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Simple Summary: Ovarian cancer is the most lethal gynecological cancer, despite advances in patient
stratification and treatment. Despite initial response to first-line treatment, most patients suffer a
relapse and die from treatment-resistant disease. We identified three predictive protein biomarkers
for chemotherapy response using primary ovarian cancer samples and showed their concurrent
regulation in a chemoresistant cell line. Those markers will potentially help in understanding the
mechanisms of chemotherapy resistance.

Abstract: Eighty percent of ovarian cancer patients initially respond to chemotherapy, but the
majority eventually experience a relapse and die from the disease with acquired chemoresistance.
In addition, 20% of patients do not respond to treatment at all, as their disease is intrinsically
chemotherapy resistant. Data-independent acquisition nano-flow liquid chromatography–mass
spectrometry (DIA LC-MS) identified the three protein markers: gelsolin (GSN), calmodulin (CALM1),
and thioredoxin (TXN), to be elevated in high-grade serous ovarian cancer (HGSOC) tissues from
patients that responded to chemotherapy compared to those who did not; the differential expression
of the three protein markers was confirmed by immunohistochemistry. Analysis of the online
GENT2 database showed that mRNA levels of GSN, CALM1, and TXN were decreased in HGSOC
compared to fallopian tube epithelium. Elevated levels of GSN and TXN mRNA expression correlated
with increased overall and progression-free survival, respectively, in a Kaplan–Meier analysis of
a large online repository of HGSOC patient data. Importantly, differential expression of the three
protein markers was further confirmed when comparing parental OVCAR-5 cells to carboplatin-
resistant OVCAR-5 cells using DIA LC-MS analysis. Our findings suggest that GSN, CALM1,
and TXN may be useful biomarkers for predicting chemotherapy response and understanding the
mechanisms of chemotherapy resistance. Proteomic data are available via ProteomeXchange with
identifier PXD033785.
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1. Introduction

Ovarian cancer is the eighth most common cancer in women and a major cause for
cancer-related death with more than 313,000 cases diagnosed in 2020 worldwide [1]. It was
estimated that there would be 1815 new ovarian cancer cases and 1016 deaths from this
disease in 2022 in Australia [2]. There are two main reasons for this poor outcome. Firstly,
there is currently no effective screening strategy in place to systematically detect ovarian
cancer at an early stage when the tumor is still confined to the ovary. In more than 70%
of cases, patients are diagnosed when the cancer has already advanced to stage III or IV.
Secondly, although 80% of patients initially respond to first line carboplatin + paclitaxel
chemotherapy, most will relapse. In addition, 20–40% of patients do not respond at all to
treatment, meaning their cancer has some form of innate resistance.

During the last 40 years, only minimal progress has been made and ovarian cancer
remains the most lethal gynecological cancer. A reliable biomarker which could be used
for population-wide screening to detect early disease does not exist. In addition, as the
symptoms for ovarian cancer, such as persistent abdominal bloating, excessive fatigue
or lethargy, or the need to urinate often or urgently, are subtle, the disease is therefore
often described as silent [3]. The current diagnosis of ovarian cancer involves physical
examination, a blood test for carbohydrate antigen 125 (CA 125) levels, and imaging such
as a pelvic ultrasound or CT scan. However, studies have shown the low sensitivity and
specificity of serum CA125 assay in detecting ovarian cases in initial stages, reported to be
high in only 23 to 50% of stage I ovarian cancer cases [4].

By the time ovarian cancer is diagnosed, the cancer has often spread to other organs
and over 70% of patients present with advanced metastatic disease and require a combi-
nation of tumor debulking surgery and chemotherapy. Although considerable progress
has been made in understanding the genetic diversity of ovarian cancer that correlates
with patient outcome, this has not translated into personalized management [5]. Standard
treatment regimens for ovarian cancer usually involve a combination of carboplatin and pa-
clitaxel [6]. Following treatment, 80% of women initially respond to chemotherapy, but the
majority eventually relapse with acquired carboplatin- and paclitaxel-resistant disease [7,8],
and are treated with other chemotherapeutic drugs such as liposomal doxorubicin or
gemcitabine [9–11]. Furthermore, 20% of patients who receive systemic treatment do not
respond at all, meaning that their cancer has some form of innate resistance. Preclinical
investigations imply that in vitro drug response assays, which test patient tumor tissues
for chemosensitivity/chemoresistance to specific compounds, could improve treatment
efficacy [12]. However, due to the practical difficulties associated with collecting, main-
taining, and treating primary cell cultures, in vitro drug response assays are not yet part of
clinical practice.

How cancer cells evade or evolve to escape chemotherapy is yet to be fully under-
stood. Some mechanisms include upregulation of ion pumps/channels, drug influx and
efflux pathways, epithelial–mesenchymal transition, epigenetic mechanisms, and DNA
damage-repair machinery [13,14]. Guo et al. summarized the molecular mechanism of
platinum resistance in ovarian cancer induced by miRNA, long non-coding RNA, circular
RNA, and epithelial–mesenchymal transition [15]. Moreover, various biomarkers of plat-
inum resistance in ovarian cancer have been reported including BRCA1/2, p53, CA125,
DNA methylation, and miRNAs [16]. However, none of these markers have been iden-
tified in our proteomic study indicating that they are of low abundance. Moreover, the
sensitivity and specificity of these biomarkers needs to be validated prior to clinical use.
Additionally, further studies are required to identify the specific molecular markers for
chemotherapy response in high-grade serous ovarian cancer (HGSOC) patients. Recently
we have generated carboplatin-resistant cancer cell lines (OVCAR-5 and CaOV3). Label-
free proteomics analysis on these two pairs of parental and carboplatin-resistant cell lines
showed a shared dysregulation of cytokine and type 1 interferon signaling, potentially
revealing a common molecular feature of chemoresistance [17]. Here, we aimed to identify
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protein markers of chemotherapy response in HGSOC patients who did not respond to
platinum-based chemotherapy.

The International Federation of Obstetrics and Gynecology (FIGO) stage IIIC serous
ovarian tissues that had been formalin-fixed and paraffin-embedded (FFPE) were retrieved
from pathology archives and used in this study. As the tissues were collected prior to
chemotherapy, the differentially expressed proteins could indicate innate chemoresistance.
Using data-independent acquisition (DIA) nano-flow liquid chromatography mass spec-
trometry (LC-MS) on FFPE tissue samples, the expression of three proteins—gelsolin (GSN),
calmodulin (CALM1), and thioredoxin (TXN) —was found to be significantly increased
in patients who responded to chemotherapy versus those who did not. The expression of
these proteins was further compared in a larger sample cohort by immunohistochemistry
(IHC). Analysis of the online GENT2 database found that GSN, CALM1, and TXN mRNA
expression was reduced in HGSOC compared to fallopian tube (FT) epithelium, the site
of origin of the majority of HGSOC [18]. Furthermore, Kaplan–Meier analysis revealed
elevated levels of GSN and TXN mRNA expression correlated with increased overall sur-
vival (OS) and progression-free survival (PFS), respectively. The relative expression of the
proteins was further confirmed by DIA LC–MS in the ovarian cancer cell line OVCAR-5,
where parental cells were compared to cells that had been treated with carboplatin to
develop acquired chemoresistance [17]. The differential expression of GSN, CALM1, and
TXN in the parental OVCAR-5 cells compared to carboplatin-resistant (CBPR) OVCAR-5
cells showed similar expression, as observed in the patient cohort. These results indicate
that GSN, CALM1, and TXN may be useful biomarkers to assess HGSOC progression and
chemotherapy response, warranting further investigations.

2. Materials and Methods
2.1. Sample Collection and TISSUE Specimens

FIGO stage IIIC HGSOC tissues (n = 12) were obtained from patients undergoing
surgery at the Department of Gynecological Oncology (Royal Adelaide Hospital, Ade-
laide, Australia) with approval by the hospital ethics committee and written informed
consent (protocol number: 140101). Tissues were processed by the clinical pathology labo-
ratory according to their standard procedure, including FFPE. Patients were classified as
platinum-sensitive if they did not progress within 6 months of completing the chemother-
apy treatment. Patients were classified as non-response/incomplete response if they did not
respond to chemotherapy treatment or relapsed within 6 months. The clinicopathological
patient information is provided in Table 1.

Table 1. Clinicopathological information for the HGSOC patients used in the study.

Patient First Treatment Grade Category
Age at

Diagnosis
(Years)

1 Carboplatin/paclitaxel 3 Complete response 63
2 Carboplatin 3 Complete response 69
3 Carboplatin/paclitaxel 3 Complete response 61
4 Carboplatin/paclitaxel 3 Complete response 64
5 Carboplatin 3 Complete response 60
6 Carboplatin/paclitaxel 3 Complete response 59
7 Carboplatin/paclitaxel 3 Non-response/incomplete response 78
8 Carboplatin/paclitaxel 3 Non-response/incomplete response 66
9 Carboplatin/paclitaxel 3 Non-response/incomplete response 61
10 Carboplatin/paclitaxel 3 Non-response/incomplete response 44
11 Carboplatin/paclitaxel 3 Non-response/incomplete response 75
12 Carboplatin 3 Non-response/incomplete response 78

Two tissue microarrays (TMAs) were constructed containing 31 patients, including 21
who responded to chemotherapy, and 8 who had not. A further 2 patients had unknown
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chemotherapy response. Detailed patient information is listed in Table S1 and a the
construction of the TMA has been described by us previously [19].

2.2. Laser Microdissection and Protein Extraction of the Ovarian Cancer Tissues

FFPE tissue blocks (n = 6 chemo-responsive and n = 6 non-responsive tissues) were
water-bath-mounted onto PEN membrane slides (MicroDissect, Herborn, Germany) at
4 µm, as previously described [20,21]. Briefly, the slides were deparaffinized by heating
at 60 ◦C for 1 h, followed by rehydration using xylene (Chem-Supply, Gillman, Australia)
for 90 s and then rinsed for 60 s with 100% ethanol (Merck, Bayswater, Australia). Slides
were hematoxylin-stained and scanned using a NanoZoomer (Hamamatsu, Japan) at 43 ×
resolution (0.23 µm/pixel), and the tissues were annotated by an experienced pathologist
using NPD.view 2.6.13 (Hamamatsu, Beijing, China). Approximately 1 mm2 per region
of each tumor tissue was excised by laser capture microdissection (LCM) using a Leica
microscope (Leica Microsystems, Wetzlar, Germany) into individual centrifuge tubes.
Excised tissues were lysed using 2% SDS (GE Healthcare, Parramata, Australia) in 10 mM
citric acid, pH 6 (citric acid monohydrate, Sigma-Aldrich, Japan), followed by antigen
retrieval at 98 ◦C for 90 min. The total protein concentration of each sample was estimated
using a NanoDrop 2000 (Thermo-Fisher Scientific, Waltham, MA, USA) at 280 nm.

2.3. Generation of Carboplatin-Resistant (CBPR) OVCAR-5 Cells

OVCAR-5, the human ovarian cancer cell line, was obtained from Dr. Thomas Hamil-
ton (Fox Chase Cancer Centre, Philadelphia, PA) and cultured under similar conditions to
those previously described by us [17,22]. Briefly, the carboplatin-resistant (CBPR) OVCAR-5
cells were obtained by treating parental OVCAR-5 cells with 25 µM of carboplatin for 24 h.
(Hospira Australia Pty Ltd., Mulgrave, Australia) followed by 72 h of recovery phase. This
step was repeated for 8 cycles, followed by the development phase for 8–10 weeks. The
25 µM of carboplatin was chosen because of the half maximal inhibitory concentration
(IC50) of carboplatin, which was calculated using 3 independent experiments performed
in triplicate. The cell survival was calculated using MTT assay (Sigma-Aldrich, Castle
Hill, Australia), as per the manufacturer’s recommendation [22].Protein extraction was
performed using 2% (w/v) SDS lysis buffer with protease inhibitor cocktail (Roche, Basel,
Switzerland). The DNA was sheared on ice using Bioruptor (Diagenode, Liege, Belgium)
for 6 × 30 s cycles with one min interval in between each cycle. Protein concentration
was quantified using an EZQTM protein assay (Thermo Fisher Scientific, USA), as per the
manufacturer’s protocol.

2.4. Protein Digestion

Protein extracts from Sections 2.2 and 2.3 were digested using filter-aided sample
preparation (FASP) protocol with minor modifications [21,23]. Briefly, samples were dena-
tured by adding 200 µL of 7M urea in 100 mM ammonium bicarbonate (Merck, Bayswater,
Australia), followed by reduction at 20 ◦C for 1 h with dithiothreitol (Sigma-Aldrich, Castle
Hill, Australia) to a final concentration of 50 mM. To remove the traces of glycerin, Sartorius
Vivacon 500 ultrafiltration spin columns (10,000 MWCO HY) were pre-rinsed with 100 mM
of ammonium bicarbonate. Samples were then loaded into the Vivacon spin columns and
centrifuged for 10 min at 14,000 g. Thereafter, alkylation was performed by adding 100 µL
of 55 mM iodoacetamide (IAA, GE Healthcare, Danderyd, Sweden) in 25 mM ammonium
bicarbonate in the dark at room temperature for 20 min. Samples were then centrifuged and
washed twice with 100 µL of 50 mM ammonium bicarbonate. Trypsin digestion (trypsin
gold, Promega, Madison, WI, USA) was performed at an enzyme to substrate ratio of 1:50
in 100 µL of 25 mM ammonium bicarbonate at 37 ◦C overnight.

2.5. Identification of Proteins by DDA Nano-LC-ESI-MS/MS

Nano-LC-ESI-MS/MS was performed using an Ultimate 3000 RSLC system (Thermo-
Fisher Scientific, USA) coupled to an Impact HD™ QTOF mass spectrometer (Bruker
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Daltonics, Bremen, Germany) via an Advance CaptiveSpray source (Bruker Daltonics,
Bremen, Germany). Approximately 100 ng of each patient sample and approximately
400 ng of the parental and CBPR OVCAR-5 cell digests were analyzed by data-dependent
acquisition (DDA) nano-LC-ESI-MS/MS. This was done to generate protein target lists
and spectral libraries for the DIA analysis. Peptide samples were pre-concentrated onto a
C18 trapping column (Acclaim PepMap100 C18 75 µm × 20 mm, Thermo-Fisher Scientific,
Waltham, MA, USA) at a flow rate of 5 µL/min in 2% (v/v) acetonitrile 0.1% (v/v) formic
acid (FA) for 10 min. Peptides were separated at a flow rate of 200 nL/min using a
75 µm × 50 cm Acclaim PepMap100 Thermo-Fisher Scientific C18 column. The gradient
used was linear from 5 to 45% buffer B over 190 min, followed by gradual increase to 90%
buffer B for 30 s and then held at 90% B for 20 min, followed by equilibration with 5% A for
20 min. Buffer B was 80% acetonitrile in 0.1% FA (v/v) and buffer A was 5% acetonitrile
in 0.1% FA (v/v). The data were acquired over the mass range of 300 to 2200 m/z using
Bruker’s Shotgun Instant Expertise™ method. The details of the method used are described
by us in detail [21]. The ionization source settings used were capillary voltage of 1300 V,
end plate offset of 500 V, and drying gas at 3 L min−1 at 150 ◦C.

2.6. DDA Nano-LC-ESI-MS/MS Data Analysis

To generate spectral libraries for the DIA assay, the DDA spectra were analyzed using
the MaxQuant software (version 1.5.2.8) with the Andromeda search engine [24] against
the UniProt human database. The standard Bruker Q-TOF settings with a precursor mass-
error tolerance of 40 ppm and variable oxidation as methionine, carbamidomethylation of
cysteines as fixed modification, and trypsin as the digestion enzyme with up to two missed
cleavage was used. The false discovery rate (FDR) was set to 1% for both proteins and
peptides, with a minimum peptide length of 7 amino acids.

2.7. Quantification of Protein(s) of Interest by DIA Nano-LC-ESI-MS

Nano-LC was performed as described above, loading either 100 ng of each patient
sample or 400 ng of the parental and CBPR OVCAR-5 cell digests. An Ultimate 3000 RSLC
system was coupled to an Impact HD™ QTOF mass spectrometer and data were acquired
using Bruker’s Middle Band CID™ method. This data-independent acquisition (DIA)
method scans a mass range of m/z 375 to 1206 in 26 Da increments and CID is performed
with increasing collision energies of 20 to 36. The acquired DIA data were analyzed in the
Skyline software (Version 3.1.0.7382) [25]. Spectral libraries were generated in Skyline from
the MaxQuant “msms’ files, produced from the DDA nano-LC-ESI-MS/MS experiments,
and matched against a background proteome of human FASTA sequences downloaded
from the UniProt. The spectra collected by DIA LC-MS was then matched back to all
the peptides identified in the spectral libraries and relative quantification was performed.
The Skyline peptide and transition settings were as follows: trypsin was specified as the
cleavage enzyme with a maximum of 1 missed cleavage, precursor charge states 2 and 3,
product ion charges 1 and 2, ion types y and b from ion 2 to ion 6, an ion match tolerance of
0.1 m/z, a MS/MS filtering DIA isolation scheme from m/z 375 to 1206 (26 Da windows), a
retention time window of 5 min, and a resolution of 10,000. A minimum of 2 unique and
only unmodified tryptic peptides were used in the analysis for each protein. The DIA data
were analyzed in Skyline software, where the transition and the retention time for each
peptide were checked manually. The quantification was performed using the summed area
intensity of each peptide in each sample and the standard deviations and p values using
un-paired t-tests were calculated using the GraphPad Prism 6 v008 (GraphPad Software,
La Jolla, CA, USA).

2.8. Validation by Immunohistochemistry (IHC)

Two TMAs (TMA 1 and TMA 2) containing a total of 31 patients; 21 responders, 8 non-
responders, and 2 outcome unknowns were analyzed by IHC, as previously described [26].
Briefly, 6 µm TMA sections were placed on plain glass slides, dewaxed, and rehydrated
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with xylene (5 min twice) and ethanol (2 min twice). The endogenous peroxidase activity
was quenched with 1% hydrogen peroxidase in PBS, followed by antigen retrieval using
10 mM citric acid (pH 6), at 100 ◦C for 10 min in a microwave (Sixth Sense, Whirlpool,
Dandenong South, Australia). TMA sections were then incubated overnight at 4 ◦C with
the rabbit polyclonal antibody calmodulin CALM1 (diluted 1:200, proteintech), gelsolin
GSN (diluted 1:100, proteintech), and thioredoxin TXN (diluted 1:100, proteintech) in 5%
goat serum blocking buffer. For negative control, tissues were incubated with 5% goat
serum without any antibody. The tissues sections were then incubated with biotinylated
anti-rabbit immunoglobulins (1/400, Dako, North Sydney, Australia), and streptavidin
horseradish peroxidase (1/500, Dako, Australia), and then visualized using diaminobenzi-
dine (DAB)/H2O2 substrates (Sigma Aldrich, Australia). Hematoxylin-stained TMA slides
were Nanozoomer-scanned and quantified using ‘ImageJ’, coupled with ‘IHC profiler’ [27].
Further statistical analysis was performed using GraphPad Prism 6 v008 (GraphPad Soft-
ware, La Jolla, CA, USA), where the mean, standard error of the mean, and significance
(unpaired t-test) were calculated.

2.9. Online Database Analysis

The GENT2 database (data from the annotated Gene Expression Omnibus (U133Plus2))
was used to assess GSN, CALM1, and TXN mRNA levels in normal tissues, ovarian surface
epithelium (n = 66), fallopian tube (n = 40), and HGSOC tissues (n = 807) [18]. The Kaplan–
Meier Plotter (http://kmplot.com/, assessed on 7 December 2022) was used to investigate
the relationship between the mRNA expression levels and the clinical outcome of the ovar-
ian cancer cohort by combining mean expression of probes for GSN (GSN200696_s_at and
214040_s_at), CALM1 (209563_x_at, 200655_s_at, 209563_x_at, 211985_s_at, and 213688_at),
and TXN (208864_s_at and 216609_at) which includes data from 15 datasets including Gene
Expression Omnibus and The Cancer Genome Atlas [28]. Each gene was analyzed for both
the progression-free survival (PFS) and overall survival (OS) against a database of 1029
and 1144 ovarian cancer patients (2022 version), respectively, using the following settings:
patients were split by auto select best cut off, the histology was set to serous all stages,
grades 2 and 3 were analyzed, all forms of chemotherapy were analyzed, and all biased
arrays were excluded.

3. Results
3.1. Identification of Protein Markers of Innate Chemoresistance by DIA LC-MS

Following protein extraction and trypsin digestion of the patient tissues and OVCAR-
5 cell lines, samples were analyzed by DDA LC-MS/MS and data were analyzed using
MaxQuant. The generated peptide sequence information allows the identification of
proteins by matching them to a database. The DDA analysis of approximately 100 ng of
tumor tissue samples resulted in the identification of 610 proteins (n = 6 chemo-responsive
tissues, n = 6 non-responsive tissues) at a protein false-discovery rate (FDR) of 1% and with
at least two unique peptides. Proteins identified are listed in the Supplementary Table S2.
Analysis of approximately 400 ng from biological replicates of the parental and CBPR
OVCAR-5 cells resulted in 1396 protein identifications at an FDR of 1%.

For the analysis, spectral libraries were generated in the Skyline software including all
DDA mass spectra and peptide identifications matched to a background proteome of human
FASTA sequences downloaded from UniProt. All samples analyzed by DDA LC-MS/MS
were then also analyzed by DIA LC-MS/MS. The acquired DIA mass spectra were then
matched to peptide sequences contained in the spectral libraries and relative quantification
was performed in Skyline. Following manual checking of the peptide matches in Skyline,
GSN (fold change = 1.84, p value = 0.035), CALM1 (fold change = 2, p value = 0.029), and
TXN (fold change = 2.47, p value = 0.0086) were found to be significantly increased in the co-
hort of patients who responded to chemotherapy compared to those who did not. Figure 1
shows the quantitative results of the DIA analysis of the 12 patient samples. The identifica-
tion and quantification of GSN was based on three unique and unmodified peptides with 0

http://kmplot.com/
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missed-cleavage and were as follows: HVVPNEVVVQR (aa178–188), EVQGFESATFIGYFK
(aa148–162), and TPSAAYIWVGTGASEAEK (aa598–615). Similarly, CALM1 was identified
and quantified based on 3 unique and unmodified peptides with 0 missed cleavage i.e.,
EAFSIFDK (aa15–22), ADQITEEQIAEFK (aa2–14), and EADIDGDGQVNYEEFVQMMTAK
(aa62–83). TXN was identified and quantified based on 2 unique and unmodified peptides
with 0 missed cleavage i.e., IEATINEIV (aa97–105) and TAFQEAIDAAGDK (aa9–21).
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Figure 1. DIA analysis of HGSOC patients who responded to chemotherapy (n = 6) compared to
those who did not (n = 6). Relative abundance of (A) gelsolin (fold change = 1.84, p value = 0.035),
(B) calmodulin (fold change = 2, p value = 0.029), and (C) thioredoxin (fold change = 2.47,
p value = 0.0086). Box and whisker plots were generated comparing the area intensities of each
protein in the chemo- responsive and non-responsive patient cohorts. Significance was calculated
using un-paired t-tests using the GraphPad Prism. The error bars indicate the standard deviation.

3.2. Verification of Protein Markers of Innate Chemoresistance by IHC

The differential expression of GSN, CALM1, and TXN was confirmed between the
chemo-responsive (n = 21) and non-responsive (n = 8) patient cohorts by IHC using a TMA
cohort. Quantitative analysis of immunostaining was performed using IHC Profiler-Image
J [27]. The overall levels of positive staining were found to be significantly increased in the
chemo-responsive patient group as compared to the non-responsive group for GSN (fold
change = 1.39, p value = 0.0023), CALM1 (fold change = 3.4, p value < 0.0001), and TXN
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(fold change = 1.73, p value < 0.0001) as shown in Figure 2, consequently validating the
results observed by the DIA LC-MS analysis.
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who did (n = 21) for gelsolin, p value = 0.0023 (A), calmodulin, p value < 0.0001 (B), and thioredoxin,
p value < 0.0001 (C). The graphs show the level of high-positive, positive, low-positive, and negative
staining for the chemo-responsive patients compared to the non-responsive patient cohort. Rep-
resentative image of stained tissue at 20× magnification from the responsive and non-responsive
patients is shown at the bottom of each graph. The level of positive staining across the patients was
summed and significance was calculated using un-paired t-test using GraphPad prism. Quantitative
analysis was performed using IHC profiler-Image J. For each tissue section, three representative
photo-micrographic images at 40×magnification were used.

3.3. Marker Expression in Normal Tissues Compared to HGSOC and Survival Analysis

To explore if the expression of the three proteins of interest is altered in healthy
epithelium of the ovary (OSE) or fallopian tubes (FT) compared to high-grade serous
ovarian cancer (HGSOC), we analyzed mRNA expression data from the GENT2 database.
The advantage of this dataset is that there are more than 900 patient samples included,
however mRNA levels do not necessarily correlate with protein levels. CALM1 expression
was significantly reduced in HGSOC compared to normal ovarian surface epithelium
(OSE) but both GSN and TXN mRNA levels were increased in HGSOC compared to OSE
(Figure 3). Both CALM1 and TXN mRNA levels were significantly decreased in HGSOC
compared to fallopian tube (FT) epithelium (Figure 3). GSN expression was reduced in
HGSOC compared to FT but did not reach statistical significance (Figure 3). These findings
suggest that the reduced levels of GSN, CALM1, and TXN in the FT, which is thought to be
the site of origin of the majority of HGSOC, may be also associated with the development
of HGSOC [29,30].
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Figure 3. Marker expression in normal tissues compared to HGSOC. GSN (A), CALM1 (B), and TXN
(C) mRNA expression data obtained from the GENT2 database including ovarian surface epithelium
(OSE) (n = 66), fallopian tube (FT) epithelium (n = 40), and high-grade serous ovarian cancer HGSOC
(n = 807). **** p < 0.0001, Kruskal–Wallis with Dunn’s multiple comparison test.

3.4. Kaplan–Meier Outcome Analysis

The relationships with PFS and OS were analyzed for GSN, CALM1, and TXN at the
mRNA level using the on-line tool Kaplan–Meier Plotter. OS of patients with elevated levels
of GSN mRNA expression was significantly increased compared to those with low levels of
expression (Figure 4A), but CALM1 expression was not associated with a notable change
in OS or PFS (Figure 4B). PFS of patients with elevated levels of TXN mRNA expression
was significantly higher than those with low levels of expression (Figure 4C).
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Figure 4. Kaplan–Meier plot using online TCGA data. Kaplan–Meier analysis revealed that elevated
levels of GSN (A) and TXN (C) mRNA expression correlated with better five-year OS and PFS rates,
respectively. CALM1 (B) expression was not associated with OS or PFS. Analysis was performed on
data from 1648 ovarian cancer patients downloaded from Gene Expression Omnibus and The Cancer
Genome Atlas using the Kaplan–Meier Plotter (http://kmplot.com/ assessed on 12 January 2022).
Higher expression is shown in red while low is shown in black.

3.5. Marker Expression in Parental OVCAR-5 Cells Compared to Carboplatin-Resistant
OVCAR-5 Cells

The relative protein expression of GSN, CALM1, and TXN was compared in biological
replicates of parental OVCAR-5 cells and CBPR OVCAR-5 cells by DIA LC-MS in the same
way as the patient tissue samples had been analyzed (Figure 5). Protein levels of GSN
(fold change = 1.36, p value = 0.027), CALM1 (fold change = 3, p value = 0.0017), and TXN
(fold change = 2.38, p value = 0.021) were all found to be significantly decreased in the
CBPR OVCAR-5 cells compared to the parental cells. The differential expression of reduced
protein levels in the resistant or non-responsive samples was the same for both patients and
cell lines for all three proteins. A minimum of two proteotypic and unmodified peptides
was used for the analysis of each protein.
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Figure 5. DIA analysis of parental OVCAR-5 cells compared to CBPR OVCAR-5 cells. Rel-
ative quantification of gelsolin p value = 0.027 (A), calmodulin p value = 0.0017 (B), and
thioredoxin p value = 0.021 (C) in biological replicates of parental OVCAR-5 cells compared to CBPR
OVCAR-5 cells. Graphs show the standard error of the mean and significance was calculated using
an unpaired t-test.

4. Discussion

Chemoresistance is one of the major challenges in treating ovarian cancer effectively.
The high mortality rate from ovarian cancer has been attributed to late diagnosis with a
five-year survival rate less than 30% compared to ~95% when the patients are diagnosed
at the earliest stage, highlighting the need for early detection [1]. Multiple molecular
features of chemoresistance have been investigated in detail, such as the role of oncogenes
and transporter pumps or of the tumor-suppressor gene p53, however the mechanism
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remains poorly understood. There is an unmet need to firstly identify patients with innate
chemoresistance and secondly to develop efficient second- and third-line chemotherapeutic
treatments to overcome acquired chemoresistance.

GSN, an actin-binding protein, has previously been identified in cytosol and mito-
chondria and in blood plasma. It has been implicated in several cancers by inhibiting
apoptosis and stabilizing mitochondria. Serum GSN levels are significantly reduced in
patients with ovarian cancer compared with healthy patients [31] and have been shown
to be a crucial factor in regulating chemoresistance in vitro [32]. High GSN expression
has been shown to significantly correlate with longer OS and PFS in all-stage patients and
subgroups with serous ovarian cancer [32]. GSN can be secreted and has been detected
in serum and plasma as pGSN. High plasma levels correlate with poorer overall survival
and relapse-free survival in patients with OVCA, which could reflect the overall tumor
load or pGSN, promoting ovarian cancer survival through both autocrine and paracrine
mechanisms. Plasma GSN was identified as an independent poor prognostic biomarker
for PFS of ovarian cancer patients [33]. Although GSN has been described by others to
be highly expressed in chemoresistant cancer cells, our data using patient tissue did not
confirm this. There is the possibility that during the processing of the tissue sample, the
secreted pGSN might be lost [34].

CALM1 is a multifunctional calcium-binding protein, which has been implicated in
many signaling pathways regulating cancer. Previous studies have shown that CALM1
antagonists induce apoptosis by decreasing AKT activation and increasing caspase-8 expres-
sion or decreasing anti-apoptotic Bcl-2 and increasing pro-apoptotic Bax protein levels [35].
This is due to CALM1′s recruitment to the Fas death receptor-activated death-inducing
signaling complex (DISC), where it binds with the survival signals, FLIP and Src to mediate
death-receptor-controlled survival pathways [35]. In the current study, downregulated
CALM1 mRNA showed a big variability across the patients. However, when the patients
were grouped according to high and low expression of CALM1, no significant difference
between the two groups regarding progression or overall survival was observed. It would
be interesting to explore the correlation between protein and mRNA levels of CALM1 and
the impact on cancer initiation and progression. To our knowledge this is the first study to
show that CALM1 expression is reduced in cancer compared to normal tissues and further
studies are required to understand its functional role in cancer.

TXN is ubiquitously expressed and plays a role in many biological processes, such
as redox signaling [36]. Elevated serum levels of TXN were observed in ovarian can-
cer compared to normal persons with non-cancer inflammatory disease [37], although,
Criscuolo et al. showed reduced glutathione levels in HGSOC patients that did not re-
spond to platinum-based therapy, resulting in the increased expression of thioredoxin
reductase [38]. Several studies have shown that cisplatin can reduce activity of thioredoxin
reductase, leading to the lower level of TXN in resistant cancer cells [39]. Similar to our
observation, Huang et al. reported reduced TXN gene expression in cisplatin-resistant cells
and reconstitution of TXN increased sensitivity to cisplatin [40]. These results demonstrate
that further studies are required to confirm the TXN outcome.

5. Conclusions

In summary, we have performed a proteomics discovery approach using minimal
FFPE patients’ samples to identify potential markers of innate chemoresistance, using a
combined DDA and DIA label-free MS approach. Three key markers GSN, CALM1, and
TXN were observed to be consistently higher in abundance in the chemo-responsive patient
cohort, as compared to non-responsive patient cohort. Undertaking the same label-free MS
strategy using CBPR OVCAR 5 cells compared with the parental cell line recapitulates the
expression of these three proteins. This indicates that the chemoresistant cell lines might
serve as a suitable model system for chemoresistance and could be used to determine
the efficacy of new generations of chemotherapeutics, extending the OS of ovarian cancer
patients in the future.
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