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Simple Summary: From the landmark report of protein serotonylation on small GTPases in 2003 to
the most recent discovery of serotonin-modified histone H3 leading to epigenetic changes, over the
course of the past 20 years, there is still a cloud of mystery surrounding this rare post-translational
modification, other than the fact that tissue transglutaminase, perhaps most famously known for
its role in celiac disease, is the enzyme responsible for catalyzing this transamidation reaction. This
review seeks to interpret the role of protein serotonylation in transcriptional regulation through
some of the mechanistic and intertwining details of the modification, its potential modulation of the
epigenetic landscape, as well as potential implications in lung and other types of cancer.

Abstract: In the case of small-cell lung carcinoma, the highly metastatic nature of the disease and the
propensity for several chromatin modifiers to harbor mutations suggest that epigenetic manipulation
may also be a promising route for oncotherapy, but histone deacetylase inhibitors on their own do
not appear to be particularly effective, suggesting that there may be other regulatory parameters
that dictate the effectiveness of vorinostat’s reversal of histone deacetylation. Recent discoveries
that serotonylation of histone H3 alters the permissibility of gene expression have led to renewed
attention to this rare modification, as facilitated by transglutaminase 2, and at the same time introduce
new questions about whether this modification belongs to a part of the concerted cohort of regulator
events for modulating the epigenetic landscape. This review explores the mechanistic details behind
protein serotonylation and its possible connections to the epigenome via histone modifications and
glycan interactions and attempts to elucidate the role of transglutaminase 2, such that optimizations
to existing histone deacetylase inhibitor designs or combination therapies may be devised for lung
and other types of cancer.

Keywords: serotonylation; epigenomics; histone deacetylase inhibitor

1. Introduction

Lung cancer is often subdivided into small-cell lung cancer (SCLC) and non-small-cell
lung cancer (NSCLC) and is generally found to be one of the leading causes of cancer-
related deaths. In Japan, for instance, the 5-year survival rate for NSCLC has been estimated
to be about 34.3%, while SCLC may be lower than 15.8% (Appendix A); prognosis tends
to be poor regardless of the subtype. SCLC in particular can be highly metastatic and
largely driven by a number of loss-of-function mutations found in tumor suppressor
genes, for example, RB1 and p53 [1], that may lead to tumorigenesis becoming largely
uncheckered. In certain SCLC cases, chromatin modifiers such as CREBBP, MLLs, and
ARID1A/B carry deactivating mutations with severe implications [2,3], suggesting that
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the modulation of the SCLC epigenetic landscape may be an attractive therapeutic option.
Histone deacetylases (HDACs), the enzymes capable of reversing lysine acetylation, in
this regard, are potential cancer therapeutic targets, especially considering their frequent
overexpression in cancer [4]. HDACs are either Zn2+ (classes I, II, and IV) or nicotinamide
adenine dinucleotide-dependent (class III) [5], and while the contributions of specific
HDAC subtypes to individual cancers have not been fully elucidated [5,6], HDAC inhibitor
(HDI) candidates, for instance, suberoylanilide hydroxamic acid (SAHA, also known as
vorinostat), can interfere with cancer progression. Vorinostat, for instance, enhanced
cisplatin accessibility and increased histone H3 acetylation in SCLC cell lines [7]; the
compound is similarly said to enhance gefitinib-induced cancer cell death in NSCLC [8]
as well. Vorinostat is also a frequent subject in clinical trials, but the drug itself has not
demonstrated sufficient efficacy as a treatment for either type of lung cancer (Appendix B).
When administered as part of combination therapy with compounds such as carboplatin,
brigatinib, erlotinib, pembrolizumab, etc., [7–13], vorinostat does show a certain level of
effectiveness to suggest the presence of other regulatory parameters that can dictate the
effectiveness of vorinostat’s reversal of histone deacetylation.

Recently, Farrelly and colleagues reported that histone H3 undergoes serotonylation at
the Q5 residue [14] (Q5ser), and this modification sensitizes transcription factor II D binding.
This finding led to renewed interest in protein serotonylation, a relatively uncommon post-
translational modification (PTM) first reported by Walther et al. [15], as well as tissue
transglutaminase (TGase2, TG2, or TGM2; TGM2 henceforth) and its peculiar ability to
transamidate small biogenic amines onto glutamine residues. Protein serotonylation serves
unique and interesting roles in the interplay of histone modifications, and to a further
extent, the manipulation of the epigenetic landscape. Despite this discovery, however, there
is still a knowledge gap in the phenomenon of protein serotonylation, from its intended
purpose in signaling to its potential roles in epigenetic modulation. This review attempts to
discuss the mechanism between protein serotonylation, as well as the potential implications
of this modification in cancer and other diseases through its connections to epigenetics.

2. Transglutaminase 2 (TGM2)

Outside the public media’s recent fascination with glutens and celiac disease, TGM2
remains a relatively understudied enzyme, despite being one of the most ubiquitously
distributed isozymes in the body. Human TGM2 consists of four domains: a fibronectin-
binding domain and a catalytic domain, as well as two C-terminal β-barrels belonging to
the fibronectin Type III CATH superfamily [16]. Upon activation, TGM2 may then crosslink
protein glutamines with another amine donor in a reaction known as transamidation
(Figure 1A). After the glutamine-containing amine acceptor binds to the enzyme, it forms a
γ-glutamylthioester with the catalytic cysteine residue, leading to an acyl–enzyme interme-
diate. This linkage is accompanied by the release of ammonia. The amine donor proceeds
to bind to the acyl–enzyme intermediate and attacks the thioester bond, subsequently
restoring the catalytic cysteine to complete the transamidation reaction, with the formation
of acyl–enzyme intermediate being rate-limiting [17]. Khosla and colleagues identified
“open” and “closed” conformations spanning as distant as 120 angstroms (Figure 1B) upon
calcium stimulation. A vicinal disulfide bond also exists between two surface cysteine
residues, cysteines 370 and 371, contributing to the conformational change. TGM2 has a
wide range of amine-donor specificity, from biogenic mono- and polyamines (Figure 1C) to
other amine-containing compounds such as the antituberculosis agent isoniazid and the
antihypertensive drug hydralazine [18].
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transamidation reaction. (B) Crystal structure of tissue transglutaminase. TGM2 undergoes a large 

conformational change upon activation. In this figure, the crystal structures are shown as ribbons; 

simplified cartoons are included for clarity [16] (©  2007 Pinkas et al., distributed under the terms of 
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TGM2 is mechanistically dependent on calcium regulation. The tight regulatory 

control of calcium uptake and release in theory ensures that TGM2 is also highly regulated 

Figure 1. TGM2 mode of action and amine donor substrates: (A) Catalytic mechanism of TGM2,
with green arrows indicating electron movement. TGM2 catalyzes transamidation reactions between
a protein at its glutamine residue and various amine donors. The reaction is first initiated by a
nucleophilic attack by the activated cysteine on the glutamine amide, forming the thioester interme-
diate. A biogenic amine donor leads to another nucleophilic attack and completes the transamidation
reaction. (B) Crystal structure of tissue transglutaminase. TGM2 undergoes a large conformational
change upon activation. In this figure, the crystal structures are shown as ribbons; simplified car-
toons are included for clarity [16] (© 2007 Pinkas et al., distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited). The N-terminal β-sandwich is
shown in blue (N), the catalytic domain (Core) in green, and the C-terminal β-barrels (β1 and β2) in
yellow and red, respectively: (1) GDP-bound TGM2; (2) TGM2 inhibited with the active-site inhibitor
Ac-P(DON)LPF-NH2; (3) the N-terminal β-sandwich and catalytic domains of the two structures are
superimposed, highlighting the conformational change. The GDP-bound structure is shown in blue,
and the inhibitor-bound structure is shown in gold. (C) Common amine substrates for TGM2, with
each serving a different purpose as neurotransmitters and transduction agents.
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TGM2 is mechanistically dependent on calcium regulation. The tight regulatory con-
trol of calcium uptake and release in theory ensures that TGM2 is also highly regulated
except in the case of a significant interruption of redox homeostasis. The enzyme appears
to have certain rules of specificity [19] but is relatively short-lived [20]. Increases in intracel-
lular calcium concentration as a result of release from intracellular stores or ion transport
from extracellular spaces [21], even in the absence of protein synthesis, can activate latent
transglutaminase activity. The effects of redox regulation on TGM2 are via a number of dif-
ferent pathways [22] (Figure 2), with TGM2 activity likely to be modulated through cysteine
oxidation in the form of cysteine S-thiolations, e.g., S-nitrosylation and S-glutathionylation.
Experimental observations often suggest a strong association between oxidative stress and
TGM2 upregulation, which again directs activity and function toward either cell survival or
apoptosis. Strong TGM2 upregulation and activity have been reported in some of the most
severe neuropathological disorders such as ischemia and diseases such as Alzheimer’s,
Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis [22]. Biochemical studies
suggest that there may be a link between intracellular reactive oxygen species elevation
and glutathione (GSH) depletion and TGM2 upregulation [23], possibly inferring a direct
consequence of S-glutathionylation on TGM2. This hypothesis has been further substan-
tiated by Khosla and colleagues in relation to the formation of intramolecular disulfides
among a Cys 230-370-371 triad [24], and cysteine residues in TGM2 have been shown
to be potentially S-glutathione modifiable, with Cys 230 and Cys 370 being related to
transamidation activity for their participation in the catalytic triad, while cysteines 524 and
554 may be signaling-related, likely pertaining to TGM2’s duality as a G protein [25].

Functionally, the glutamine transamidation reaction renders the target resultant local
structure unrecognizable by proteases to evade proteolysis. In the context of celiac disease,
TGM2 pathologically modifies the lining of the small intestine and triggers an autoimmune
response against TGM2 and the tissue itself, leading to bowel inflammation, truncated
villi, and scalloping [26]; ulcers and bowel obstructions [27]; as well as increased risks
of adenocarcinoma of the small intestine and enteropathy-associated T-cell lymphoma.
The effect of TGM2 on cell death, however, appears to be dependent on its localization
and activation, as during apoptosis, the enzyme migrates from the cytosol to the nucleus
to initiate transcription, a behavior that leads to the direct modulation of transcriptional
activity in neurodegenerative diseases, likely as a consequence of direct Rb interaction [28]
(Figure 2, purple arrows), which lead to Rb to sustain its antiapoptotic transcriptional
activity. There are also reports that TGM2 at times undergoes mitochondrial translocation
and thus affects ATP synthesis [29,30]. TGM2 is also said to be a critical element in the
proper phagocytosis of apoptotic cells [30], although there is no clear correlation between
apoptosis and TGM2 expression; for instance, TGM2 overexpression in fibroblasts did
not result in increased endogenous rates of cell death in one report [31]. Recently, TGM2
was found to promote migration and invasion in lung cancer cell metastasis, although the
involvement was more likely the consequence of translocation rather than transamidase
activity [32]. Molecularly, in lung cancer cells TGM2 appears to promote DNA damage
repair upon its translocation to the nucleus and interaction with topoisomerase IIα [33],
further highlighting that the presence of TGM2 in the nucleus is a trigger for a number of
events related to cancer progression. Elevated TGM2 expression has been associated with
worsened NSCLC prognosis, namely as a consequence of increased invasion and migration
of NSCLC cells [34]. This was manifested in a Korean cohort study of 429 NSCLC patients;
a cohort study in China also found associations with shortened survival periods [35].
Additionally, while a relatively large number of potential protein–TGM2 interactions have
been characterized [19], few studies have attempted the systematic profiling of TGM2
targets to date.
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Other than GTPases, actin and fibronectin were also the recipients of serotonylation 

[37,42]. Fanburg and colleagues identified serotonylated fibronectin [43] in smooth muscle 

Figure 2. Regulation routes of TGM2. Intracellular ROS accumulation has a number of direct and
indirect consequences on cell signaling pathways such as NFκB-TGM2 signaling (black arrows),
leading to apoptosis or necrosis. Additionally, pathological cellular stresses can also affect TGM2’s
transamidation activity and subsequently affect cell death. Additionally, cytosolic TGM2 may
mediate cellular pathology by inhibiting the formation of insoluble protein aggregates and increasing
levels of pathogenic soluble oligomers (purple arrows), or altering the mitochondrial membrane
potential, all of which can lead to cell death. However, cell death may be ameliorated via the nuclear
translocation of TGM2, which may trigger Rb interaction. NFκB may also induce TGM2 to generate an
inflammatory response within the nucleus and in the cytosol, propagating and cascading intracellular
calcium increase (indicated as ellipses). Black arrows indicate routes of TGM2 regulation as proposed
by [22]; purple arrows indicate routes per [28]; H2O2, hydrogen peroxide; TGM2*, activated TGM2;
blue arrows indicate state changes, such as the activation of TGM2.

3. Protein Serotonylation

There is great diversity in TGM2’s amine donor substrate receptibility when it comes
to post-translational protein transamidation, collectively known as “protein monoaminyla-
tion”, with different biogenic amines according to their separate involvement in signaling
pathways [36]. Among these, serotonylation utilizes 5-hydroxytryptamide (5-HT, sero-
tonin), a vasoconstrictor, as the amine donor to initiate events such as platelet aggregation
via the release of von Willebrand (vWf) factors and GTPase activation [15] as reported in
2003 (Figure 3A). This modification rendered serotonylated targets constitutively active,
and the effect was primarily attributed to the concomitant activation of G-coupled receptors;
at that time, proteins such as vWf, fibrinogen, as well as small GTPases in the range of
20–25 kDa, were also hypothesized to be serotonylation targets.

Later, it was suggested that 5-HT would covalently modify systemic arterial proteins
by acting as a substrate for transglutaminase in a model system of rat aorta, forming a
complete serotonergic system to control contraction [37]. Filamin A, myosin heavy chain,
and actin were identified as targets of serotonylation, although there was yet no site-specific
information to ascertain such findings; few to no follow-up studies also surfaced until
2009, when the serotonylation of Rab3a and Rab27a was reported to be a modulatory
mechanism in insulin secretion [38]. Other GTPases such as RhoA [39] and Rab4 [40]
in muscle cells, as well as Ras [41] in colorectal cancer cells, could also be serotonylated.
Other than GTPases, actin and fibronectin were also the recipients of serotonylation [37,42].
Fanburg and colleagues identified serotonylated fibronectin [43] in smooth muscle cells.
The modification of fibronectin induced functional responses in the tissue, leading to
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accumulation that, along with serotonin transporter (SERT) expression, was found to be
correlated with the progression of pulmonary hypertension.
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Figure 3. Examples of protein serotonylation: (A) Serotonylation of small GTPases. Upon stimulation
of platelets by 5-HT, the phosphatidyl inositol pathway is activated, resulting in a rise of cytoplas-
mic Ca2+. 5-HT signaling is mediated by the G-protein-coupled 5-HT2AR and by transport into
the cytoplasm by SERT. The contents of α-granules are released into circulation (for example, vWf,
black circles) or exposed at the plasma membrane; figure reproduced from [15] (© 2003 Cell Press).
(B) Regulation model of 5-HT and effect of histone H3 serotonylation, reproduced from Fu et al. [44]
(distributed under the terms of the Creative Commons Attribution 4.0 International License, avail-
able creativecommons.org/license/by/4.0). The H3K4me3Q5ser double modification enhances the
interaction of histone with certain H3K4me3 “reader” proteins, such as TFIID, and then reinforces
permissive patterns of gene expression.

However, most of the reports on the phenomenon of protein serotonylation have been
relatively focused on signaling; given that transglutaminases remain largely inactive unless
stimulated, serotonylation likely serves as a “last line of defense” to force sustained activity
onto the important targets involved in signaling. However, the recent reports of histone
H3 serotonylation at H3Q5 in H3K4me3-marked nucleosomes by Farrelly et al. [14,44]
(Figure 3B) would suggest otherwise, indicating that TGM2-mediated monoaminylation has
a larger biological role than what we imagined. This modification leads to the enrichment of
euchromatin in serotonergic neurons, by elevating their sensitivity to cellular differentiation
and permissive gene expression, achieved by potentiating interactions of TFIID with
H3K4me3. H3Q5 is later reported to be modifiable by TGM2 using dopamine as a different
amine donor [45]; in this context, the modification can alter cocaine-induced transcriptional
plasticity in the midbrain in mice. These new reports provide new glimpses into the role
of TGM2 in cancer, although the substantiation of such a claim has been difficult with the
scant amount of direct evidence to date.

3.1. Proteomic Profiling of Serotonylation Targets

Based on the role of 5-HT signaling, there is speculation that serotonylation may
potentially be a supplementary process in the modulation of endocytosis [46]. This belief
runs in parallel to the idea that the covalent coupling of neurotransmitters such as 5-HT may
prolong the effects of the signaling process, effectively enriching 5-HT local concentration
in a phenomenon referred to as the “hormone effect” [36]. Indeed, serotonylation is
intimately linked to the presence of transporters such as SERT, since the transporter-
mediated uptake of these neurotransmitters from the extracellular space can impact the
duration and magnitude of extracellular signaling [47–49]. Although for this effect to
propagate, it naturally follows that serotonylation targets need to either be highly abundant
or sufficiently diverse inside the cell; in order to substantiate the hypothesis of the hormone
effect, the complete proteome profiling of serotonylation targets is necessary.

creativecommons.org/license/by/4.0
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The road to the comprehensive proteomic profiling of serotonylation targets, however,
still remains a difficult technical challenge. The ubiquitous and wide availability of biogenic
monoamines in nature often leads to the generation of ineffective antibodies, most of which
are relied upon for the enrichment of transamidated proteins in vivo. While serotonylation
has been characterized with isotopic variants of 5-HT such as 14C-5HT [15] and 3H-5HT [38],
radioimaging methods are not readily transferrable to larger-scale profiling. There have also
been attempts with biotin-conjugated 5-HT to probe serotonylation [37], although there is a
possibility that the increased size of the biotinylated adduct can affect TGM2 activity. We
originally devised a Cu(I)-catalyzed alkyne–azide cycloaddition -based method (Figure 4A)
to generate a derivative of 5-HT much comparable in size to 5-HT. Using this construct,
we characterized more than 50 modification sites in 46 proteins from mass-spectrometric
proteome profiling in SW480 colorectal cancer cells [50] (Figure 4B), in what was perhaps
the first report of serotonylation proteomic profiling. The proteins belonging or closely
associated with the heat-shock protein (HSP) family, folding, and structural assembly were
identified as serotonylation targets, including PSMD9 (a chaperon for 26S proteasome
assembly), heat-shock proteins such as DNJB1 (Hsp40) and GRP78 (HspA5), as well as
radixin, RanBP-1, etc. All of these elements have varying degrees of interactions with
the elements related to Akt signaling and subsequently lung cancer. While there was no
conclusive serotonylation motif from the profiling results, modification tended to occur
near a relatively higher abundance of aliphatic, non-polar amino acids in the immediate
vicinity; this echoed the earlier observations of TGM2 preferring glutamines in proline-
rich regions [51]. Farrelly et al. later also employed this approach to investigate histone
serotonylation in HeLa cells [14].
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Figure 4. Protein serotonylation by 5-propargylserotonin: (A) The approach utilizes the click reaction
between 5-propargylserotonin (5-PT) and biotinylazido-cystamine (biotin-CTA-N3, both as shown in
the box in the upper left) as a TGM2 surrogate for 5-HT. The conjugation occurs in situ to produce a
triazole adduct (right, blue arrow) that is stable under mass spectrometry. When a cleavable moiety
is integrated into the linker, e.g., a disulfide structure (right, red arrow), the biotin moiety can be
cleaved for elution. (B) A proteomic workflow to enrich serotonylated proteins.
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3.2. The Abundance Hypothesis

There is sufficient evidence to declare that TGM2 is linked to a number of diseases and
also precancerous conditions and that it activates caspase 3 and possibly crosslinks proteins
in a fashion that propagates irreversible amyloid formation. It is even understood that
TGM2 readily accepts chemically modified polyamines as substrates of transamidation and
prefers the functional group adduct in a linear fashion rather than branched [52]. However,
we still know very little about the rationale behind the choice of biogenic monoamines
as substrates of TGM2. There is a common belief—for the sake of discussion, we shall
refer to this as “the abundance hypothesis”—that TGM2 will non-preferentially utilize
freely available amines as donors as necessary by the virtue of its primary biological
role: to evade autoproteolysis and apoptosis acutely, where substrate preference may
hinder the rate of this very function. Since different proteins can have varying degrees of
amine donor acceptancy, TGM2 may reserve priority and exert preference in selecting a
particular biogenic amine as its substrate for modification; to override such this preference,
great excess quantities of a particular amine near 10 mM are often required to achieve
incorporation [52–54]. As the phenomenon of serotonylation has been observed in organs
other than the gastrointestinal tract, we can also safely presume that there is a specific and
deliberate rationale that TGM2 may preferentially seek to transamidate proteins with 5-HT,
rather than other available and nearby biogenic monoamines. Another fallacy with such a
hypothesis is that these amine donors often require complex pathways of biosynthesis, most
of which can be energetically expensive and have drastically different yields. Spermine is
not biologically equivalent to 5-HT or dopamine, despite the fact that nearly all of them are
regularly utilized as amine donors by TGM2. Since nearly 95% of 5-HT is accumulated in
the gastrointestinal tract, with the vast majority found in enterochromaffin cells and the
remaining 10% or so in enteric neurons [55], the mere fact that a nominally small quantity
of 5-HT is found outside these systems implies that the trafficking of serotonin to these
systems must be purposeful as a consequence of the tightly regulated and energetically
costly biosynthetic process.

4. Implications of Protein Serotonylation in Oncogenesis

Over the decade since Walther and colleagues first reported the phenomenon [15],
little remained known about the connections between serotonylation and its connections to
diseases such as cancer. The serotonylation of small GTPases, while serving a signaling
function, is unlikely to be a facilitating factor in oncogenesis due to their rapid degradation,
likely proteasomally [39], soon after they become active, not to mention the relatively short
livelihood of TGM2 itself [20]. Other factors such as TGM2’s activation of caspase 3 and its
involvement in redox imbalance [56] are thus more likely to be the key player in the process
instead. Reports so far do seem to suggest that serotonylation can exert epigenetic effects
in modulating the relaxation of condensed chromatin to permit transcription. Furthermore,
proteomic profiling has revealed a number of heat-shock proteins and chaperons, such
as PSMD9 and DNAJB1 (Hsp40), to be serotonylation targets [50]. CHMP4B is essential
for BMP4-mediated chromosomal integrity safeguarding, a process that is linked to the
increased levels of H3K4me3 modification in the CHMP4B promoter [57]. DNAJB1 in
particular has been said to interact with STUB1 (also known as CHIP) and HSPA4 [58,59];
alteration in the DNAJB1 interaction with STUB1 by the virtue of serotonylation is likely
to affect MLL5, an element said to be intimately related to H3K4 transferase activity [60].
GRP78 may also promote tumor cell histone acetylation [61]. The serotonylation of these
protein targets may subsequently affect histone modification and subsequently the epi-
genetic landscape through a number of other elements such as other PTMs, transcription
factors, or galectins that compete for or allosterically hinder access to DNA.

With TGM2’s possible interactions with HSPs such as Hsp70, Hsp20, and Hsp27 hav-
ing been demonstrated on a cellular level [62–64], HSPs may also be targeted for sustained
activation to alleviate stresses exerted during periods of distributed homeostasis and possi-
ble apoptosis, as triggered by the influx of serotonin. As HSPs are said to be exploitable
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targets for cancer immunotherapy [65–67], the act of triggering a large expression increase
in cancer cell HSPs by serotonylation may assist in sensitizing therapeutic regimens. Aside
from HSPs, another connection of note is the link to the epigenetic landscape via chromatin
modifiers and histone modifications. Relations to cancer immune response can be gleaned
from CD34, another target of protein serotonylation at Gln 377. Unlike most cancers, SCLC
can in fact express CD34 [68]; it follows that alteration in the CD34 state through serotony-
lation may potentially alter hypermethylation patterns in promoter CpG islands in acute
myeloid leukemia [69]. Since galectins, e.g., galectin-3, are often co-expressed with CD34 in
cancers such as hepatocellular carcinoma [70] and can contribute to the tumor’s ability for
immune invasion by increasing matrix metalloproteinase activities [71], there may be direct
associations that merit further investigation, especially given the fact that serotonylation
may increase PD-L1 expression [72]. In the context of treatment for lung cancer, given
the links between histone modifications and permissive reprogramming as a consequence
of chromatin structural changes, it is possible that HDIs such as vorinostat may reverse
the effects of certain histone modification roadblock events such as DOT1L-mediated
H3K79/K27 methylation [73]. There may also be connections to protein serotonylation
through aspects of cancer immunotherapy via alterations in CD34 structural modifications
through serotonylation.

5. Associations of Protein Serotonylation with Other Epigenetic Features
5.1. Implications of Histone Modifications in Cancer

Transcriptional regulation usually occurs through a series of modifications or changes
in histone elements to prevent the physical process of transcription from being carried out
successfully. Epigenetic changes such as microRNA, CpG island sRNA, and nucleosome
positioning all have different roles in transcriptional regulation; for instance, the POU
(Pit-Oct-Unc) transcription factor family stimulates the transcription of their target genes
by interacting with basal transcriptional mechanisms and a number of other factors [74,75].
In cancer cells, however, genomic aberrations may easily tip the delicate balances and cause
misguided activation of oncogenic drivers, and through the same mysterious act conversely
deactivate tumor suppressors. In this review, for the sake of discussion we will narrow the
context of genomic aberrations to only histone modifications.

Histones are the central component of the nucleosomal subunit, forming an octamer
containing core histone proteins, namely H2A, H2B, H3, and H4 [76]. Notably, there is
established evidence of TGM2 interaction with Histone 2B [19]. Changes in PTM patterns
of histone are extensively linked to cancer, both at the genome level and specific loci [77,78].
On the other hand, some of the most frequently mutated targets in cancers have also turned
out to be mutations in histone-related elements as well [79]. A number of PTMs can occur
in histone, such as acetylation, methylation, phosphorylation, and adenosine diphosphate
(ADP) ribosylation. On the other hand, ADP-ribosylation by NAD+-dependent poly(ADP-
ribose) polymerases (PARPs) and class III HDACs such as Sirtuin [80] histone is a con-
sequence of PARP1 becoming activated due to environmental stress, causing local DNA
damage. PARP1 modifies the amino-terminal tails of core histones, for instance, at residues
H2AK13, H2BK30, H3K27, H3K37, and H4K16 [81], and leads to chromatin decondensation
and the recruitment of DNA repair machinery. PARP1 inhibitors have been shown to
counteract the effects of these modifications in SCLC [82], not to mention as treatment of
breast and ovarian cancers. Other histone PTMs, such as citrullination, ubiquitination,
formylation, O-GlcNAcylation, lactylation, propionylation, butyrylation, crotonylation,
benzoylation, and proline isomerization, can occur near the basic and flexible histone
tails [83–92]. Citrullination modifies histone arginine residues as a consequence of methy-
lation by protein arginine methyltransferases; in effect, the positive charge on arginine is
removed enzymatically by the partitioning and anchoring domain proteins (PADs) [93].
Particularly, PAD4 has a nuclear localization signal and is reported to modify histones
H2A and others, i.e., at residues H1R5, H3R2, H3R8, H3R17, and H3R26 and H4R3 [94–97],
leading to chromatin decondensation [96,98]. PAD4 is also highly expressed in a number
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of cancers, for instance, SCLC, ovarian, breast, and hepatocellular carcinomas [99]. We
should also note that these modifications have different yet concerted regulatory effects on
gene expression; one of the most famous is perhaps acetylation and methylation in their
ability to activate or deactivate transcription. Aside from methylation repressing histone
acetylation, multiple methylation states can exist at the same lysine or arginine residue,
adding to the complexity of the interplay. The methylation/acetylation pair is notably
regulated by multiple methyltransferase writers and demethylase erasers to dictate changes
in cell fate and genomic stability [100]. Of course, we cannot discount recent discoveries
that serotonylation and dopaminylation can also modify histones, with severe implications
in neuron differentiation and cocaine addiction [14,45]. The dopaminylation of histone
H3 has an impact on ventral tegmental area function and, consequently, on dopaminergic
action potentials. The result is aberrant dopamine signaling in the ventral striatum during
the periods of drug seeking [45]. H3Q5ser, when coupled with H3K4 methylation, can
augment the potentiation of chromatin readers and erasers, thus highlighting the possibility
of serotonylation being a hidden third man in the acetylation–methylation concert pair. For
instance, H3K4me3 readers have been said to be able to tolerate H3Q5ser while H3Q5ser
can stimulate KDM5B activity with little to no effect on the binding kinetics of H3K4me3
readers [101]. While these modifications can be used as therapeutic targets, we need to be
particularly aware of their concerted efforts to modulate the epigenetic landscape. Even
though a number of publications have alluded to such concerted crosstalks, most remain
merely on-the-surface citations to H3 modifications; thus, a more thorough investigation
into this subject matter will be necessary in the future.

5.2. Implication of Galectins and Their Relationships to Histone H3 Modifications

HDAC inhibition may also lead to alterations in the glycome, as evident in the rise in a
number of differently expressed glycosidases such as TPTST2, NEU1, FUCA1, GALM, etc. [102],
again hinting at the complex interplay between PTMs in the modulation of the epigenetic
landscape. For instance, aldolase A, an interacting partner of TGM2 [19], has been found to
promote lung cancer metastasis, likely via its interaction with actin [103] and the subsequent
alteration in histone–actin interactions [104]. While chemical biology-based tools such as
enrichment-based proteomics or activity-based probe profiling, such as those based on
alpha-fluoromethylphenyl fucopyranoside reaction intermediates for α-L-fucosidase [105],
can help establish clear and direct relationships, so far there appear to be no reports that
utilize such methodology. Furthermore, as the relationship between galectins and cancer
has long been investigated, these sugar binders are also likely to have a hand in the
epigenetic modulation connected to TGM2-mediated protein serotonylation. Galectins
are an ancient and evolutionarily conserved protein family that recognize β-galactose-
containing glycoconjugates, and they have a diverse range of functions relevant to a
wide variety of biological events and diseases, including developmental processes, cell
migration, immune regulation, antimicrobial activity, apoptosis, and cancer [106–110].
The presence of galectins in various cellular components, including extracellular and
intracellular spaces, and changes in galectin expression are believed to be critical for cancer
progression, metastasis, and angiogenesis, especially in relation to their involvement in a
number of different signaling pathways [111]. Notably, histone modification leading to
epigenetic changes can regulate galectin activity in cancer. Galectin-9, as an example, has
been noted to have its expression levels linked to CpG methylation, as well as H3K9 and
H3K14 histone acetylation near the galectin-9 promoter [112]. Similarly, galectin-1 has also
been found to have moderate expression gains in mixed lineage leukemia (MLL)-rearranged
B-lymphoblastic leukemias, with evidence of hypermethylation related to H3K79 in its
promoter region [113]; H3K79 dimethylation is also connected to changes in the histone
methyltransferase activity of the MLL fusion protein complex [114]. Even though the
impact of epigenetic modulation on galectin expression is imperative, there is limited
information at this time on their direct connections to histone modifications and epigenetic
changes that regulate galectin activity in cancer.
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6. Conclusions

Over the past two decades, from the first report of GTPase being targets of serotony-
lation in 2003 to the latest references on histone H3 modification, our understanding of
protein serotonylation still remains an unsolved puzzle on a coffee table in the corner
of the living room, just right out of sight. Unlike other modifications, there is still no
“one-size-fits-all” functional definition for serotonylation. we know that this PTM likely
affects signaling, but the exact extent of “how” remains largely unsubstantiated without
more comprehensive profiling of the proteome. Likewise, while we can definitively affirm
that the serotonylation of H3Q5 can affect the epigenetic landscape, questions such as the
reason for the presence of serotonin in the nucleus, or whether there exist other concerted
PTM pairings to assist epigenetic modulation, still linger and muddle the discussion. The
presence of serotonin in the mitochondrion and the activation of serotonin receptors in
intracellular membranes [115] do indeed align with our knowledge of TGM2 distribution
and its occasional role as a G protein; following this logic, it may be safe to presume that
serotonylation is a conduit for TGM2 to perform a signaling function that may otherwise
be served with other GTPases. Under this hypothesis, TGM2’s role as a G protein may
then explain the occurrence of H3 serotonylation when we take into consideration the role
of G-protein-coupled receptors, which can act as an HDAC kinase [116]. While this may
be the missing puzzle piece that we have misplaced all along, it is imprudent to jump
to conclusions without a more thorough examination of other elements at play such as
interactions with galectins, receptor elements, and other histone PTMs. Alas, the detailed
profiling of serotonylation targets as well as a mechanistic investigation of the process of
de-serotonylation are also important topics that remain unaddressed even to this day.

7. Future Directions

In the context of designing therapeutic options for lung cancer, a good starting point
is the optimization of HDIs such as vorinostat. Unmodified vorinostat is a relatively broad
spectrum and can cause a large number of undesirable adverse effects, as do most HDIs;
one pressing issue to alleviate some of these side effects is to optimize the drug to allow
more specific target homing. This aspect of HDI optimization is particularly important
even in combination therapies since most other combination drugs are often also broad-
spectrum cytotoxic agents. A possibility is the use of minor-groove binding molecules
such as N-methylpyrrole-N-methylimidazole polyamides (PIPs) to isolate vorinostat to
only certain genomic targets. An example of this is SAHA-PIPs, which were shown to
be capable of selectively upregulating certain genes related to chromatin reprogramming
and subsequently inducing pluripotency in mouse embryonic fibroblasts [117]. SAHA-
PIPs may have great implications as oncotherapeutic candidates, as their tradeoff of a
narrower range of genomic targets compared with vorinostat may translate to heightened
effects for their targets and fewer undesired adverse effects as a consequence of reduced
off-target binding [118], in which more systematic investigations may be required. It may
also be worthwhile to examine how HDIs interact with the transcriptional and epigenetic
machinery to optimize the engineering of a new generation of HDIs for cancer therapy.
With the advent of artificial intelligence, it may be possible to utilize modeling tools such
as AlphaFold [119] to simulate conformational changes to some of the machinery. For
example, changes in conformation upon binding with SAHA-PIP/DNA ligand or changes
in surface accessibility of H3Q5 via AlphaFill [120], a derivative of AlphaFold with ligand-
binding capabilities, may help understand how histone deacetylase interacts a ligand of
SAHA-PIP with methylated DNA to achieve selective activation of tumor suppressor genes.
While at this time we are no longer actively investigating the phenomenon of protein
serotonylations directly, we do believe that a more thorough examination of these histone
elements at play, such as interactions with galectins, receptor elements, and other histone
PTMs, is a necessity moving forward, along with systematic profiling of serotonylation
targets in the cancer proteome to provide a more comprehensive picture to understand the
role of this uncommon PTM.
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Appendix A

The five-year survival rates for both NSCLC and SCLC were estimated from the
number of cases diagnosed between 1997 and 2014 from participating member hospitals in
the national cancer registry of Japan. Survival rates for NSCLC were estimated based on the
records categorized as large-cell carcinoma across all clinical stages (N = 1889, 83.2% men;
mean age = 65.1 with a standard deviation of 10.6). SCLC values were based on the records
cataloged as SCLC and large-cell type neuroendocrine carcinoma and included a total of
8827 cases, 83.8% of which involved men, across all stages of the disease, with a mean age
of 68 and standard deviation of 8.9. Calculations were performed with KapWeb [121], with
the database last updated in November of 2022.

Appendix B

The claim that vorinostat “as is” (i.e., not chemically derivatized) has failed to show
efficacy for lung cancer is based on the results available from ClinicalTrials.gov, in which
“vorinostat” and “lung” were used as search keywords. At the time of writing, 32 clinical
studies had been cataloged, 14 of which were terminated or completed studies with publicly
viewable results. Notably, 3 of the 14 studies had enrollment greater than 30 subjects
(NCT00481078, N = 94; NCT00473889, N = 253; and NCT00423449, N = 61). None of
the aforementioned studies provided sufficient evidence to support the hypothesis that
unmodified vorinostat in combination therapies performed statistically better than the
placebo in the case of lung cancer. As no other posted results included comparative studies
of vorinostat vs. placebo alone, there was also no supporting evidence that the combination
therapies of unmodified vorinostat with other drugs such as paclitaxel or carboplatin
increased efficacy against lung cancer.
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