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Simple Summary: The survival rate for pediatric cancers has improved significantly over the last
decades. Conventional chemotherapies play a vital role in pediatric cancer treatment, especially in
low- and middle-income countries, and the roster of chemo drugs for use in children has expanded.
However, patients suffer from chemotherapy as a result of its countless side effects. Furthermore,
multidrug resistance (MDR) continues to be an insurmountable obstacle that limits survival for a
considerable number of patients. In this review, we discuss severe side effects in pediatric chemothera-
pies such as doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy
(VIPN). Here, MDR mechanisms in chemotherapy are elucidated with the aim of improving sur-
vival, while also reducing the intensity and toxicity of chemotherapy. Furthermore, we focus on
various drug transporters in common types of pediatric tumors, which could provide different
therapeutic strategies.

Abstract: The survival rate for pediatric cancers has remarkably improved in recent years. Con-
ventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and
middle-income countries where access to advanced treatments may be limited. The Food and Drug
Administration (FDA) approved chemotherapy drugs that can be used in children have expanded,
but patients still face numerous side effects from the treatment. In addition, multidrug resistance
(MDR) continues to pose a major challenge in improving the survival rates for a significant number
of patients. This review focuses on the severe side effects of pediatric chemotherapy, including
doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN).
We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce
the toxicity of treatment. Additionally, the review focuses on various drug transporters found in
common types of pediatric tumors, which could offer different therapeutic options.
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1. Introduction

Pediatric cancer is relatively rare and has a high survival rate compared with adult can-
cer. Pediatric cancer includes 12 major types and over 100 subtypes [1]. In the United States,
pediatric cancer therapies have made remarkable advances over the last 70 years, and the
overall survival (OS) rate for pediatric cancer patients has increased to 80% [2,3]. However,
cancer is still the top cause of death by disease in children. In 2023, diagnosed pediatric can-
cer patients in the USA will include ~9910 children (birth to age 14) and ~5280 adolescents
(aged 15–19 years). In addition, approximately 1040 children and 550 adolescents in the
USA will die from cancer in 2023 [4]. An improvement in these amounts can be achieved
by an increased understanding of the molecular basis of cancer through international
collaborative efforts.
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Despite these successes, the incidences and mortalities between countries are greatly
different. In 2017, the 5-year survival rate of childhood cancer was 80% in high-income
countries. However, data suggest that far fewer children survive in most low- and middle-
income countries—the 5-year survival rate of children is ~40%, while more than 90% of
children at risk of potential pediatric cancer live in these countries [5,6]. Because of major
advances in modern science over the past several decades, the improvement in pediatric
cancer in high-income countries has not translated to most low- and middle-income coun-
tries. There are still gaps among these countries regarding recognition, diagnosis, and
treatment [7].

Despite financial hardship or treatment results, conventional chemotherapy is still
a standard option for childhood cancer treatments in low- and middle-income countries,
where molecular-targeted drugs are broadly accessible [8–10]. Severe side effects and resis-
tance mechanisms against cancer therapies remain the primary reasons limiting chemother-
apy outcomes [11]. Here, we consider the advancement of chemotherapy in pediatric
cancer, including drugs and specific considerations. Beyond the previous focus on adult
cancer alone, in the current review, we discuss severe side effects such as neuropathy and
myopathy, the effects of the MDR phenomenon, and the role of various drug transporters in
common types of pediatric tumors that could lead to more efficient pediatric chemotherapy.

2. Current Chemotherapy in Pediatric Cancer

There are currently various cancer treatment approaches for cancer. The main four lines
of treatment are surgical removal, immunotherapy, radiotherapy, and chemotherapy [12].
Surgical removal has the longest history in cancer treatment. It is an essential treatment
option and often is often performed together with other cancer treatments, depending on
the type of cancer [13]. Immunotherapy is generally considered to have been applied in
1890 by Dr. Coley, who injected a mixture of live and inactivated Streptococcus and Serratia
to achieve responses [14]. It modulates the immune system to act better against cancer, and
it includes immune checkpoint inhibitors, T-cell transfer therapy, monoclonal antibodies,
and treatment vaccines. Radiotherapy precisely delivers radiation to kill cancer cells and
shrink tumors, and was started in 1896 by Emile Grubbé, who treated a breast cancer
patient using X-rays [15]. Chemotherapy was first introduced after the Second World War,
and works by interfering with cell proliferation. Other cancer treatment approaches include
stem cell transplantation, targeted therapy, photodynamic therapy, and hormone therapy.

The efficient treatment of pediatric cancer started after 1945. Sidney Farber treated
a 3-year-old patient with acute lymphoblastic leukemia (ALL) with aminopterin [16]. As
a conventional cancer therapy, chemotherapy has played an important role in pediatric
cancer over the past several decades. In pediatric diagnosis, ALL is the most common
type of cancer. The OS of ALL increased from 57% in the 1970s to 96% in recent years [17].
This enormous progress is partly attributed to advances in chemotherapy [3]. Currently,
chemotherapy has reached its limit, as severe toxicities have been observed in pediatric
patients during treatment. Modifications to chemotherapy are made in order to reduce
multiple toxicities. For instance, studies have provided evidence that chronomodulated
chemotherapy, based on the body’s intrinsic circadian clock, might minimize toxicity while
maintaining an anticancer activity [18]. High-dose chemotherapy has been explored for
treating childhood malignant glioma so as to pass the blood−brain barrier (BBB), reduce
cell chemoresistance, and achieve a more comprehensive response [19].

Chemo drugs are grouped by function, chemical structure, and interaction with other
medications. Types of chemo drugs include alkylating agents, antimetabolites, antibiotics,
topoisomerase inhibitors, mitotic inhibitors, and corticosteroids [20,21]. In 1997, under
the Food and Drug Administration Modernization Act2 (FDAMA), a pediatric exclusivity
provision was enacted by the U.S. Congress. Few chemo drugs were explicitly approved for
treating pediatric cancer. The FDAMA later reauthorized as the Best Pharmaceuticals Act
for Children (BPCA), which encourages pediatric drug studies in companies by providing
a financial incentive. A total of 16 chemo drugs have been approved by the FDA with



Cancers 2023, 15, 1963 3 of 17

pediatric indications in the U.S. Before the FDAMA, only nine chemo drugs were approved
for pediatric indications, see Table 1. After the FDAMA (1997–2022), seven chemo drugs
were approved to treat childhood cancer (see Table 2).

There are less drugs with pediatric indications worldwide compared with adult
indications [22]. For some chemo drugs, the initial approval was only for adult indications.
On 20 May 2022, Azacitidine was newly approved for childhood cancers, while it first
approved on 19 May 2004 for treating all subtypes of myelodysplastic syndrome. Moreover,
FDA approved these chemo drugs (Clofarabine, Nelarabine, Erwinia, and Mercaptopurine)
for both adult and pediatric indications at the same time (Table 2). Although efforts have
been made in pediatric chemotherapy, only a few chemo drugs have gained pediatric
indications—there is a gap between pediatric and adult approval.

The therapy to treat pediatric cancers requires specific prerequisites and considerations,
as patients are still growing and developing. Some adverse effects of cancer treatments are
more severe for children than adults, as developing organs are more susceptible. Infection-
related serious adverse events are more common in ALL patients receiving chemotherapy,
which enhances the risk of death [23]. Therefore, it is necessary to identify drug resistance
mechanisms to reduce chemotherapy intensity and toxicity. The counterstrategies against
drug resistance are discussed in the following section.

Table 1. Chemo drugs approved prior to FDAMA, for which labeling includes pediatric indications [24].

Drug Original
Approval Indications

Doxorubicin Hydrochloride 7 August 1974 Wilm’s Tumor and Other Childhood
Kidney Cancers

Vincristine Sulfate 10 July 1963
ALL, Neuroblastoma, Non-Hodgkin Lyphoma,
Rhabdomyosarcoma, Wilm’s tumor and other

childhood kidney cancers
Cytarabine 17 June 1969 Acute Nonlymphocytic Leukemia

Cyclophosphamide 16 November 1959 ALL
Methotrexate Sodium (Trexall) 10 August 1959 ALL

Mercaptopurine (Purinethol, Purixan) 11 September 1953 ALL
Daunorubicin Hydrochloride (Rubidomycin) 19 December 1979 ALL

Procarbazine Hydrochloride (Matulane) 22 July 1969 Hodgkin Lymphoma

Dactinomycin (Cosmegen) 10 December 1964 Ewing sarcoma, gestational
trophoblastic disease

Data provided by National Cancer Institute (https://www.cancer.gov/), accessed on 30 January 2023, updated:
20 December 2022, and U.S. FDA (https://www.fda.gov/). The drugs and drug combinations are not listed here.

Table 2. Chemo drugs approved post FDAMA with pediatric specific indications (1997–2022) [24].

Drugs Original Approval Pediatric
Approval

Indications for
Pediatric
Cancer

(Drugs approved post FDAMA with pediatric specific indications (1997–2022))

Azacitidine (Vidaza) 19 May 2004 20 May 2022 JMML
Calaspargase Pegol-mknl (Asparlas) same 20 December 2018 ALL

Everolimus 1 November 2010 29 August 2012 Giant Cell
Astrocytoma

Asparaginase Erwinia Chrysanthemi
(Erwinaze) same 18 November 2011 ALL

Clofarabine (Clolar) same 28 December 2004 ALL
Pegaspargase (Oncaspar) same 24 July 2006 ALL

Nelarabine (Arranon) same 28 October 2005 Non-Hodgkin
Lymphoma

Data provided by National Cancer Institute (https://www.cancer.gov/), updated: 20 December 2022, and U.S.
FDA (https://www.fda.gov/). JMML: juvenile myelomonocytic leukemia. The drugs and drug combinations are
not listed here.

https://www.cancer.gov/
https://www.fda.gov/
https://www.cancer.gov/
https://www.fda.gov/
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3. Severe Neuropathy and Myopathy Side Effects in Chemotherapy

In cancer treatment, chemotherapeutic agents are considered a double edge sword, as
it kills cancer cells and other healthy, fast-growing cells, without differentiation. As a matter
of fact, patients suffer from various non-negligible side effects such as hair loss, fatigue,
nausea, vomiting, and diarrhea. Currently, doxorubicin (DOX) and vincristine (VCR)
are two commonly used chemotherapeutic agents in pediatric cancer treatment [25,26].
However, the potential harm of neuropathy and myopathy has become a considerate
risk factor that limits the effect of DOX and VCR [27,28]. The pathway mechanism of
neuropathy and myopathy induced by DOX and VCR in illustrated in Figure 1. Thus, it is
necessary to discuss the opposing side and corresponding solutions for these two chemo
drugs, mainly when applied to pediatric cancer patients.
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DOX, an anthracycline drug to treat solid tumors in children, such as Wilm’s tumor,
was approved by the FDA in 1974 to become the first clinical liposomal encapsulated
anticancer drug [29]. DOX acts as an intercalation that inhibits topoisomerase II and further
obstructs DNA replication [30]. The recommended dosage (2 mg/mL) is the same in both
pediatric and adult patients. Symptoms of the side effects may include abnormality in
electrocardiography, rhythm disturbances, and even left ventricular hypertrophy that leads
to a reduction in ejection fraction [31].

DIC is a severe dose-dependent risk factor in cancer treatment [32]. It has been re-
ported that SNP (rs2229774) in retinoic acid receptor-γ (RARG) has a significant impact on
the increased occurrence of DIC. Further investigation found that a RARG agonist CD1530
showed a cardioprotective effect in an in vivo mouse model of DIC [33]. Other drug trans-
porter genomic variants in the SLC28A3 locus were also identified. Based on that, a single
dosage of 3 µmol/L desipramine per day before the administration of DOX is recommended
to prevent DIC [34]. Moreover, circular RNA (circRNA)-based therapy is a novel approach
for treating DIC [35]. The overexpression of insulin receptor encoded circRNA (Circ-INSR)
successfully prevented and reversed DIC in an in vivo mouse model [36]. Han. et al.
reported another promising therapeutic target for DIC, namely tumor-suppressive human
circular RNA CircITCH [37]. Other recent potential strategies that possibly reverse DIC
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include atg7-based autophagy activation [38], meteorin-like (METRNL) protein [39], sirtuin
1 (SIRT1) [40], berberine [41], ADAR2 [42], elabela (ELA) [43], phenylalanine-butyramide
(FBA) [44], gasdermin D [45], melatonin [46], levosimendan [47], paeonol [48], SNX17 [49],
irisin [50], isorhapontigenin [51], liensinine [52], etc.

VCR, known initially as Leurocristine, is the first-line chemotherapeutic medication
often administered in the combination chemotherapeutic treatment of pediatric hematologic
malignancies and solid tumors [53]. VCR acts as mitotic inhibitors by binding to the β-
tubulin subunit of αβ-tubulin heterodimers, thus functionally destabilizing microtubule
fibers, which ultimately leads to the termination of cancer cell division [54]. Previous studies
have shown a cumulative effect for its neurotoxicity and overdosage may cause very serious
or fatal outcomes [55,56]. Until 6 June 2022, it has been approved by FDA in the treatment
of pediatric ALL, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, Wilm’s
tumor, and other childhood kidney cancers. USP recommended dose of VCR injection
for pediatric patients is 1.5–2 mg/m2 compared to adults is 1.4 mg/m2. For neonate and
infant patients weighing 10 kg or less, the first dose should be 0.05 mg/kg, administered
once a week. The latest research showed in the treatment of ALL and Wilm’s tumors,
compared with older children, neonates or infants have similar clearance in vincristine.
Thus, doses less than 0.05 mg/kg should not be applied in neonate and infant patients due
to inappropriate suboptimal VCR exposures [57].

The common side effect encountered with VCR use is VIPN [58]. Clinical patterns
of VIPN can be classified as sensory neuropathy (e.g., numbness and paresthesia), motor
neuropathy (e.g., extremity weakness and walking difficulties), and autonomic neuropathy
(e.g., constipation and urinary retention) [59]. VIPN can be assessed by the National
Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), the pediatric-
modified Total Neuropathy Scale (ped-m TNS), and the Total Neuropathy Score-Pediatric
version (TNS-PV) [28,60]. There are currently no effective strategies for reducing vincristine-
induced neurotoxicity. Also, whether VIPN exists chronically in the survivors remains
ambiguous [61]. Some studies showed that a significant proportion of patients receiving
VCR would undergo a certain extent VIPN [62,63]. In 2017, Tay et al. reported that ~16%
of pediatric ALL survivors suffer from VIPN [64]. Nevertheless, in 2020, an investigation
among 150 pediatric patients with ALL and Wilm’s tumors showed that significant side
effects of the vincristine regimen are mostly neurotoxic, which is at a mild to moderate
level [65]. In recent years, more and more studies have revealed the deep connection
between genetic polymorphisms and VIPN [66–68]. The CEP72 genetic variant is an
optimistic VIPN signature marker since the CEP72 gene encodes centrosome proteins that
participate in the development of microtubules. Patients that carry CEP72 TT genotype take
potentially higher risk and severity of VIPN than CC or CT genotype patients [69]. Besides,
the enzyme CYP3A5 contributes to hepatic clearance of VCR, which means CYP3A5 genetic
polymorphisms, and its allelic variants are assumed to be associated with VCR neurotoxicity
in different human populations. CYP3A5 genotyping analysis results showed over 70% of
African Americans had been found to have one or more CYP3A5*1 alleles (such as CYP3A5
expresser), which is about five times higher compared to Caucasians [70]. Moreover, VCR
is transported by some members of ATP-binding cassette (ABC) transporter superfamily
such as ABCB1, ABCC1, ABCC2, and ABCB4 [71]. Lopez-Lopez et al. reported that ABCC1
is the critical mediator acts transporting VCR into the blood, while ABCB1 and ABCC2 are
indispensable in the biliary excretion of VCR. The genotypes rs3740066 GG and rs12826
GG of ABCC2 were identified with significant associations with increased VIPN, which
suggested that ABCC2 polymorphism could be used as a potential biomarker for VIPN in
screening and diagnosis of pediatric ALL [72].

Recently, numerous updates have been related to the strategy to overcome VIPN.
Zhou et al. reported levo-corydalmine ameliorates VIPN in mice by inhibiting Cx43
expression and NFκB-dependent CXCL1/CXCR2 signalling pathway [73,74]. Also, both
VIPN and tumor growth were alleviated by the inhibition of histone deacetylase 6 (HDAC6)
in mice. Other prospective targets that possibly prevent VIPN include mitoquinone [75],
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puerarin [76], nerve growth factor (NGF) monoclonal antibody DS002 [77], minocycline [78],
bergapten [79], etc.

4. MDR: The Challenge in Pediatric Cancer Chemotherapy

Cancer cells can develop resistance to one chemotherapeutic drug, as well as other
chemotherapeutic drugs that may have different chemical properties and mechanisms of
action, which is called multi-drug resistance (MDR) [80]. MDR can occur in both adult
and pediatric cancer chemotherapy. Although the mechanisms of MDR have been studied
for a few decades, MDR is a very limiting factor to the success of cancer chemotherapies.
MDR exists not only in chemotherapy and radiation therapy, but also in newly developed
therapies such as targeted therapy and immunotherapy [81,82]. Drug resistance can be
divided into intrinsic resistance or extrinsic resistance based on the cause of its occurrence.
Cancer cells may have inherent drug resistance before receiving chemotherapy. However,
various adaptive responses of cancer cells during the treatment cause extrinsic or acquired
drug resistance of cancer cells. Several MDR mechanisms have been discovered, yet they
are not yet fully understood. As shown in Figure 2, the factors of MDR include increased
drug inactivation, reduction of influx and increased efflux of drugs, decreased activation
of prodrugs, epigenetic dysregulation, changes in cell surface markers, tumor microenvi-
ronment (TME), epithelial−mesenchymal transition (EMT), altered miRNA, disruption of
responses to DNA damage, inhibition of apoptotic pathways, tumor heterogeneity, and
cancer stem cells [80,83,84].
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5. MDR-Related Drug Transporters and Their Roles in Pediatric Cancers

Drug transporters are membrane proteins involved in the absorption, distribution,
and excretion of drugs. Two transporter superfamilies have been identified in humans:
the solute carrier (SLC) superfamily and the ABC superfamily [85]. ABC transporters
are generally involved with the efflux of drugs, and SLC transporters have been chiefly
described as influx transporters [86]. In addition to transporting therapeutic drugs across
membranes, these transporters also mediate the transport of endogenous compounds.
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There is considerable interest in transporters from both families, as they are known to
confer MDR to cancer cells.

5.1. SLC Family Transporters

SLC family transporters are a family that includes more than 300 membrane-bound
proteins involved in the influx and efflux of a wide array of substrates, such as ions,
metabolites, and drugs [87]. SLC transports substrates based on the electrochemical poten-
tial difference between the biological membrane or the ion gradient originally generated by
the primary active transporters. Genetic variants of SLC transporters and clinical outcomes
of methotrexate (MTX) have been studied in pediatric patients with ALL [88]. Although
SLC transporter families are essential in human health, related studies focusing on pediatric
cancer therapy are rare. We limited our discussion to ABC transporters.

5.2. ABC Transporters

The ABC transporter superfamily, one of the most prominent transporter families, is
responsible for MDR by mediating drug efflux, which subsequently leads to a low intra-
cellular concentration of antineoplastic agents in cancer cells and deteriorates therapeutic
outcome [89]. In addition, more than efflux pumps, other critical roles in cancer devel-
opment of this transporter superfamily have been revealed step by step [90–94]. So far,
7 subfamilies (ABC-A to ABC-G) and at least 48 additional subfamily members have been
found and characterized depending on their structural differences and similarities [95,96].
Among these subfamily members, three members have been demonstrated that are
closely related to MDR in chemotherapy, including P-glycoprotein (P-gp/ABCB1/MDR1),
multidrug resistance protein 1 (MRP1/ABCC1), and breast cancer resistance protein
(BCRP/ABCG2) [97,98].

5.2.1. MDR1

The ABCB subfamily involves four full transporters (ABCB1/4/5/11) and 7 half trans-
porters (ABCB2/3/6/7/8/9/10) that can transport a vast variety of molecules, including
peptides, drugs, and ions [99]. Half transporters include two polypeptides, each having a
transmembrane binding domain (TMD) and (nucleotide-binding domains) NBD to form a
homo- or hetero-dimer. Full transporters are characterized as all four domains reside on a
single polypeptide [97].

P-gp (also named ABCB1 or MDR1) is the first discovered and well-studied ABCB
subfamily transporter that mediates MDR in cancer cells [100]. It is most expressed in the
blood−brain barrier, liver, placenta, gallbladder, and endocrine tissues. In 2020, Nosol et al.
revealed the protein structure of P-gp and found that inhibitors are bound in pairs and
interact with structural features to block the function of P-gp [101]. As P-gp is the substrate
of a broad range of antineoplastic agents, overexpressed P-gp has been demonstrated
to lead to the development of drug resistance, including chemotherapeutic agents Vinca
alkaloids (vinblastine and vincristine), Taxanes (paclitaxel and docetaxel), Anthracyclines
(doxorubicin, daunorubicin, and epirubicin), and imatinib mesylate [102,103]. Meanwhile,
a high-level expression of P-gp that causes cancer drug resistance has also been found in
some tyrosine kinase inhibitors (Imatinib [104], GSK1070916 [105], and WYE354 [106]).

Altered expression levels of MDR1 have been detected in various tumors, such as
neuroblastoma, rhabdomyosarcoma, and Wilm’s tumor. Neuroblastoma is the most com-
mon pediatric solid tumor, which accounts for 7–8% of childhood malignancies and 15%
of all pediatric cancer deaths [107]. A study showed that the mRNA expression of MDR1
was increased in neuroblastoma patients with previous chemotherapy [108]. In addition,
Qiu et al. [109] found that MDR1 hypermethylation expression can be associated with
the pathogenesis and progression of neuroblastoma. MDR1 expression was observed to
increase after chemotherapy in rhabdomyosarcoma and Wilm’s tumor [110]. These findings
may be helpful to understand the role of MDR1 in pediatric malignancies regarding drug
resistance and allow researchers to come up with strategies for therapeutic intervention.
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5.2.2. MRPs

Multidrug resistance proteins (MRPs) include 9 transporters from 13 members in the
ABCC subfamily due to their ability to mediate cancer MDR [111].

Although each of the MRPs have slight differences in structures and amino acid
compositions, the mechanism of transport driven by ATP hydrolysis is much the same.
Unlike P-gp, which extrudes mostly xenobiotics, MRPs account for the extruding of both
endo- and xenobiotics, thus showing its crucial role in regulating MDR processes in cancer
development [112]. The structure of MRP1 has shown a novel substrate recruitment
mechanism in that substrates are recruited straight from the cytoplasm, whereas P-gp
attaches substrates from the inner leaflet of the lipid bilayer [113]. MRPs are distributed in
the human body in various tissues, including the blood−brain barrier, brain, lung, kidney,
liver, etc. [111].

The expression of MRPs has been investigated in several pediatric malignant tumors
as they are a vital factor causing cytotoxic drug resistance and chemotherapy failure. Abnor-
mal MDR expressions have been observed in pediatric malignancies, such as ALL, neurob-
lastoma, rhabdomyosarcoma, Wilm’s tumor, and retinoblastoma [114]. After chemotherapy,
MRP1 expression has been observed to be upregulated in neuroblastoma, hepatoblastoma,
and rhabdomyosarcoma patients [110]. Increased expression of MRP2-6 and decreased
expression of MRP1 and MRP10 have been observed in ALL patients, which are asso-
ciated with high doses of three chemotherapies [115]. Henderson et al. found that the
inhibition of MPR1 is associated with reduced neuroblastoma development in transgenic
mice [116]. These studies indicate their role in the chemotherapeutic drug efflux of MPRs
and cancer prognosis.

5.2.3. BCRP

The human BCRP has 665 amino acid residues with a molecular weight of 72 kDa. It
is a half-transporter that is prominently expressed in various tissues, including, but not
limited to, the brain, placenta, testis, liver, breast, and BBB [117]. A high overexpression of
BCRP can be observed in different drug resistance cancer types, including in solid tumors
and hematopoietic malignancies [118,119]. Although the clinical significance of BCRP-
mediated drug resistance remains unclear, many studies have shown strong evidence
to support that modulating the expression of BCRP could enhance drug sensitivity in
chemotherapy [120,121].

BCRP was first identified in 1998, followed by expression studies to explore its poten-
tial role in chemoresistance [122]. The expression of the BCRP gene in childhood ALL has
been observed at a low expression level [123]. However, compared with a diagnosis when
the co-expression of BCRP and MDR1 was observed, a higher RNA level of BCRP was
expressed at the relapsed/refractory state in acute myeloid leukemia (AML) [124]. Correla-
tions between BCRP and MRPs have also been reported. The combined high expression of
BCRP and MRP4 is correlated with reduced antileukemia drug methotrexate accumulation.
Similarly, evaluated expression of the BCRP gene was found in primary neuroblastoma
mitoxantrone-resistant cells [125]. These results underscore the potential value of BCRP as
a predictor of chemoresistance drug efflux.

Essentially, MDR can arise because of altered targeted proteins or cell signaling path-
ways. Changes in cellular or non-cellular processes is also a significant factor of MDR.
However, most encountered MDRs are related to drug efflux, which is mainly caused
by ABC transporters. Once MDR transporters are overexpressed, the efflux of a chemo
drug can increase. For example, the overexpression of P-gp, MRP1, and BCRP decreases
the chemosensitivity of cancer cells by limiting exposure to anticancer drugs [126]. The
overexpression of P-gp in cancer cells is associated with increased drug resistance to DOX
and paclitaxel [127,128]. After anticancer agent treatment, the overexpression of P-gp
has been found in acute myeloid leukemia [129]. Decreased chemosensitivity and a high
expression of P-gp and BCRP were noticed in MDR patients with chronic lymphocytic
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leukemia, metastatic breast cancer, and multiple myeloma [130]. BCRP is regulated by
proteins such as TGF-β1 and VEGFR-2 [131,132].

6. Tackling Strategies Regarding Drug Transporters

MDR is one of the barrier mechanisms against chemotherapy and thus is considered a
key factor leading to the failure of chemotherapeutics. The overexpression of MDR1 that
can enhance the efflux of cytotoxic agents is one of the targets to improve the effect of
chemotherapeutics. One of the strategies is to reverse resistance mechanisms [133]. Several
P MDR1 inhibitors have been investigated and shown successful MDR reversal on a drug-
resistant prostate cancer cell line, without exhibiting a toxic potential [134]. Lei et al. [135]
observed intracellular accumulation of paclitaxel and decreased drug efflux activity in the
MDR1-knockout colorectal cancer cell line.

Furthermore, applying a nano-drug delivery system (NDDS) is a practical approach
to enhance chemotherapy validity due to the targeted co-delivery, reduced sides affected,
and long-time blood circulation achieved [136]. Curcumin has an antitumor activity and
reverses the tumor MDR effect by regulating the MDR1 protein [137]. Degradable poly
(lactic-co-glycolic acid) (PLGA) nanoparticles coloaded with curcumin and DOX could di-
rectly target cells or xenografted tumors and inhibit the growth of DOX-resistant esophageal
carcinoma with a high biosafety [138]. NDDS-containing compounds have been devel-
oped that can inhibit MDR1, including tariquidar (XR9576), tetrandrine, verapamil, and
cyclosporin A [139].

Therapy regimens can be different for treating children and adults as they have
different drug-resistance profiles. The triple combination of fludarabine, ara-C, and G-CSF
has been used in the treatment of childhood AML and caused an additive cell kill [140].
Tipifarnib can target the malignancies, such as leukemia, by activating RAS proteins (HRAS,
KRAS, and NRAS) [141].

7. Special Considerations of Resistance in Pediatric Cancer Treatment

Pediatric malignancies have significant differences in their treatment compared with
adult tumors, and thus require special considerations. Pan-cancer analyses have shown
that pediatric cancers have comparatively lower mutation frequencies compared with
adult cancers [142]. Epigenetic dysregulation, however, seems to be a particular factor in
many types of pediatric cancers [143–145]. These genetic and non-genetic changes suggest
therapeutic implications regarding chemotherapy.

Children with ALL have better prognoses and outcomes than adult patients with
ALL. The 5-year OS rate is 87% for children aged 0–15 years, as opposed to 44% for adults
aged 20–29 years [146]. A plethora of factors are responsible for the different outcomes,
including socio-economic factors, resistance, disease heterogeneity, host responses, ther-
apeutic treatment, etc. [147]. Resistance is one of the main factors leading to variables
among ALL patients of different ages. For example, the activation of P-gp has a higher
expression in adults [148]. In addition, the accumulated mutations in the p53 gene and
lower methotrexate polyglutamate may also contribute to the differences in the responses
of drug resistance mechanisms [148,149]. Genetic lesions of polycomb repressor complex
2 (PRC2) have been reported in pediatric T-cell ALL (T-ALL), which promotes mutations
of the IL7R/JAK/STAT pathway. Poor prednisone response and persistent MRD have
been connected to adult T-ALL patients with loss-of-function alterations of PRC2 [150].
Genescà et al. reported that a complex karyotype (≥3 cytogenetic alterations) in adult
T-ALL was associated with a minimal residual disease (MRD) level, but no correlation
regarding the prednisone response [151]. Protein tyrosine phosphatase nonreceptor type 2
(PTPN2) is a phosphatase suppressing a gene in T-cell ALL. Deletions of PTPN2 in pediatric
patients were associated with a higher glucocorticoid response and improved survival in
children, yet these trends were not found in adults [149]. Other studies have suggested that
a single subclone with additional mutations confers resistance to therapy, although half
of the leukemia patients had multiple subclonal mutations [152]. Because children are not
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simply small adults, the difference in outcomes across age categories should be considered
in diagnosis and therapy.

8. Clinical Trials and Recommendations for Risk Surveillance

With typically more aggressive protocols being used in children than in adults,
chemotherapy is the standard treatment in cancers such as ALL, AML, and Hodgkin
lymphoma [153]. The number of clinical trials related to chemotherapy-induced side effects
is on the rise.

Notably, VIPN is being studied in two clinical trials. A Phase 4 clinical trial (NCT02923388)
is testing Vitamin B12 and vitamin B6 in ALL patients treated with VCR.

The results from a study of 102 patients showed that vitamin B6 and B12 significantly
reduced the incidence, relative risk, and severity of VIPN. The amount needed to treat was
encouragingly low, and vitamin B6 and B12 were recommended as promising neuroprotec-
tive agents against VIPN [154]. A clinical trial (NCT02796365) is currently underway to
evaluate the effectiveness of exercise rehabilitation as a preventive measure to DIC. The
studies are summarized in Table 3.

Table 3. Clinical trials of DIC and VIPN.

Toxicity Study Title NCT
Identifier Phase Patient

Number Disease Status Treatment/Method

DIC *

Protective Role of
Vitamin D in Breast

Cancer Patients Treated
with Doxorubicin

NCT04166253 Phase 2 100 Breast cancer Completed Vitamin D

DIC

99mTc-rhAnnexin
V-128 Imaging and
Cardiotoxicity in

Patients with Early
Breast Cancer

NCT02677714 Phase 2 14 Breast cancer Terminated
Radiation:

99mTc-rhAnnexin
V-128

DIC

Prevention Using
Exercise Rehabilitation

to Offset Cardiac
Toxicities Induced Via

Chemotherapy
(HF-PROACTIVE)

NCT02796365 Not
Applicable 29

Breast cancer,
Gastric
cancer,

Leukemia

Completed Exercise

DIC

Evaluation of
Myocardial Injury

After Anthracycline
Chemotherapy in

Osteosarcoma Patients
Using CMR

NCT04461223 Not
Applicable 55

Osteosarcoma
Myocardial

Injury
Unknown

Contrast-enhanced
cardiac magnetic

resonance imaging,
observational Study

VIPN #

Neuroprotective Effect
of Vitamin B12 and
Vitamin B6 Against
Vincristine Induced

Peripheral Neuropathy

NCT02923388 Phase 4 88

Acute Lym-
phoblastic
Leukemia

(ALL)

Completed Vitamin B12 and
vitamin B6

VIPN Physiologic Measure
of VIPN NCT04786977 Not

Applicable 40

Chemotherapy-
induced

Peripheral
Neuropathy

Recruiting No Intervention,
observational Study

Data provided by Clinical Trials (https://clinicaltrials.gov). * DIC-doxorubicin-induced cardiotoxicity; # Vin-
cristine Induced Peripheral Neuropathy.

Significantly, four clinical trials are investigating or studying DIC. A Phase 2 clinical
trial (NCT04166253) is testing vitamin D in breast cancer patients treated with DOX. A
clinical trial (NCT02796365) is currently underway to evaluate the effectiveness of exercise
rehabilitation as a preventive measure for DIC. The studies are summarized in Table 3.

PanCare is Pan-European Network for care of pediatric cancer survivors. The risk for
significant and potentially life-threatening late effects can be identified by certain long-term
follow-up projects such as PanCareSurPass and PanCareFollowUp. Based on the reports

https://clinicaltrials.gov
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from 10 countries, ototoxicity following platinum-based chemotherapy has been evaluated
regarding the quality of evidence. The ototoxicity surveillance recommendations for pe-
diatric cancer survivors’ future studies should focus on the evaluation of otoprotectants
and the identification of optimal threshold doses to prevent ototoxicity [155]. In addition,
candidate genetic markers are useful for identifying childhood cancer patients at risk of
severe late effects, such as SLC22A2, which detects those at risk of platinum-induced hear-
ing loss [156]. Moreover, adequate knowledge of cancer history, subsequent treatment
exposure, and potential risks of late effects are needed to enhance survivors’ health and
self-management skills. Accessible and reliable information is essential to increase aware-
ness about late effects, which is necessary for providing personal recommendations for
surveillance and prevention [157].

9. Conclusions

Together with the significant advancements in target therapy and immunotherapy,
chemotherapy remains the primary treatment option for childhood cancer patients in most
low- and middle-income countries. Recognizing the absolute validity of chemo drugs
is crucial as they have shown to be highly effective for obtaining long-term survival in
childhood cancers. Until now, in total, 16 chemo drugs have been approved by the FDA for
pediatric chemotherapy. Unlike adult cancer patients, children diagnosed with cancer are
less tolerant of chemotherapy. The numerous adverse effects and occurrence of MDR have
become a significant obstacle in pediatric chemotherapy. It is crucial to alleviate severe side
effects such as VIPN and DIC. Meanwhile, a comprehensive understanding of MDR and its
reversal mechanism is essential. To improve follow-up care quality, the electronic docu-
ment summarizes the clinical history of childhood/adolescent cancer survivors, including
treatments received, and provides personalized follow-up and screening recommendations.
By overcoming the challenges of traditional chemotherapy, we will hopefully be able to
improve both the survival rate and overall quality of life of pediatric cancer patients.
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