole breast radiation and reported the rates
of any ipsilateral breast tumor recurrences as the primary outcome measure. Collectively,
partial breast radiation was associated with a higher risk of ipsilateral breast recurrences
compared to whole breast radiation (5% versus 2.8%). Of note, after excluding intraopera-
tive radiotherapy trials, the rates of ipsilateral recurrences were 3.3% with partial breast
radiation versus 2.6% with whole breast radiation. Another noteworthy observation from
this meta-analysis is the higher rate of elsewhere recurrence in the ipsilateral breast with
partial breast radiation compared to whole breast radiation. The rates for true/marginal
recurrence were, however, comparable between the two treatment modalities. Despite the
advantage over whole breast radiation in limiting the risk of acute toxicities, overall partial
breast radiation yielded inferior effectiveness [68]. However, these results varied with the
delivery techniques such that multi-catheter brachytherapy and external beam radiation
approaches with CT planning were associated with higher oncological safety compared to
the intraoperative approach.

3. Ongoing Clinical Trials for Guiding Adjuvant Radiation Omission Decisions in
Women with Hormone Receptor-Positive Early-Stage Breast Cancers

The clinical utility of validated genomic and immunohistochemistry-based biomarkers
for guiding adjuvant radiation omission decisions following breast-conserving surgery in
favorable risk invasive breast cancers is under intense prospective investigation (Table 1).
The common theme of these third-generation clinical trials is to combine clinical factors
with some type of molecular risk assay to identify a low-risk group whose prognosis is so
good, at least in the context of adequate endocrine therapy, that radiation could not provide
significant additional benefit.
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Table 1. Ongoing clinical trials for the omission of adjuvant radiation therapy in molecularly defined low-risk estrogen receptor-positive breast cancers.

Trial Name
(NCT ID) &

Completion Year

Trial/Study Design
(n)

Eligibility Criteria
Outcome Measures

Age (yr) Pathological Stage Grade Receptor Status by IHC Surgery Margin Status (mm) IHC/Genomic Classifier

Trials investigating omission of whole breast irradiation in node-negative breast cancers

LUMINA
(NCT01791829)
[69]
2024

Prospective, single
arm, observational
study
(n = 501)

≥55 Stage 1 (pT1N0M0) 1–2 ER+/PR+/HER2−
BCS+
SLNB or axillary
dissection

≥1

Molecularly defined
luminal A by IHC 1:
ER ≥ 1%, PR > 20%,
HER2− (by IHC or in
situ hybridization) and
Ki-67 ≤ 13.25%

Primary:
5-year ipsilateral invasive
breast cancer or
DCIS recurrence

Secondary:
Contralateral breast cancer,
RFS based on any recurrence,
DFS based on any recurrence,
second cancer or death,
and OS

PRECISION
(NCT02653755)
[70]
2026

Phase II prospective
cohort study
(n = 690)

50–75

Stage I
(pT1N0M0)
(Axillary nodes with
isolated tumor cells
permitted)

1–2 ER+/PR+/HER2−
BCS+
SLNB or axillary
dissection

No ink on tumor or
re-excision with no
residual disease

Prosigna ROR

Primary:
5-year risk of ipsilateral LRR

Secondary:
5-year risk of any recurrence,
DFS, and OS

IDEA
(NCT02400190)
[71]
2026

Prospective,
single-arm
observational study
(n = 202)

50–69

Stage I
(pT1N0M0)
(Axillary nodes with
isolated tumor cells
permitted)

N/A ER+/PR+/HER2−

BCS+
SLNB or
SLNB→axillary
dissection or axillary
dissection

≥2 Oncotype Dx RS ≤ 18

Primary:
5-year LRR

Secondary (10 years):
Recurrence pattern,
subsequent therapy for local
recurrences, OS, and BCSS

PRIMETIME
(ISRCTN: 41579286)
[72]
2027

Case-cohort,
prospective study
(n = 1500)

≤60 Stage I
(pT1N0M0) 1–2 ER+/PR+/HER2− 2 BCS+ SLNB ≥1 IHC4+C Primary:

5-year IBTR

DEBRA
NCT04852887
[73]
2041

Phase III,
multicenter
randomized trial
(n = 1670)

50–70

Stage I
(pT1N0M0)
(Patients with
pathologic staging of
pN0(i+) or
pN0(mol+) are
not permitted

N/A ER+/PR+/HER2−
BCS→
WBI + ET vs.
BCS→ET

No ink on tumor or
re-excision with no
residual disease

N/A

Primary:
5-year invasive or
non-invasive IBTR

Secondary:
Percentage of women with an
intact index breast,
any invasive IBTR,
any breast cancer recurrence
at a local, regional, or
distant site,
recurrence or a secondary
primary cancer and
death
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Table 1. Cont.

Trial Name
(NCT ID) &

Completion Year

Trial/Study Design
(n)

Eligibility Criteria
Outcome Measures

Age (yr) Pathological Stage Grade Receptor Status by IHC Surgery Margin Status (mm) IHC/Genomic Classifier

EXPERT
(NCT02889874)
[74]
2023

Randomized phase
III clinical trial
(n = 1167)

≥50 Stage I
(pT1N0M0) 1–2 ER+/PR+/HER2−

BCS+
SLNB or axillary
dissection

No ink on margin PAM50 Luminal A and
Prosigna ROR ≤ 60

Primary:
10-year risk of ipsilateral local
recurrence

Secondary:
10-year LRR, distant
recurrence, DFS including
DCIS, iDFS, OS, rates of
salvage RT or mastectomy,
and quality of life-related
endpoints such as
convenience of care and fear
for recurrence

The DBCG RT
Natural Trial
(NCT03646955)
[75]
2035

Randomized phase
III clinical trial
(n = 926)

≥60 Stage I
(pT1N0M0) 1–2 ≥10% ER+/HER2− BCS+ SLNB or

axillary dissection ≥2 N/A

Primary:
10-year-invasive local
recurrence in ipsilateral breast.

Secondary: (10-year)
Regional recurrence, distant
recurrence, and death.

Trials investigating omission of regional nodal irradiation in node-positive/negative breast cancers

CCTG MA.39
(TAILOR RT)
(NCT03488693)
[76]
2027

Randomized phase
III, clinical trial
(n = 2140)

≥40 Stage 1
T1–3N0–1 N/A ER+/HER2−

(Local testing)

BCS or mastectomy
+ SLNB and/or
axillary dissection

≥1 Oncotype Dx RS < 18

Primary: Breast cancer
recurrence-free interval

Secondary:
DFS, LRR, OS, breast cancer
mortality, distant recurrence,
toxicity, arm volume, and
mobility assessments, patient
reported outcomes and
cost effectiveness

1 IHC assay performed in local laboratories as per American Society of Clinical Oncology Guidelines. 2 As per local practice. Abbreviations: ER, estrogen receptor; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2; BCS, breast-conserving surgery; SLNB, sentinel lymph node biopsy; ROR score, risk of recurrence score; RS, recurrence score;
LRR, local regional recurrence; DCIS, ductal carcinoma in situ; RFS, relapse-free survival; DFS, disease-free survival; IBTR, ipsilateral breast tumor recurrence; iDFS, invasive disease-free
survival; OS, overall survival; BCSS, breast cancer-specific survival; WBI, whole breast irradiation; ET, endocrine therapy; IHC, immunohistochemistry; IHC4+C, immunohistochemistry
4+ clinical.
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Amongst these trials, the prespecified 5-year interim analysis of the LUMINA prospective
trial was the first to be presented at the 2022 American Society of Clinical Oncology meeting [69].
Briefly, LUMINA is a multicentre, single-arm prospective cohort study investigating the clinical
value of clinicopathological characteristics together with Ki-67 immunohistochemistry-based
phenotyping for identifying women≥ 55 years with sufficiently low-risk molecularly defined
T1N0 luminal A breast cancers (ER≥ 1%, PR > 20%, HER2 negative, and Ki-67≤ 13.25%) who
can be adequately treated with breast-conserving surgery and endocrine therapy alone without
compromising oncological outcomes. The primary endpoint is the ipsilateral local recurrence
of any invasive or non-invasive breast cancer. Amongst the 501 enrolled patients, the reported
5-year local recurrence rate of 2.3% (90% CI 1.3–3.8) was well below the prespecified boundary of
significance (5%), making this a positive study. Moreover, the 5-year rates for contralateral breast
cancer, relapse-free, disease-free, and overall survival are 1.9% (90% CI 1.1–3.2), 97.3% (90% CI
95.9–98.4), 89.9% (90% CI 87.5–92.2) and 97.2% (90% CI 95.9–98.4), respectively. While the full
analysis is awaited, these 5-year results do provide prospective data supporting the safe omission
of adjuvant whole breast radiation in precisely selected luminal A breast cancers with a low Ki-67
index (≤13.25%), quantified using a standardized, validated, decentralized IHC assay [77].

PRECISION (Profiling Early Breast Cancer for Radiotherapy Omission) is a phase
II, single-arm prospective cohort study led by the Dana-Faber Cancer Institute that aims
to evaluate the 5-year risk of ipsilateral locoregional recurrence following upfront breast-
conserving surgery without whole breast radiation. Enrollment criteria comprise women
aged 50–75 years with ER+/PR+/HER2−, pT1N0M0, grade 1–2 invasive breast cancers.
The tumors from the eligible patients are subjected to central PAM50 transcriptional profil-
ing using the Prosigna assay. Only women whose tumors yield a low risk of Recurrence
(ROR) score corresponding to the luminal A subtype qualify to forego radiation to the
conserved breast and are offered 5 years of endocrine therapy only [70,78]. At a median
follow-up of 26.9 months, 12 events have been recorded among 382 women with a ROR
≤ 40 (4, ipsilateral in-breast recurrences; 7, contralateral breast cancers; and 1, unrelated
melanoma). No regional-nodal or distant recurrences have been reported thus far. The
2-year cumulative rate of locoregional recurrence is 0.3% (95% CI: 0–1.0%) [79].

IDEA (Individualized Decisions for Endocrine Therapy Alone) is an American, multi-
centre, single-arm prospective cohort study headed by the University of Michigan Rogel
Cancer Centre, enrolling postmenopausal women (50–69 years) with ER+/PR+/HER2−,
unifocal, pT1N0M0 breast cancer. This study aims to determine if 5-year locoregional
relapse risk remains sufficiently low after breast-conserving surgery and 5 years of en-
docrine therapy (tamoxifen or aromatase inhibitor) when radiation therapy is withheld
from the treatment plan. The characterization of genomically low-risk tumors is based on
an Oncotype Dx recurrence score ≤ 18 [71].

PRIMETIME is a multicentre UK-based prospective case-cohort study that is evaluat-
ing if adjuvant radiation can be safely avoided in very low-risk women≤ 60 years surgically
treated with breast conservation followed by standard endocrine therapy. The study’s
inclusion criteria with regards to clinicopathological tumor characteristics are similar to
the PRECISION trial, but the molecular risk eligibility will incorporate the very low-risk
category assessed using a validated immunohistochemistry-based prognostic algorithm
called IHC4+Clinical (IHC4+C). This recurrence probability score combines the protein
expression of triple receptors and Ki-67, along with a Clinical Treatment Score (age, tumor
size, nodal status, tumor grade, and endocrine treatment: tamoxifen versus anastrozole)
to stratify the residual disease risk into four categories: very low, low, intermediate and
high [80,81]. Women whose tumors classify as very low risk qualify for enrollment in
PRIMETIME. The primary endpoint is 5-year ipsilateral breast tumor recurrence [72].

De-escalation of Breast Radiation (DEBRA-NRG BR007) is an NRG Oncology-sponsored,
multicentre phase III clinical trial that is investigating whether breast-conserving surgery
followed by endocrine therapy is non-inferior to breast-conserving surgery followed by
endocrine therapy and standard whole breast irradiation. Eligibility criteria include patients
aged 50–70 years who are diagnosed with unicentric ER+/PR+/HER2− pT1N0 breast cancer
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that are also genomically characterized as low-risk by an Oncotype Dx Recurrence Score of
≤ 18. The primary endpoint is invasive or non-invasive in-breast tumor recurrence. The
trial is currently recruiting and will accrue 1714 patients enabling a final randomization
cohort of 1670 patients (835 per arm). As of 30 June 2022, 169 patients had been screened and
147 randomized [73,82].

The EXPERT trial (EXamining PErsonalised Radiation Therapy for low-risk early
breast cancer) is an initiative of Breast Cancer Trials in Australia and New Zealand that
also uses PAM50/Prosigna for molecular risk stratification. EXPERT is a randomized phase
III trial of adjuvant radiation versus observation, following breast-conserving surgery and
endocrine therapy for molecularly defined luminal A breast cancer with a low ROR score
(≤60) amongst pre or postmenopausal women ≥ 50 years. The clinicopathological factors
deemed necessary for inclusion are similar to the PRECISION trial. The primary endpoint
is local recurrence at 10 years [74].

The DBCG-RT Natural trial, sponsored by the Danish Breast Cancer Cooperative
Group, is a non-inferiority phase III clinical trial designed to compare the 5-year risk of local
recurrence between partial breast irradiation versus no irradiation among women ≥60 years
with unifocal, pT1N0M0, ER+/HER2− invasive ductal carcinomas treated with breast-
conserving surgery. This is the only radiation de-escalation trial in which low-risk patient
selection is ascertained purely by traditional clinicopathological features [75].

While the above studies are specifically designed for evaluating the safety of omit-
ting whole breast radiation in stage I node-negative breast cancers, the Canadian Cancer
Trials Group MA.39 TAILOR RT is a phase III biomarker-directed randomized trial de-
signed to test the non-inferiority of omitting regional nodal irradiation versus regional
lymph node irradiation post-lumpectomy and omitting locoregional radiotherapy to the
chest wall and regional nodes versus locoregional radiotherapy following mastectomy in
women ≥ 35 years. All patients will receive endocrine therapy. The eligibility criteria in-
clude ER+, HER2− breast cancers with 1–3 positive axillary lymph nodes, and an Oncotype
DX Recurrence score ≤ 25. The primary endpoint will measure any recurrence or death
due to breast cancer [76].

4. Evidence for Radiation De-Escalation in HER2-Positive and Triple-Negative Breast Cancers
4.1. HER2+ Early Breast Cancer

About 15–20% of women are diagnosed with HER2+ early breast cancers. The Early
Breast Cancer Trialists’ Collaborative Group’s patient-level meta-analysis of seven ran-
domized clinical trials, including 13,864 women, has confirmed the benefit of adjuvant
trastuzumab to chemotherapy in reducing the risk of any invasive breast cancer recurrence
and breast cancer-specific mortality by a third in operable breast cancers regardless of the
nodal status. In addition, the risk of the first isolated local recurrence was also reduced
significantly with trastuzumab treatment [83].

While currently there are no completed clinical trials of radiation omission in HER2+
breast cancer, some insights are gained from observational studies that highlight the value
of HER2-targeted therapies in achieving good locoregional control. For instance, Bazan
et al. performed a retrospective analysis using the National Cancer Database and identified
a cohort of T1N0 HER2+ patients treated with breast conservation, adjuvant chemotherapy,
and HER2-targeted therapies. Of these, 6388 patients were treated with adjuvant radia-
tion, while 509 were radiation naïve. Patients in the radiation naïve group experienced
a significantly inferior 2-year overall survival compared to those who received adjuvant
radiation (88.9% versus 99.2%, respectively). The study has several limitations, including a
lack of information on locoregional relapses or cancer-specific survival, short follow-up,
and, importantly, non-compliance with systemic therapies that may have contributed to an
exaggerated poor overall survival in the radiation naïve group [84].

Some recent trials have investigated the de-intensification of chemotherapies and
HER2-targeted therapies in early-stage HER2+ breast cancer, where all patients received
radiation as per standard protocol. Encouraging results of these trials highlight the effective-
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ness of chemotherapies and HER2-targeted therapies for improving the clinical outcomes,
including lowering the risk of locoregional relapses. Amongst these, the single-arm, multi-
centre phase II Adjuvant Paclitaxel and Trastuzumab (APT) trial included patients with
T1–2N0–N1mic HER2+ breast cancer treated with upfront surgery followed by radiation
therapy (for breast-conserving surgery only). All patients received adjuvant paclitaxel with
trastuzumab for 12 weeks, followed by the continuation of trastuzumab for 1 year [85,86].
Only 5 of the 406 patients developed locoregional recurrences, resulting in an impres-
sive 7-year locoregional recurrence-free survival (with radiotherapy) of 98.6% (95% CI
97.4–99.8%) [87].

The phase II ATEMPT trial randomized women with HER2+ T1–2N0–N1mic breast
cancer to adjuvant trastuzumab emtansine (T-DM1) versus paclitaxel plus trastuzumab
to investigate if the two treatments had comparable efficacy and toxicity profile [88]. A
subsequent retrospective-prospective analysis reported at 3 years showed an extremely low
rate of isolated local recurrences such that only 2 events were recorded in the group treated
with T-DM1 (n = 383) and 4 in the paclitaxel plus trastuzumab arm (n = 114), though it
should be noted that the inclusion criteria specified that participants who underwent breast-
conserving surgery were required to receive radiation therapy and those who underwent
mastectomy were permitted to receive radiation therapy to the chest wall and regional
lymph nodes [89]. In the KATHERINE trial, high-risk HER2+ breast cancer patients with
residual invasive disease following neoadjuvant chemotherapy and HER2-targeted therapy
were randomized to adjuvant T-DM1 versus trastuzumab. Patients received adjuvant
radiation therapy as per participating institutional guidelines. The trial yielded positive
results showing an impressive 50% relative reduction in the risk of invasive recurrence
or mortality favoring the use of T-DM1 [90], leading to subsequent FDA approval [91,92].
Overall, a very low rate of locoregional recurrences was recorded in both the treatment
arms (trastuzumab group, n = 743: 4.6%; T-DM1 group, n = 743: 1.1%) in patients who were
HER2+ in pre-treatment biopsies but tested negative on the residual disease biopsy [93].
Albeit long-term follow-up from these trials is warranted, the substantially low risk of
locoregional relapses is indeed encouraging and may pave the way for future clinical trials
investigating radiotherapy de-escalation strategies in stringently selected low-risk early-
stage HER2+ breast cancers. In this trial, neither radiation modalities nor the sequence of
integration of systemic treatment with radiotherapy are specified. This information could
be potentially relevant in future clinical trials.

Considering these encouraging observations, NRG BR008 (HERO) is a phase III ran-
domized clinical trial expected to launch in the first quarter of 2023 that will include women
≥ 40 years diagnosed with early-stage, low-risk HER2-positive invasive breast cancer (those
with pT1N0 receiving chemotherapy or those with clinically < 3 cm node-negative cancer
achieving pathological complete responses with neoadjuvant chemotherapy and HER2-
targeted therapies). The primary endpoint of the trial is recurrence-free interval amongst
all patients surgically treated with breast-conserving surgery and randomized to adjuvant
radiation versus no radiation. In addition, relevant oncological outcomes, including ip-
silateral breast cancer recurrence, locoregional recurrence, disease-free survival, overall
survival, and patient-reported outcomes for pain and fear of recurrence, will comprise
secondary objectives [94].

4.2. Node-Negative Early-Stage Triple-Negative Breast Cancers

TNBC is a remarkably heterogenous disease entity [95]. Nevertheless, significant
progress has recently been made in expanding therapeutic opportunities for both early and
advanced stage disease [96,97]. Historically, TNBC has been linked with aggressive disease
biology and early locoregional and distant relapses [98]. Hence these cancers are managed
aggressively with systemic therapies and adjuvant radiation. Nevertheless, compared
to non-TNBC, the magnitude of benefit from adjuvant radiation in TNBC seems limited
because in the reported studies, using multivariate analyses, women with TNBC have an
increased risk of locoregional relapse, independent of systemic treatments [5,99]. Several
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retrospective series have shown that adverse clinical outcomes prevail even in small (<2 cm),
node-negative TNBC [100,101]; hence it is not surprising that survival gains are evident
with the use of adjuvant chemotherapies [102]. Albeit retrospective in nature, data from
several study cohorts demonstrate the important observation that a subset of node-negative
TNBC not exceeding 1 cm in size experiences exceptionally low rates of locoregional and
distant relapses even in the absence of chemotherapy [103,104]. In fact, a patient-level meta-
analysis of 12 international cohorts comprising 1835 early-stage chemotherapy naïve TNBC
has identified a subset of stage I TNBC with high stromal tumor-infiltrating lymphocytes
that display an inherently excellent prognosis, potentially making them suitable candidates
for therapeutic de-escalation [105].

Limited studies have addressed the adequacy of locoregional control in small, node-
negative TNBC when radiation therapy is omitted from the treatment plan. Eaton et al.
queried the Surveillance Epidemiology and End Results database to investigate the in-
fluence of radiation after breast-conserving surgery among elderly women (≥70 years)
diagnosed with estrogen receptor-negative, T1–2 node-negative breast cancers between
1993–2007. Cumulative incidences of salvage mastectomies (a surrogate for adequacy of
local tumor control) and breast cancer-specific deaths were reported for 3432 patients,
among whom about 16% were radiation naïve. Their results showed a significantly higher
5-year cumulative incidence of mastectomies (8.3% vs. 4.9%) and breast cancer-specific
mortality (24% vs. 10.8%) in the radiation naïve group compared to those that received
radiation. However, an exploratory subgroup analysis did find that women ≥ 80 years
derived somewhat limited benefit from radiation (mastectomy incidence amongst radiation
recipients versus radiation naïve group: 3.4% vs. 6.9%, p = 0.05) [106]. Another independent
analysis of the National Cancer Database cohort compared overall survival with or without
adjuvant radiation after breast-conserving surgery for T1N0M0 TNBC among women
≥ 70 years and revealed a significantly inferior overall survival in the radiation naïve
group compared to the group that received adjuvant radiation. Factors associated with
adverse outcomes in the radiation naïve group included re-excision for positive margins,
tumor size ≥ 2 cm, multiple comorbidities, lower socioeconomic status, and treatment at
academic centers [107]. Another study by the same group included data from more than
14,000 non-metastatic pT1–4 node-negative TNBC treated with upfront mastectomy. The
authors assessed the factors influencing the use of postmastectomy radiation and showed
that pathological tumor size ≤ 2 cm with histologically negative margins, advanced age,
treatment at academic centers, and omission of chemotherapy showed a positive associa-
tion with the omission of adjuvant radiation. Importantly, a significant improvement in
overall survival was observed only in pT3 tumors treated with radiation, whereas overall
survival was similar in pT1–2 and in pT4 tumors regardless of adjuvant radiation [108].

These retrospective observational data, with their inherent limitations, support a
pressing need for prospectively addressing if there is a role for escalating or de-escalation
adjuvant radiation in T1–2 node-negative TNBC. In this regard, prospective data is far
more limited. Wang et al. performed a multicentre prospective randomized clinical trial
to investigate if the addition of radiotherapy improved the clinical outcomes in women
(n = 681) with stage I–II TNBC treated with mastectomy and adjuvant chemotherapy. Their
results showed that the omission of radiation was indeed associated with significantly
worse relapse-free survival and overall survival [109].

The first analysis of the LUMINA prospective trial for radiation de-escalation in
low-risk luminal A breast cancers underscores the capacity for relevant standardized and
validated biomarkers of risk distinction being able to identify a group who can safely
avoid radiation and several similar trials are underway in women with ER-positive breast
cancers (as shown in Table 1). Given the heterogeneity of TNBC [95] and the fact that
clinicopathological factors alone are not sufficient to recapitulate this molecular complexity,
biomarker-directed approaches will need to be utilized for patient selection in prospectively
designed trials to assess if there indeed exists a group of women with TNBC who can safely
avoid radiation therapy.
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More recent reports have observed very low rates of local recurrence following lumpec-
tomy in patients who have a complete response to neoadjuvant chemotherapy. The On-
tario Clinical Oncology Group is mounting a prospective cohort trial similar to LUMINA
where patients with T1–3N0 disease who have had a complete response to neoadjuvant
chemotherapy following lumpectomy, including triple-negative disease, will not receive
RT and be followed.

5. De-Escalation of Adjuvant Locoregional Radiation in Clinically Node-Positive
Breast Cancer following Neoadjuvant Chemotherapy

The integration of neoadjuvant chemotherapy into the management of early-stage
breast cancer has surged significantly in recent years [110]. Pooled analysis of 33 studies,
including 57,531 patients, has demonstrated that axillary pathological complete response
(pCR) rates following neoadjuvant chemotherapy with clinically positive axillary nodes
vary widely within breast cancer subtypes, with hormone receptor-/HER2+ cancers show-
ing the highest rate (60%) while only 13% of patients with luminal A subtype tumors
achieved pCR. The pCR rates for other major subtype definitions are reported as follows:
59% for HER2+, 48% for TNBC, 45% for hormone receptor+/HER2+, 35% for luminal B,
and 18% for hormone receptor+/HER2− [111].

An area of much controversy has been the post-neoadjuvant management of patients
with clinically positive axillary nodes. Compared to those with residual disease after neoad-
juvant chemotherapy, axillary nodal pCR [111] confers a significant survival advantage,
with the best prognosis being observed in triple-negative and HER2+ subtypes [112]. This
has led to a gradual shift in surgical practice from the routine use of axillary lymph node
dissection to less extensive axillary interventions for pathological evaluation, including
sentinel lymph node biopsy [113], targeted axillary dissection [114,115], and Marking of
the Axilla with Radioactive Iodine (MARI) [116]. The variability of axillary procedures
in the post-neoadjuvant setting clearly reflects a current lack of consensus among expert
panels on the most accurate axillary staging strategy [3,4,117–119].

With regards to regional nodal irradiation, the current guidelines recommend consid-
ering its use in patients, particularly those with risk factors, with clinically node-positive
axillae, irrespective of the pathological response to neoadjuvant chemotherapy. Neverthe-
less, there may be patients who achieve pCR in the axillary lymph nodes and who could be
potentially considered as candidates for de-escalation of regional nodal irradiation. Much
of this speculation is based on retrospective analyses. Barrio and colleagues investigated
the rate of nodal recurrence in a series of consecutive patients with clinically node-positive
axillae who received neoadjuvant chemotherapy and standardized sentinel lymph node
biopsy alone for axillary staging (without further axillary dissection). All 610 patients with
clinically node-positive breast cancer received doxorubicin-based neoadjuvant chemother-
apy. About 90% of patients (n = 555) were rendered node negative; of these, 42% (n = 234)
were subjected to sentinel lymph node biopsy with the retrieval of up to three sentinel
lymph nodes. Though 70% (n = 164) of these patients received regional nodal radiation
in this cohort, only a single patient developed locoregional recurrence (rate = 0.4%) at a
median follow-up of 35 months, supporting the oncological safety of standardized sentinel
lymph biopsy alone [120]. Likewise, European Institute of Oncology authors have reported
an axillary failure rate of 1.8% when the axillary evaluation was limited to the removal
of a single sentinel lymph node after primary chemotherapy in a cohort of patients with
clinically node-positive or node-negative axillae. Only 11% of breast-conservation surgery
and 38% of mastectomy patients with clinically node-positive axillae received regional
nodal irradiation [121].

Haffty and colleagues retrospectively analyzed locoregional recurrence rates among
women with T0–T4, N1–N2, M0 breast cancer treated with neoadjuvant chemotherapy and
radiation therapy in the ACOSOG Z1071 trial. The decisions about adjuvant radiation in
this trial were made by the treating radiation oncologists’ best judgment rather than being
prescribed by protocol. The reported overall locoregional recurrence risk was 6% after a
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mean follow-up of 5.9 years. Subgroup analysis of patients with axillary pCR revealed that
omission of postmastectomy radiation and regional nodal radiation after breast-conserving
surgery did not adversely influence the locoregional relapse risk [122]. Contrary to these
data, some studies have instead reported significantly poor locoregional control with the
omission of radiation [123,124]. These estimates are based on retrospective analyses and
are possibly susceptible to biases due to confounding factors and selection.

The question of de-escalating regional nodal irradiation after neoadjuvant chemotherapy
has been recently addressed in a multicentre Dutch prospective registry cohort (RAPCHEM;
BOOG 2010-03) that included 838 patients diagnosed with breast cancers measuring up to 5 cm
with 1–3 positive axillary lymph nodes, who received neoadjuvant chemotherapy followed by
surgery [125]. The primary endpoint was the 5-year locoregional recurrence rate. As per study
protocol, a clinically positive axillary status required the presence of up to three radiologically
suspicious axillary nodes with pathological confirmation of metastasis in at least one. In contrast
to the ACOSOG Z1071 trial protocol [122], the recommendation for regional nodal irradiation
after neoadjuvant chemotherapy was based on three prespecified locoregional recurrence risk
categories [(low-risk, ypN0 (i.e., complete pathological response with no residual disease in
axillary lymph nodes based on axillary lymph node dissection or sentinel lymph node biopsy);
intermediate-risk, ypN1 (i.e., partial pathological response with residual disease in 1–3 axillary
lymph nodes based on axillary lymph node dissection); high-risk, ypN2–3 (i.e., residual disease
in ≥4 nodes based on axillary dissection)]. For the full study cohort, the 5-year locoregional
recurrence rate was 2.2%, supporting the oncological safety of omitting regional nodal irradiation
in low- and intermediate-risk groups, i.e., those with pre-treatment clinically positive axillae
that downstage to either no residual disease or up to 1–3 positive lymph nodes [125].

Individualization for optimal locoregional management of node-positive patients
receiving neoadjuvant chemotherapy is being investigated in two ongoing clinical tri-
als. NSABP B51/Radiation Therapy Oncology Group 1304 is a phase III multicentre
randomized clinical trial that is investigating if the addition of regional nodal irradiation
to postmastectomy chest wall radiation or whole breast radiation after breast-conserving
surgery will significantly reduce the event rate for invasive breast cancer recurrence, in
patients diagnosed with breast cancers more than 5 cm in size with up to 3 positive axillary
lymph nodes (pathologically confirmed by fine needle aspiration cytology or core biopsy)
that convert to pathologically negative axillary nodes following primary chemotherapy.
A total of 1636 patients are enrolled. The trial was activated in 2013 and is expected to
complete in 2028 (NCT01872975) [126]. Alliance 011202 is a phase III non-inferiority clinical
trial in which women with breast cancers more than 5 cm in size with up to 3 positive
axillary lymph nodes, who have a residual positive sentinel lymph node following neoad-
juvant chemotherapy, are subsequently randomized to axillary lymph node dissection with
nodal irradiation or to nodal irradiation alone (NCT01901094). The primary endpoint is
invasive breast cancer recurrence-free interval. It is important to note that while both these
trials include patients unselected with regards to ER, PR, and HER2 status, responses to
neoadjuvant chemotherapies will vary with molecular subtype [111]. Hence incorporation
of correlative biomarker studies is imperative to draw the most meaningful conclusions
for individualizing critical therapeutic decisions that can be effectively generalized and
implemented beyond the setting of this clinical trial.

6. Immune Responses in Early Breast Cancer: Ongoing Clinical Trials of Preoperative
Radiotherapy and Evidence from Prospective-Retrospective Translational Studies

Tumor-infiltrating lymphocytes (TILs) are populations of mononuclear host immune
cells that display phenotypic and functional heterogeneity. A pro-inflammatory, anti-
tumoral role is predominantly mediated by CD8+ cytotoxic T cells, natural killer cells,
dendritic cells, and M1 macrophages. In contrast, CD4+ regulatory T cells, CD4+ Th2 cells,
M2 macrophages, and myeloid-derived suppressor cells promote an immune inhibitory,
protumoral milieu [127]. The level of lymphocytic infiltration, as assessed simply and
inexpensively by light microscopy on standard hematoxylin and eosin (H&E) stained
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sections, has evolved as a promising surrogate biomarker of a pre-existing host adaptive
immune response portending favorable prognosis and has attained level 1B evidence for
clinical utility in early-stage TNBC [128]. Furthermore, stromal TILs have also shown
potential for identifying such intrinsically low-risk TNBCs that chemotherapy de-escalation
could be considered as a potentially safe choice [129,130]. The clinical relevance of TILs
for predicting response to adjuvant [131,132] or neoadjuvant systemic therapies [133–135]
alone or in combination with immune checkpoint inhibitors is gaining momentum [136,137].
However, the value of immune biomarkers in relation to radiation responses and clinical
outcomes in early breast cancer is much less well explored.

Ionizing radiation promotes several alterations in the targeted malignant cells and
their associated microenvironmental niche that may impact the immunogenicity of the
irradiated tumor. On the one hand, radiation elicits DNA damage leading to immuno-
genic cell death of the cancer cells, which in turn activates adaptive and innate immune
responses that boost anti-tumoral effector functions of cytotoxic T cells. On the other hand,
radiation-induced rebound immune suppression is fostered through the recruitment of
protumorigenic macrophages, increased expression of immune checkpoints on tumor cells,
and TGF-β stimulated accumulation of regulatory FOXP3+ T cells that suppress adaptive
immune responses [138,139].

Compared to TNBC, ER+ breast cancers are generally regarded as less immunogenic
as they are associated with low levels of lymphocytic infiltrates, immune checkpoint
activation, and tumor mutation burden [140]. Hence the immune priming potential of
radiation provides at least a theoretical opportunity for switching these immunologically
cold tumors to an inflamed phenotype [141] and is being actively investigated in ongoing
clinical trials (Table 2). The initial results are available for one of these trials. The SPORT
trial (Single Pre-Operative Radiation Therapy for low-risk breast cancer) investigated
residual disease burden and immunological responses following single-dose preoperative
radiotherapy in women ≥ 60 years with ER+/HER2− T1N0 breast cancers surgically
treated with partial mastectomy and sentinel lymph node biopsy. While no complete
pathological responses were seen, a partial response was seen in patients undergoing
delayed surgery (11–13 weeks) but not in those operated on within 24–72 h after radiation.
No significant enrichment in lymphocytic infiltrates was observed at the ablative dose of
20 Gy. No recurrences have been recorded up to 11 months in the follow-up period [142].

Multi-omic profiling has identified an immune-hot subset corresponding to an im-
munomodulatory subtype of TNBC which is considered most likely to respond to immune
checkpoint inhibitor therapy [143]. The comparatively high frequency of this TNBC sub-
type perhaps explains the relative success of recent trials evaluating the combination of
immune checkpoint inhibitors and chemotherapy in the neoadjuvant setting in unselected
TNBC, where a pathological complete response is achieved in up to 65% of cases [136,144].
In this context, it remains an outstanding question as to whether radiation-induced immune
augmentation could improve therapeutic responses in some TNBCs. Table 2 summarizes
the ongoing trials evaluating preoperative radiotherapy alone or in combination with im-
mune checkpoint inhibitors in early-stage disease. Of these, BreastVAX is a phase 1b/2 trial
investigating the feasibility and efficacy of combining a single dose infusion of pem-
brolizumab with radiation boost (delivered as a single fraction of 7 Gy) in patients with
operable breast cancers, including TNBC and hormone receptor-positive/HER2 negative
tumors [145,146]. The inclusion criteria, however, do not require evaluation of baseline
tumoral immune profile. Feasibility and tolerability were evaluated as primary endpoints,
and secondary endpoints include pathological complete responses and percentage change
in tumor-infiltrating lymphocytes in pre- versus post-treatment samples. The preliminary
results have shown major pathological complete responses (<10% viable tumor) in 3 of
9 TNBCs. Compared to the pre-treatment specimens, a significant increase in the density
of tumor-infiltrating lymphocytes was seen in the post-treatment tissues of TNBC cases
(only). Results of detailed correlative science studies involving digital spatial profiling to
identify relevant biomarkers in responsive tumors are pending [147].
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Table 2. Ongoing clinical trials investigating preoperative radiation therapy in early-stage invasive breast cancer.

Trial Identifier (n) Study Description Tumor Characteristics Preoperative Radiation Regime
+/− other Therapeutic Agents Adjuvant Treatments Endpoints Prespecified/Exploratory

Translational Studies
Estimated Study
Completion Year

Preoperative Radiation (single fraction)

NCT01717261
Single Pre-Operative Radiation
Therapy (SPORT) for Low-Risk
Breast Cancer
(SPORT)
Phase I
(n = 13)
[142,148]

To investigate the
tolerability of a Single
Pre-Operative
Radiation Therapy
(SPORT)

Age ≥ 60 years
cT1N0M0
ER+, HER2−
unifocal, invasive
ductal cancers

Single fraction of preoperative
partial breast radiation dose:
20 Gy

Surgery:
Early group (within
24–72 h)
Late group (11–13
weeks)

Primary:
Acute toxicity

Secondary:
Chronic toxicity and
cosmetic outcome,
IBTR

Pre/post analysis for Ki-67 and
TILs 2020

NCT02482376 Phase II
(n = 68)
[149]

Preoperative
single-fraction
radiotherapy

Age ≥ 50 years
T1N0M0
ER+/HER2−
Invasive ductal
histology, DCIS
Oncotype RS < 18 (for
invasive ductal
carcinoma)

Stereotactic Body Radiotherapy:
Single fraction of 21 Gy. BCS

Primary:
Physician reported
cosmetic outcomes

Secondary:
Patient reported cosmetic
outcomes,
rates of local control
compared to the historic
controls

Analysis for pre/post Ki-67 and
gene expression analysis.

Analysis of cfDNA for
assessment of radiation
response

2032

NCT03520894
Radiotherapy in Preoperative
Setting with CyberKnife for Breast
Cancer (ROCK)
(n = 25)
[150]

Preoperative
radiotherapy with
CyberKnife

Age ≥ 50 years
T1N0M0,
ER+/PR+
(≥10%)/HER2−,
No LVI

Single fraction of 21 Gy BCS

Primary:
Acute skin toxicities
Secondary:
(3-years)
pCR,
rate of complete resection
with <1 cm margin,
LRR,
metastasis progression-
free survival,
cause-specific survival
OS,
chronic cutaneous and
extra-cutaneous toxicities

Radiogenomic analysis using
validated signatures.
Quantitative immunological
analyses using fresh biopsies.
IHC-based analysis for
pericytes and assessment of
vascularization.

Serial biochemical analysis of
peripheral blood and urine for
biomarkers of oxidative stress

2024

NCT02212860
Stereotactic Image-Guided
Neoadjuvant Ablative Radiation
Then Lumpectomy (SIGNAL 2)
(n = 139)
[151]

Randomized trial to
investigate 1 vs. 3
doses of preoperative
stereotactic radiation
therapy.

Age ≥ 50 years
T < 3 cm,
node-negative
ER+/HER2−

Volumetric modulated arc therapy
will be used to deliver:
Single fraction of 21 Gy versus
3 fractions of 10 Gy

Surgery after 3 weeks

Primary:
Biomarker assessment for
immune priming,
angiogenesis, hypoxia,
proliferation, apoptosis,
and invasion.

Secondary:
Cosmesis, DFS,
mastectomy-free survival,
and OS

Specified as primary endpoints 2023
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Table 2. Cont.

Trial Identifier (n) Study Description Tumor Characteristics Preoperative Radiation Regime
+/− other Therapeutic Agents Adjuvant Treatments Endpoints Prespecified/Exploratory

Translational Studies
Estimated Study
Completion Year

Preoperative Radiotherapy (more than a single fraction)

NCT04360330
Study for Selected Early-Stage
Breast Cancer
(SABER)
Phase 1b
(n = 18)
[152]

To determine the most
effective dose of
preoperative radiation
therapy that can be
delivered in shorter
duration before
standard partial
mastectomy/axillary
surgery

Age ≥ 50 years
Unifocal T1N0M0
ER+/PR+/HER2−
(Oncotype
MammaPrint
required)

4 prespecified
levels:
(35 Gy, 40 Gy, 45 Gy, 50 Gy) in
5 fractions
given on non-consecutive
days, spanning 2 weeks

Partial
mastectomy/axillary
surgery 4–6 weeks
after preoperative
SABER.

Standard of care
adjuvant systemic
therapy

Primary:
Establish the most effective
preoperative SABER dose.

Secondary:
Toxicity,
pCR, cosmesis, and quality
of life

Blood and tissue-based
biomarkers

Multiparametric MRI studies
for assessment of radiation
response

2025

NCT04234386
Phase Ib
(n = 50)
[153]

To determine safe and
effective dose of
pre-operative
radiation delivered by
FDA approved
GammaPod device

Age ≥ 45 years
T < 3 cm, N0,
ER+/HER2−
unifocal, ductal
histology,
no LVI

Delivery of focussed radiation using
GammaPod:
4 prespecified doses:
(21 Gy, 24 Gy, 27 Gy, 30 Gy)

BCS

Primary:
Establish the most effective
single-fraction radiation
dose

Dose-limiting toxicities

Secondary:
(5-years)
Acute and late toxicities,
surgical complications,
cosmesis,
quality of life,
pCR and
5-year IBTR

Not stated 2028

NCT03624478 Phase II
(n = 25)
[154]

Hypofractionated
radiotherapy to the
whole breast alone
before surgery

T0–2, N0
≥18 years

Hypofractionated radiation therapy
daily for 5 days.

Breast-conserving
surgery 4–16 weeks
after preoperative
radiation

Primary:
pCR.
Secondary:
Acute and late toxicities,
LRR, distant recurrence,
cause-specific survival,
DFS, OS

Pre/post-treatment tumor
mutation signatures 2022

NCT03043794 Phase II
(n = 40)
[155]

Single fraction
Stereotactic Body
Radiotherapy to the
intact breast

Stereotactic Body Radiation:
21 Gy Surgery

Primary endpoint: RCB
4–6 weeks after radiation
prior to surgery
Secondary:
Toxicities,
local recurrence, cosmesis,
quality of life.

Not stated 2026
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Table 2. Cont.

Trial Identifier (n) Study Description Tumor Characteristics Preoperative Radiation Regime
+/− other Therapeutic Agents Adjuvant Treatments Endpoints Prespecified/Exploratory

Translational Studies
Estimated Study
Completion Year

Preoperative Radiotherapy and Immune Check Point Inhibitors

NCT04454528
Radiation Boost to Enhance Immune
Checkpoint Blockade Therapy
(BreastVAX)
Phase 1b/2
(n = 27)
[146,147]

To investigate
feasibility and efficacy
of preoperative
pembrolizumab +/−
tumor-directed
radiotherapy fraction

Age ≥ 18 years
T1–2, N0–1M0
TNBC, hormone
receptor+/HER2−,
Hormone receptor
+/− and HER2+

Single dose pembrolizumab +/−
Hypofractionated (single fraction of
radiation boost: 7 Gy)

Standard of care
surgery

Primary:
Feasibility of experimental
treatment with no delay in
surgery.
Clinical response (physical
exam, breast ultrasound,
and histological
evaluation)

Comparison of
pre/post-treatment immune
response on blood and tissue
samples

2024

NCT03366844 Phase I/II
(n = 60)
[156]

Preoperative
pembrolizumab and
radiation boost

First cohort:
ER+/HER2− with
high-risk features (T1)
Second cohort:
TNBC T1

Pembrolizumab × single dose
followed by second dose of
pembrolizumab with radiation
boost (24 Gy in 3 fractions)

Surgery and/or
chemotherapy (within
8 weeks of enrollment)
followed by standard
radiation

Primary:
Feasibility of experimental
treatment with no delay in
surgery
Secondary:
Treatment toxicities,
iDFS, pCR

Change in TIL counts 2023

NCT03875573
Neo-CheckRay
Phase II
(n = 147)
[157]

Neo-adjuvant
chemotherapy
combined with
stereotactic body
radiotherapy +/−
durvalumab, +/−
oleclumab
(Neo-CheckRay) in
luminal B breast
cancers

Luminal B breast cancer patients
randomized to:
1. paclitaxel→ddAC+preoperative
radiation boost
2. Arm 1 + durvalumab
3. Arm 2 + antiCD73 antibody

Surgery 2–6 weeks
after completion
ddAC

Primary:
Toxicities,
Feasibility of surgery,
Pathological evaluation for
RCB
Secondary:
iDFS and cosmetic
outcomes

Not stated 2026

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; pCR, pathological complete response; RCB, residual cancer burden; DFS, disease-free
survival; OS, overall survival; LRR, locoregional recurrence; iDFS, invasive disease-free survival; IBTR, ipsilateral breast tumor recurrence; TILs, tumor-infiltrating lymphocytes; IHC,
immunohistochemistry; BCS, breast-conserving surgery; DCIS, ductal carcinoma in situ; RS, recurrence score; cfDNA, cell-free deoxyribonucleic acid; pCR, pathological complete
response; ddAC, dose-dense doxorubicin, and cyclophosphamide.
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While mature results from these ongoing trials are awaited, archival materials from
completed randomized trials linked with long-term follow-up data can provide a valuable
resource to investigate the impact of pre-treatment immune cell composition on prognosis
and radiation response prediction.

Kovacs et al. [158] investigated the clinical value of stromal TILs on H&E stained
sections prepared from pre-treatment primary tumor specimens of patients diagnosed with
node-negative, stage I–II early breast cancers who were randomized to breast-conserving
surgery with or without whole breast irradiation in the SweBCG91RT clinical trial [159,160].
Their results showed that among patients assigned to the radiation arm, high stromal
TILs (≥10%) were positively associated with a significantly lower probability of ipsilateral
breast tumor recurrence in multivariate analysis. Patients whose tumors exhibited low
stromal TILs (<10%) derived significant benefits from radiation as opposed to those with
high stromal TILs, though the interaction test between radiation and TILs was not signifi-
cant [158]. The authors expanded on their translational study by characterizing CD8 and
FOXP3 expressing T lymphocytes by immunohistochemistry. They found that in contrast to
immune-depleted tumors (CD8low/FOXP3low), immune-rich tumors (CD8high/FOXP3low)
showed significantly reduced hazards for ipsilateral breast tumor recurrence or for any
recurrence amongst unirradiated patients, perhaps instantiating the antitumoral attributes
of the cytotoxic T cells. Additionally, the immune-depleted phenotype appeared to be
of benefit from radiation. However, no such advantage was evident in the immune-rich
tumors [161]. The relationship between the stromal TIL density and prognostic versus
predictive value is rather counterintuitive in the translational studies by Tullberg and col-
leagues. This may be partly explained by an intrinsically favorable tumor biology indicated
by a high stromal TIL density at baseline that translates into satisfactory local control. It
is conceivable that these tumors may have an excellent outcome regardless of radiation.
Alternatively, or in addition, radiation therapy may kill off activated, proliferating immune
cells (a detrimental form of “collateral damage”). On the other hand, tumors with low stro-
mal TILs are perhaps immunologically muted with a higher baseline risk, where radiation
therapy appears to be useful in achieving optimal local control by potentially inducing
antitumoral immune responses, perhaps through the release of neoantigens from tumor
cells killed by radiotherapy (an abscopal effect).

The value of pre-treatment immune infiltrates has been recently examined in the
Canadian MA.20 phase III clinical trial in which women undergoing breast-conserving
surgery for T1–2, node-positive or node-negative breast cancer with poor risk features were
randomized to standard irradiation with or without regional nodal radiation [162]. The
results have shown that both CD8+ and H&E assessed stromal TILs informed favorable
clinical outcomes when quantified as a continuous variable. Only CD8+ stromal TILs as a
continuous parameter predicted response from regional nodal irradiation [163].

Taking advantage of the randomized design of the Danish Breast Cancer Cooperative
Group 82bc clinical trial [164,165], Tramm and colleagues investigated the value of stromal
TILs for predicting response from post-mastectomy irradiation. They reported that in
the full cohort, high TILs (≥30%) were favorably associated with overall survival and
risk of distant metastasis. However, no prognostic value of TILs was found with regard
to locoregional relapse risk. High stromal TILs were predictive for benefit in the group
randomized to radiation for the endpoint of overall survival. Stratification according to
ER status showed that ER-negative tumors with high TILs derived greater benefit from
post-mastectomy radiation, whereas no such benefit was observed in ER-negative cases
with low TIL counts. The improvement in the locoregional recurrence was independent of
the immune infiltration [166].

Building on the abundance of clinical evidence supporting the role of immune biomark-
ers in risk stratification and guiding decisions for chemotherapy and immune checkpoint
inhibitors, analogous data with respect to radiation therapy in early breast cancers is only
beginning to emerge from prospective-retrospective studies. Since these trials were not
originally designed for subtype-based translational studies, the lack of statistical power
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remains a major shortcoming in generating consistent results. Hence prospective validation
in biomarker-directed studies is imperative. Testing the immune priming potential of radi-
ation in combination with chemotherapy and/or immune checkpoint inhibitors provides
an ideal opportunity to induce immune modulation in breast cancers which are largely
considered to be poorly immunogenic. It is expected that accompanying, preplanned cor-
relative studies will allow for an in-depth assessment of immunological responses (or lack
thereof) in the primary tumor and draining lymph nodes that can inform future definitive
clinical trials.

7. Biomarkers to Guide Adjuvant Radiation Decisions

Over the years, several groups have invested significant efforts to develop radiation-
specific genomic classifiers for prognostication of locoregional relapse risk and prediction
of response to radiation therapy. These classifiers have been reviewed in detail in previous
publications [167,168], and those with the potential for clinical development are summa-
rized in Table 3. To date, none of these classifiers have progressed to stages of analytical
and clinical validity which is critical before these genomic assays can be tested for their
clinical utility in phase III randomized trials [169–171].

Here we will focus on liquid biopsy-based approaches and review the recent investi-
gations into the role of disseminated tumor cells and circulating tumor cells as prognostic
biomarkers for locoregional relapse risk.
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Table 3. Radiation Specific Genomic Classifiers.

Genomic Classifier Description of the Classifier Breast Cancer Cohort/Trial
Characteristics Prognostic Value Predictive Value

Radiation Sensitivity Index (RSI) [172–174]

- Systems biology-based pan cancer
radiosensitivity classifier of 10 hub
genes that are involved in regulating
radiation signaling pathways.

- Developed by modeling the survival
fraction of 48 human cancer cell lines
at 2 Gy as a measure of cellular
radiation responsiveness such that RSI
index is directly proportional to
radioresistance.

- Validated in rectal, esophageal, and
head and neck cancers treated with
chemoradiation.

- RSI is measured as a continuous score
and categorized into 3 categories as:

(a) RSI radioresistant subtype: Top 25th
percentile of RSI scores, (b) RSI radiosensitive
subtype: Lower 25th percentile of RSI scores,
(c) RSI-intermediate subtype: RSI scores
between the 25th–75th percentile

FIRST PUBLICATION COHORTS [173]

(I) Karolinska prospective cohort:
segmentectomy/mastectomy +RT
(n = 77); mastectomy only (n = 82)

(II) Erasmus cohort:
BCS+RT (n = 219)
MRM (n = 67)

SECOND PUBLICATION COHORTS
[174]:
4 Dutch + 1 French cohorts
(n = 343)
BCS+SLNB/Axillary dissection→
WBI+/− RNI
(Integration of RSI index with breast
cancer molecular subtype)

RSI is a radiation-specific signature that has
shown prognostic value in RT treated group but
not in the no-RT group.

FIRST PUBLICATION [173]
Karolinska cohort: Compared to radioresistant
patients, radiosensitive patients had improved
5-year RFS.

Erasmus cohort:
Compared to radioresistant patients,
radiosensitive patients had improved
5-year DMFS.

Multivariate analysis:
Independent prognostic variable associated with
outcome in RT-treated patients in both cohorts and
in RT-treated ER+ subset in the Erasmus cohort.

SECOND PUBLICATION [174]:
-RSI index was not prognostic in the full cohort.
- In patients with triple-negative subtype,
RSI-resistant tumors were associated with higher
risk of local relapse compared to those with
RSI-sensitive/intermediate categories.

No

Radiation Sensitivity Signature (RSS) and
Immune Signature (IMS) [175]

Gene signatures are based on intrinsic
radiation sensitivity and antitumor immunity.

RSS: 34 gene classifier was derived from
MSigDB.
IMS: comprised of 119 genes involved in
antigen presentation and processing
pathways curated from the Immunology
Database and Analysis Portal.
Four genes (ADRM1, MICB, PSMD13,
RFXANK) showed significant interaction with
radiotherapy.
Immune-effective: IMS score > −3.8
Immune defective: IMSscore < −3.8

Model training cohort for RSS:
GSE30682 cohort (n = 343) treated with
BCS+RT.
Endpoint: LRFS

Model training cohort for IMS:
E-TABM-158
RT: n = 66, No RT: n = 63.
Endpoint: DSS

Validation of ISS and IMS:
METABRIC cohort (n = 1981)

In the METABRIC cohort:
For radiation-sensitive group, patients who
received radiotherapy experienced an improved
DSS than those who did not.For immune-effective
group, patients treated with radiotherapy had
significantly better DSS compared with those
without radiation therapy.

Combined ISS and IMS were validated in the
METABRIC cohort. Patients were categorized into
four groups:
-Concordant group: immune-sensitive/immune
effective group treated with radiation had
significantly better DSS.
-Concordant group: immune-resistant/immune
defective treated with radiation had significantly
poor DSS.
No significant prognostic associations were found
in the two discordant groups.

When evaluated independently, both RSS and
IMS predicted benefit from radiation in the
RT-treated cohort for the endpoint of DSS.

Integration of RSS and IMS stratified patients
into groups. Benefit from radiation is seen in
the radiation-sensitive/immune effective
group treated with radiotherapy.
Radiation resistant/immune defective group
did not derive benefit from radiation.
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Table 3. Cont.

Genomic Classifier Description of the Classifier Breast Cancer Cohort/Trial
Characteristics Prognostic Value Predictive Value

DBCG-RT Profile [176]

7 gene classifiers (HLA-DQA, RGS1, DNALI1,
hCG2023290, IGKC, OR8G2, and ADH1B)
developed on the fresh frozen tissues from the
training cohort. The classifier stratified the
training cohort into high- and low-risk groups
for locoregional relapse.
The final signature consisted of 4 genes (IGKC,
RGS1, ADH1B, and DNALI1) as the remaining
3 genes failed quality control during transfer
to formalin fixed paraffin embedded tissues.

DBCG82b/c randomized clinical trial:
3083 women (<70 years) with high-risk
disease randomized PMRT+RNI or not.
All post-menopausal women received
tamoxifen (82c) and premenopausal
women (82b) received CMF.
Training set = 191
Validation set: 112

Prognostic value was assessed in the
non-irradiated group of training set who received
systemic treatments and stratified the population
into two groups: low LRR risk and high LRR risk,
which demonstrated low- and high-risk for
locoregional failures, respectively.

Multivariate analysis:
DBCG-RT profile provided independent
prognostic information for locoregional relapse
risk.

Predictive value was demonstrated in both
training and validation cohorts. DBCG-RT
profile predicted benefit from PMRT in
patients classified as high-risk-LRR.

No benefit was derived from PMRT in
DBCG-RT low-risk category.

Radiation Sensitivity Signature (RSS)
[177]

Clonogenic survival assays were performed
on a panel of 16 breast cancer cell lines to
identify the surviving fraction at 2 Gy, which
represents the intrinsic radiosensitivity or
radioresistance of the breast cancer cells.
The classifier was trained and cross-validated
from 147 to 51 genes enriched in cell cycle,
DNA damage, and DNA repair pathways.
The classifier was independent of breast
cancer molecular subtypes.

Training cohort (n = 343) treated with
BCS + RT for which locoregional
recurrence data were available.

Validation cohort (n = 228) treated with
mastectomy or BCT and radiation if
indicated.

RSS provided prognostic information for overall
survival of locoregional recurrences and stratifies
patients unlikely to develop local recurrence after
radiation from those at high risk of recurrence
despite receiving standard radiation.

No

Adjuvant Radiotherapy Intensification
Classifier (ARTIC) [178]

Clinicogenomic classifier comprising of 27
genes and age.

Training cohort:
3 publicly available data sets with gene
expression data:
Servant (n = 343)
van de Vijver (n = 228)
Lund fresh frozen (n = 102)

Validation cohort:
SweBCG91-RT phase III trial cohort
(n = 748) in which patients were treated
with BCS with or without radiation.

ARTIC provided prognostic information for
locoregional recurrence in both the treatment arms
(with or without radiation).

Patients with low ARTIC scores derived
significant benefits from radiation for the
endpoint of locoregional recurrence
compared to patients with high ARTIC scores
who gained less from radiation.

Profile for the Omission of Local Adjuvant
Radiotherapy (POLAR) [179]

Transcriptome-wide profiling of tumors was
performed using the Affymetrix Human Exon
1.0 ST microarray. A 16-gene signature
(proliferation and immune response) was
trained in the training set of patients who did
not receive radiation.

SweBCG91-RT cohort was divided into a
training set (n = 243) and validation set
(n = 354)

Tumors with POLAR low-risk had a 10-year
locoregional recurrence rate of 7% in the absence
of radiation.
POLAR high-risk had a significantly decreased
risk of locoregional recurrence when treated
with radiation.

Independent external validation for
predictive performance was performed in
623 patients from three randomized clinical
trials (SweBCG91-RT, n = 354; Scottish
Conservation Trial; n = 137 and trial from
Princess Margaret Hospital, Canada, n = 132)
High POLAR score was predictive of benefits
from radiation with significant reduction in
the local recurrence rate [180,181]

Abbreviations: MRM, modified radical mastectomy; BCT, breast-conserving therapy; RT, radiation therapy; SLNB, sentinel lymph node biopsy; RFS, relapse-free survival; PMRT,
post-masectomy radiation therapy; RNI, regional nodal irradiation; DMFS, distant metastasis-free survival; LRR, locoregional recurrence; DFS, disease-specific survival; CMF,
cyclophosphamide methotrexate fluorouracil.



Cancers 2023, 15, 1260 22 of 34

7.1. Disseminated Tumor Cells

Disseminated tumor cells (DTCs) are isolated cancer cells that, upon physical detach-
ment from the primary tumor, escape the circulation, extravasate into distant sites such
as bone marrow, and are capable of survival in a hostile host niche, reversible quiescence,
and therapeutic resistance. DTCs detected via bone marrow aspiration are found in ap-
proximately 40% of women with stage I–III breast cancers who do not have any clinical
or histological evidence of overt metastatic disease at initial presentation. A substantial
body of evidence from clinical studies has demonstrated that compared to patients without
DTCs, those with DTC positivity have features of aggressive tumor biology, including
larger tumor size, higher grade, axillary lymph node metastasis, estrogen/progesterone
receptor negativity, and HER2 positivity [182,183]. An earlier pooled analysis of 9 stud-
ies comprising 4703 patients with operable breast cancer (enrolled before 2002) provided
evidence for a strong association of DTCs with significant adverse outcomes [182]. These
findings have been further confirmed in a recently published patient-level meta-analysis
comprising 10,307 early breast cancer patients from 11 centers with a median follow-up of
7.6 years [183].

Only a few studies have investigated the impact of bone marrow occult metastasis on
locoregional relapses, showing either no association [183–185] or a significantly increased
risk of locoregional failures. In a single centre prospective cohort of more than 3000 stage
I–III treatment naïve breast cancers, Hartkopf and colleagues demonstrated bone marrow
DTCs in 24% of patients at the time of initial surgical intervention. DTC positivity was
independently associated with locoregional failures. Their results further revealed that, of
the available biopsy samples from patients with isolated local relapses, the 55 subjected
to a repeat bone marrow aspiration showed a DTC detection rate of 35% [186]. Bidard
et al. investigated the relationship between locoregional relapse-free survival and bone
marrow DTCs in a prospective cohort of 621 patients from Institute Curie’s Breast Can-
cer Micrometastasis Project for a median follow-up of 4.6 years. In this cohort, 15% of
patients had detectable DTCs in the bone marrow. Overall, 18/621 patients experienced
a locoregional relapse, among whom 44% had evidence of DTCs at their initial evalua-
tion. Amongst patients with DTC positivity, a longer locoregional relapse-free survival
was observed in patients who received endocrine therapy and radiation to supraclavicu-
lar/internal mammary lymph nodes [187]. These results remained consistent at an updated
median follow-up of 11.7 years, where there was a 10-year locoregional relapse rate of 20%
in patients with DTC-positive status compared to 10% in those without, supporting the
capacity of DTCs as a biomarker predictive of benefit from regional nodal irradiation [188].
The biological basis of locoregional relapse in patients with bone marrow micrometastasis
is not completely understood. However, preclinical studies using mouse models suggest
that DTCs may transition into circulating tumor cells, a fraction of which have the potential
to re-colonize the primary tumor site [189]. It is conceivable that irradiating regional lymph
nodes in patients with DTC-positive status may eradicate subclinical micrometastases and
may serve as a candidate predictive biomarker for optimizing patient selection for regional
nodal irradiation. This may be potentially relevant in the context of selecting patients who
may benefit most from irradiation of regional lymph nodes [162,190–192].

7.2. Circulating Tumor Cells

Circulating tumor cells (CTCs) are occult malignant cells that exit from the primary
tumor into the circulation and are associated with enhanced metastatic potential [193].
When examined prior to any treatment (neoadjuvant chemotherapy or upfront surgery)
by utilizing CellSearch®, an FDA-approved standardized assay, the prevalence of CTCs
has been found to be 25% in an international meta-analysis including 2156 patients from
21 studies. After eliminating T4 tumors from analysis, CTC positivity did not have a
statistically prominent association with clinicopathological factors or pathological complete
response. However, CTC presence prior to initiation of neoadjuvant therapy was indicative
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of shortened disease-free survival, overall survival, and locoregional relapse-free interval
in univariate and multivariate analyses. Moreover, the inclusion of baseline CTC counts
significantly improved the prognostic capacity of the clinicopathological model [194].

Goodman and colleagues have reported on the association between CTCs and re-
sponse to adjuvant radiation in patients with pT1–T2, N0–1 early breast cancer utilizing
patients’ clinical and CTC data from the National Cancer Database (n = 1697) and validated
their findings in a cohort from the German SUCCESS trial [195,196] (n = 1516). CTC posi-
tivity was associated with the benefit from adjuvant radiation with a significant increase in
overall survival in the National Cancer Database cohort and in disease-free-, overall, and
locoregional relapse-free survival in the SUCCESS cohort. In addition, an improvement
in overall survival was seen in CTC+ patients undergoing breast-conserving surgery with
standard adjuvant radiation but not in CTC- patients. When stratified by CTC status, the
benefit of radiation was not evident in patients treated with mastectomy. These results
should be interpreted carefully in light of the existing evidence [5,197], as adjuvant radia-
tion was not the randomization criteria in either of the evaluated cohorts. Nevertheless,
these encouraging results support value for CTCs as a potential biomarker for guiding
radiotherapy decisions, requiring prospective validation to analyze the benefit of adjuvant
radiation therapy in low-risk patients with CTC positivity who otherwise might otherwise
be considered for radiation omission.

BreastImmune03 is a randomized phase II clinical trial designed to assess the clinical
benefit of post-surgery adjuvant radiotherapy + immunotherapy with nivolumab + ipili-
mumab, versus radiotherapy + capecitabine in TNBC patients with residual disease after
neoadjuvant chemotherapy. Evaluation of CTC will be performed as a secondary outcome
measure for immune monitoring at cycles 1, 2, 5, and 2 years post-randomization or in the
event of a relapse [198].

8. Summary

Adjuvant radiotherapy is an integral component of early breast cancer management,
with proven efficacy for preventing locoregional and distant failures. Over the years, tradi-
tional whole breast irradiation approaches have evolved considerably, such that the less
intensive option of whole breast hypofractionated radiation has now become the preferred
standard, yielding improved compliance, cosmetic outcomes, and quality of life. More
recent data have shown the comparable efficacy and safety of an ultra-hypofractionation
regimen that is delivered as five fractions in less than a week. Equivalence of acceler-
ated partial breast radiation delivered by external beam has been demonstrated in several
clinical trials and endorsed for women with tumors with favorable biology, and together
with ultra-hypofractionation, may be an attractive option in resource-restricted regions.
Investigations for further de-intensifying radiation schedules using ultra-accelerated partial
breast radiation as a single fraction are being planned to be tested against accelerated partial
breast radiation + endocrine therapy [199,200].

The encouraging results of the LUMINA trial support the safe omission of adjuvant
radiation following breast-conserving surgery when selection criteria are strictly limited
to low-risk cancers (T1N0, grade 1 or 2) with luminal A phenotype with a Ki-67 index
of ≤ 13.25%. This and the other ongoing trials of radiation omission underscore the
significance of biomarker-driven risk stratification for critical decisions involving radiation
de-escalation. These trials are a step forward in personalizing options for radiation, the
integration of which into clinical practice has lagged behind analogous de-escalation
protocols in systemic therapy.

Recognizing the immune-modulatory potential of radiation, the ongoing clinical trials
of pre-operative radiotherapy will provide opportunities to investigate combinatorial
therapies in early-stage settings. Nevertheless, critical to the success of immune priming
approaches will be the understanding of the biological interactions of host immunity with
key factors that influence immune-modulating properties of radiotherapy, such as radiation
dose, quality, fractionation schedules, and sequence of the therapies [201].
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Ultimately, the actively evolving scientific understanding of breast cancer biology
is driving clinical trials that are providing radiation oncologists and women with breast
cancer with the information they need to make personalized choices that both protect them
from recurrences and from unwarranted treatment morbidity. In view of the evolving
evidence, therapeutic strategies incorporating tumor and patient characteristics, as well as
patient preferences, should be discussed in a multidisciplinary tumor board to tailor the
treatment for the patient [10].
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