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Simple Summary: Cancer initiation and progression has been studied in purely genetic terms for
decades. Implicit in this view is that all cells in a tissue are phenotypically identical until a single cell
acquires a set of mutations that will eventually lead to malignancy. This model does not fully account
for numerous clinical and epidemiological findings about cancer incidence and progression. Here,
we summarize recent mathematical and biological insights that demonstrate how cells in a tissue
can switch between dramatically different phenotypes independent of mutations. We explore how
these insights, combined with our detailed understanding of oncogenic mutations, may answer key
unexplained aspects of pancreatic ductal adenocarcinoma initiation. Importantly, such a combined
model allows for a more nuanced understanding of pre-malignancy, and points the way towards
early detection and intervention approaches in high-risk patients.

Abstract: While much of the research in oncogenesis and cancer therapy has focused on mutations in
key cancer driver genes, more recent work suggests a complementary non-genetic paradigm. This
paradigm focuses on how transcriptional and phenotypic heterogeneity, even in clonally derived
cells, can create sub-populations associated with oncogenesis, metastasis, and therapy resistance. We
discuss this complementary paradigm in the context of pancreatic ductal adenocarcinoma. A better
understanding of cellular transcriptional heterogeneity and its association with oncogenesis can lead
to more effective therapies that prevent tumor initiation and slow progression.

Keywords: cellular heterogeneity; transcriptional heterogeneity; regulatory networks; single cell
omics; therapy resistance

1. Introduction
1.1. Genetic Origins of Cancer

The accumulation of mutations in the cells of origin of a tumor is a key step in the
initiation and maintenance of oncogenesis [1,2]. This is certainly true of pancreatic ductal
adenocarcinoma (PDAC), where a great majority of PDAC tumors contain mutations in the
KRAS gene. Mouse models where KRASG12D is induced in the pancreas grow tumors that
mimic key clinical aspects of human PDAC tumor progression [3]. Intraductal papillary
mucinous neoplasms (IPMNs) and pancreatic intraepithelial neoplasms (PanINs), which
are common precursor lesions to PDAC in humans, harbor KRASG12D mutations in nearly
40–60% (IPMN) and 90% (PanIN) of cases [4,5]. While the cell-of-origin in PDAC is debated,
PDACs can be derived from both pancreatic acinar cells (which make up nearly 90% of the
pancreas) and ductal cells in mouse models [6].

1.2. Genetics Does Not Completely Explain Cancer Initiation

This purely genetic view of PDAC initiation implicitly assumes that every pancreatic
epithelial cell is equally likely to initiate PDAC until one of them acquires the requisite
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oncogenic mutations. The role of factors such as diet, smoking and family history in
increasing PDAC risk [7] are thought to ultimately change mutation rates in epithelial
cells. This is thought to occur either directly through germline mutations or indirectly via
tissue inflammation that causes increased epithelial cell division. This line of thinking
cannot easily explain certain clinical observations, such as the fact that pancreatic main-duct
IPMNs are more likely to lead to PDAC than branch-duct IPMNs [5], that PDAC arises
more often in the head of the pancreas than the tail [8], or that a single bout of pancreatitis
elevates the risk of PDAC for up to ten years after recovery [9]. These observations may be
understood via notions of phenotypic heterogeneity across clonally derived cells. Decades
of theoretical and experimental work have demonstrated that clonally derived cells exhibit
phenotypic heterogeneity and where the heredity of a cellular state can be encoded by gene
regulatory network dynamics [10]. In accordance, it has been shown that precursor cells are
more susceptible to specific driver mutations than differentiated cells, and such oncogenic
competence is correlated with the chromatin state of the developmental program [11].
Observations of pancreatic epithelial cells during injury and homeostasis, for instance,
suggest that different sub-populations of epithelial cells divide during our lifetime [8].
These observations and theories suggest that thinking about cancer initiation through the
lens of cellular states (quantified via transcriptomics or other methods) may provide a
fruitful unification of the purely genetic and the purely systems-biology views of cancer,
and lead to newer therapeutic avenues.

1.3. Stochastic Gene Expression and Regulatory Networks Result in Transcriptional Heterogeneity
within a Cell Type

A regulatory network refers to the set of interactions, transcriptional or otherwise, be-
tween all the genes in a cell. Regulatory networks influence the transcriptional state of a cell,
which can be defined as the global gene expression profile of the cell. Early mathematical
models [12,13] of gene regulation suggested that each cell type in a multicellular organism
can be thought of as a stable transcriptional state. Stability implies that a cell is impervious
to many perturbations, i.e., minor changes in its microenvironment, or stochastic changes
within a cell, do not dramatically alter its transcriptomic identity or phenotype. The ob-
served statistical clustering of cells by type in single-cell RNA-seq atlases from multiple
species support this notion, though statistically distinguishing between different states of a
given cell type on the one hand, and different cell types on the other, can be a challenge in
such datasets [14]. A cell of a given type is “attracted” towards one of its stable states when
it is perturbed by either minor changes in its microenvironment [15] or the fluctuating
expression of genes [16] within the cell. Accordingly, at a given point in time, all cells of a
given type exhibit transcriptional heterogeneity. Some cell types are more “plastic” than
others, i.e., they are able to switch between dramatically different transcriptional states,
often under the influence of external signals. The amount of transcriptomic (and ultimately,
phenotypic) variation across cells of a given type is a trait under the control of natural
selection, with low variation (and robustness to changes in external stimuli) being desirable
in some contexts, such as embryonic development [17], and high variation in others, such
as immune responses [18]. This pervasive transcriptional heterogeneity has implications
not only in development and homeostasis, but also in cancer.

1.4. Transcriptional Heterogeneity in Cancer

Cancer is characterized by major transcriptional/epigenetic changes not only in cells of
origin but also in other cell types that jointly constitute the tumor microenvironment (TME).
The cancer phenotype is ultimately a result of dynamically changing interactions between
various cell types in dynamically varying states. Much of the research in oncogenesis,
metastasis, drug resistance and relapse has focused on protein-coding mutations. However,
a growing body of literature clearly points to an alternate mechanism centered around
transcriptional heterogeneity and cellular plasticity that sets the stage for oncogenesis
and plays critical roles in tumor progression, metastasis, and therapeutic response. As
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an example, an early study of normal human mammary epithelial cell culture showed
that these cells interconverted between two transcriptionally and phenotypically different
states marked by the expression of CD44. CD44hi cells were more stem-like, and addi-
tionally, oncogenically transformed CD44hi cells formed tumors in mice more rapidly
than transformed CD44low cells [19]. The presence of such populations is dependent on
cell culture conditions [20]. Sorted CD44low cell populations diversified over time and
switched to a CD44hi state. Furthermore, mammary epithelial cells that detach from the
matrix in 3D cultures exhibit gene expression profiles similar to those in pre-malignant
breast lesions [21]. As yet another example, using a mouse model of tumor progression
from pre-neoplastic hyperplasia to lung adenocarcinoma, Marjanovic et al. identified a
high plasticity cell state (HPCS) in pre-malignant TIGIT-positive lung lesions exhibiting
high growth and differentiation potential towards a malignant state [22]. HPCS in human
lung adenocarcinoma tumors is associated with poor survival and greater resistance to
chemotherapy in preclinical studies. Non-genetic variation in expression also plays a key
role in therapy resistance, with vemurafenib resistance in melanoma being a prominent
example. A fraction of cells in clonally derived vemurafenib-sensitive cell lines can stochas-
tically express AXL and resist vemurafenib treatment [23] without acquiring a mutation.
Thus, non-genetic heterogeneity can prime epithelial cells for oncogenic transformation
and some cancer cells to escape therapy. It is likely that this phenotype can be fixed in a
cell population through epigenetic or genetic alterations.

2. Transcriptional Heterogeneity and Pancreatic Ductal Adenocarcinoma Initiation
2.1. Acinar Heterogeneity in Pancreas Homeostasis

An early single-cell RNA-seq study of 108 pancreatic acinar cells from mice [24]
detected a sub-population marked by a high expression of STMN1 (a protein that regu-
lates microtubule assembly [25]) that constituted 1% of acinar cells but expanded to 30%
during response to pancreatic injury. Another single-cell RNA-seq study of the human
pancreas [26] found an acinar sub-population expressing the REG3A protein, a secreted
bacterial C-type lectin, which is up-regulated in pancreatitis patients [27] and is involved
in the transdifferentiation of acinar cells to ductal cells. A more detailed single-nucleus
RNA-seq study of the human pancreas [28] confirmed the presence of REG3A-expressing
acinar cells in the homeostatic pancreas.

The presence of cellular heterogeneity among acinar cells, and specifically, the presence
of REG3A-expressing cells in the homeostatic pancreas, raises the question of whether
there exists an acinar sub-population that has higher oncogenic potential. Our group
developed a set of statistical tests to detect such “edge cells” [29] in an extensive re-analysis
of all available pancreas and PDAC single-cell RNA-seq data [30]. We found that acinar
cells, but not ductal cells, from histologically normal pancreas tissues possessed an edge
sub-population. Edge cells were statistically farther (in a transcriptomic space) from the
average acinar cell, while transcriptionally “drifting” towards a PDAC state. We found
that these edge cells up-regulated STMN1 in addition to the transcription factors (TFs)
SOX9 and PTF1A, which mark multipotent progenitors in embryonic pancreatic tissue [31].
Remarkably, we also found edge cells in varying proportions across different healthy
human pancreases from single-cell RNA-seq datasets, with a strong positive correlation
between the fraction of edge-like cells and the donor’s age. Crucially, through somatic
variant calling, we ruled out the possibility that edge-like cells were clonally derived. A
later study [32] found that inducing KRASG12D expression in mouse pancreatic acinar cells
exhibiting a high level of telomerase (Terthi acinar cells) generated larger numbers of acinar
progeny than Tertlow acinar cells, implying that Terthi cells better fit in an oncogenic context.
However, as single-cell RNA-seq was not carried out in this study, it is unclear if Terthi cells
are identical to the edge sub-population we detected.
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2.2. Alternative Non-Genetic Paradigm to Oncogenesis

Our finding that the fraction of edge-like acinar cells in the pancreas increases with
age while not being descended from a single ancestor cell may present an alternative to
the prevalent paradigm of oncogenesis. Transcriptional changes induced by oncogenic
mutations are believed to be a key step in cancer initiation. In tissues such as the skin,
colon, and esophagus epithelium [33–35] stem-cell clones (i.e., stem cells and their progeny)
accumulate mutations over time, with some mutations being oncogenic in nature. However,
the existence of progenitor or stem cells within the adult pancreas is controversial. Current
lineage-tracing studies [24,32] show acinar cells to be non-cycling during homeostasis until
injury induction. Recovery from injury involves acinar cell plasticity, where there is a
large but transient increase in the fraction of cycling acinar cells, eventually leading to a
homeostatic state devoid of cycling acinar cells. This raises the question of the sufficiency
of oncogenic mutations for PDAC initiation. An early mouse model showed that inducing
KRASG12V expression in adult acinar cells did not lead to pre-malignant lesions in the
pancreas [36], while KRASG12D expression in acinar cells resulted in PanIN formation
in adult mice [37]. Remarkably, a more recent study found that when KrasG12D was
expressed in a small fraction of acinar cells in mice, they were eliminated by their wild-
type counterparts [38]. This is believed to be due to cell competition [39], a phenomenon
seen in development where “fitter” epithelial cells can induce apoptosis in their less-fit
neighbors. Thus, the presence of a KRASG12D mutation in a cell does not necessarily lead
to oncogenic transformation. This is because the survival of a KRASG12D cell requires it
to be fitter than its wild-type counterparts, which is in turn likely to depend on the tissue
microenvironment. Tissue inflammation during pancreatitis resolution cooperates with
KRASG12D-induced transcriptional changes, resulting in PDAC [40]. The inflammation
likely provides the microenvironment in which KRASG12D cells outcompete KRASWT cells
and proceed towards malignancy. Our edge-cell signature was up-regulated across all bulk
RNA-seq samples of whole pancreatic extracts in mice recovering from pancreatitis induced
by caerulein administration, as well as in single-nucleus RNA-seq data of acinar cells in
chronic pancreatitis patients [30]. The magnitude of up-regulation was more pronounced in
mice bearing KRASG12D mutations than in KRASWT mice. This link between inflammation
and cancer initiation is in line with chronic pancreatitis being a risk factor for PDAC and
may be interpreted within the paradigm of a tumor as a wound that does not heal [41].

2.3. Aging Microenvironment, Edge Cells, Increased Oncogenesis

In human pancreatic islet cells, aging is accompanied by phenotype drift and overall
increase in inter-cell transcriptomic variation [42] as the accumulated mutations match
signatures of aging. Similar observations have been made across organs in the Tabula Muris
Senis cohort [43] of single-cell RNA-seq data across organs over the mouse lifespan. Cells
from older mice are easier to oncogenically transform [44], as the deteriorating microen-
vironment’s aging can promote oncogenesis either via mechanisms related to senescence
or stiffening of the extracellular matrix [45,46]. Our analysis finds an accumulation of
edge-like cells with ageing but does not provide any obvious explanation. Future work
will have to tease apart the contribution of microenvironmental changes with age and other
cell-autonomous factors, such as changes in mitochondrial function, DNA methylation and
other epigenetic marks underlying this trend.

2.4. Tissue-Specific Oncogenic Effects and Links between KRASG12D Mutation and Edge State

The question of why the KRASG12D mutation is a common driver of PDAC is unclear.
KRASG12D mutations are common only in lung, pancreatic and colorectal adenocarcinomas
and are thus not as much of a pan-cancer driver when compared to TP53 loss. As a
rule, most driver mutations tend to be tissue-specific [47] and the reasons for this are not
established. Our analysis reveals an insight into why KRASG12D in particular may drive
PDAC. We discovered [30] that transcriptomic differences between edge and non-edge
acinar cells in mice were highly correlated to transcriptomic differences between acinar
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cells from KRASG12D and KRASWT mice (Figure 1C). This suggests that the edge state is
transcriptionally very similar to the KRASG12D-driven state, which may mean that the
edge state is susceptible to oncogenic transformation in a similar manner to KRASG12D

induction. It is also possible that the KRASG12D mutation may either increase the rate of
transition from the non-edge to the edge state or increase the stability of the edge state.
Further experiments and analyses are required to determine whether KRASG12D is the only
mutation that has this effect, or whether others that commonly occur in pre-malignant
pancreatic lesions, such as GNAS [4], have similar effects.
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Figure 1. (A) Schematic of the human pancreas, with the exocrine compartment consisting of acinar
cells (blue) and ductal cells (red). (B) Acinar cells can switch to an edge state (brown) characterized
by low expression of acinar identity genes. The fraction of edge cells increases with age, which may
be due to an increased transition rate to the edge state or an increase in the stability of the edge
state, or a combination thereof. Cells in the edge state are predisposed to malignant transformation
with the acquisition of a KRASG12D mutation, leading to malignancy, with malignant cells existing in
different phenotypic states (purple or brown) (C) Edge cells have high Ras activity, and the edge-like
state phenocopies (at a transcriptomic level) the KRASG12D mutation in mice. (D) Acinar cells likely
exist in an edge state in patients that are at a high risk for PDAC. Therapeutic interventions to block
transitions to an edge state, or promote transitions away from the edge state, may lower PDAC risk.

As mentioned above, traits that lead to high gene expression heterogeneity can un-
dergo natural selection if it confers survival benefits to an organism. Given the relationships
between the edge state, pancreatitis resolution, and PDAC, it is worth speculating on
whether the edge state represents a mal-adaptation or an adaptation. On the one hand,
aging is associated with an increase in transcriptional heterogeneity [42,43], suggesting
increasing dysregulation over this process. This is consistent with the notion that natural
selection is less effective in purging mutations, whose effect is apparent late in life [48].
On the other hand, if cells in the edge state are primed to respond to pancreatic injury,
then selection might maintain the ability of acinar cells to switch to an edge state to allow
for quicker injury resolution. When the pancreas is challenged with injury after recover-
ing from an earlier one, the second injury causes far less damage [49]. Interestingly, this
study found that this priming for injury response is coupled with a higher susceptibility to
KRAS-driven oncogenesis than cells from an uninjured pancreas. A similar observation has
been made in mouse skin, where successive injuries are responded to much more quickly
than the first injury [50], although the oncogenic potential of these epithelial cells was
not evaluated.
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3. Perspective and Future Directions

The transcriptional state of a cell is a consequence of regulatory interactions be-
tween genes as well as cell-intrinsic and cell-extrinsic stochastic fluctuations in gene
expression [51,52], both of which can be influenced by genetics as well as epigenetics.
Given that the acinar edge cells, to the best of our knowledge, are not induced by specific
mutations, the heritability of the edge state needs to be better investigated, i.e., if an edge
acinar cell were to divide, would its daughter cells also stay in an edge state? Over how
many cell divisions does the edge state persist? If the edge state is a non-dividing state,
how long does an edge state persist before transitioning to a non-edge state? Epigenetic
memory can be maintained over tens of cell divisions [53–55]. Is that sufficient to affect a
fate decision? Carefully designed lineage tracing experiments combined with single-cell
multi-omic profiling are needed to definitively answer these questions.

Early detection is a challenge in PDAC treatment, and indeed in most cancers. Early
detection is particularly challenging in the case of PDAC given the relatively low incidence
rate of the disease [9]. Given that 90% of PDAC cases are sporadic and do not involve
familial history or inherited genetic disease [56], defining a high-risk cohort for screening
is a challenge (Figure 1D). However, given that the edge state potentially sits at the cross-
roads of pancreatitis and PDAC, the genes up-regulated within the edge state may serve
as potential biomarkers of PDAC. The ability of computational methods to impute gene
expression within the pancreas and other tissues based on RNA-seq and epigenetic data
from blood withdrawn [57] might provide non-invasively accessible biomarkers related to
the edge state.

The development of an early detection test is likely to lead to a decrease in PDAC-
related mortality but does not immediately suggest a therapy. Aside from the development
of an early detection test, ongoing works point to possible early interventions amongst
patients with a high risk of PDAC. In the case of colorectal cancer, conditions such as
ulcerative colitis and Crohn’s disease are known to increase cancer risk [58,59]. Patients
who managed these conditions through the administration of anti-TNF antibodies had
a lower risk of colorectal cancer [60,61]. This perhaps suggests a general principle that
reversing the state of inflammation within a tissue may reduce cancer risk, which may
also partly explain the lower risk of lung, colorectal and bladder cancer in smokers who
have reduced cigarette usage [62–64]. The prioritization of drugs that can effectively
revert a pathological transcriptomic state has led to repurposed drugs for cancer and other
diseases [65]. Drugs that reverse the edge signature may thus represent candidates that
lower PDAC risk in high-risk cohorts. Future research on effective ways to reverse cellular
states presents a promising complementary avenue to combat cancer-related mortality.
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