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Simple Summary: Identifying biomarkers of survival from a large-scale cohort of Glioblastoma Multi-
forme (GBM) pathology images is hindered by heterogeneity of tumor signature compounded by age
being the single most important confounder in predicting survival in GBM. The main contributions
of this manuscript are to define (i) metrics for identifying tumor subtypes of tumor heterogeneity and
(ii) relevant statistics for incorporating age for evaluating competing hypotheses. As a result, the GBM
cohort are stratified based on interpretable morphometric features with or without preconditioning
on published genomic subtypes.

Abstract: Tumor Whole Slide Images (WSI) are often heterogeneous, which hinders the discovery of
biomarkers in the presence of confounding clinical factors. In this study, we present a pipeline for
identifying biomarkers from the Glioblastoma Multiforme (GBM) cohort of WSIs from TCGA archive.
The GBM cohort endures many technical artifacts while the discovery of GBM biomarkers is challenged
because “age” is the single most confounding factor for predicting outcomes. The proposed approach
relies on interpretable features (e.g., nuclear morphometric indices), effective similarity metrics for
heterogeneity analysis, and robust statistics for identifying biomarkers. The pipeline first removes
artifacts (e.g., pen marks) and partitions each WSI into patches for nuclear segmentation via an extended
U-Net for subsequent quantitative representation. Given the variations in fixation and staining that can
artificially modulate hematoxylin optical density (HOD), we extended Navab’s Lab method to normalize
images and reduce the impact of batch effects. The heterogeneity of each WSI is then represented either as
probability density functions (PDF) per patient or as the composition of a dictionary predicted from the
entire cohort of WSIs. For PDF- or dictionary-based methods, morphometric subtypes are constructed
based on distances computed from optimal transport and linkage analysis or consensus clustering with
Euclidean distances, respectively. For each inferred subtype, Kaplan–Meier and/or the Cox regression
model are used to regress the survival time. Since age is the single most important confounder for
predicting survival in GBM and there is an observed violation of the proportionality assumption in the
Cox model, we use both age and age-squared coupled with the Likelihood ratio test and forest plots
for evaluating competing statistics. Next, the PDF- and dictionary-based methods are combined to
identify biomarkers that are predictive of survival. The combined model has the advantage of integrating
global (e.g., cohort scale) and local (e.g., patient scale) attributes of morphometric heterogeneity, coupled
with robust statistics, to reveal stable biomarkers. The results indicate that, after normalization of
the GBM cohort, mean HOD, eccentricity, and cellularity are predictive of survival. Finally, we also
stratified the GBM cohort as a function of EGFR expression and published genomic subtypes to reveal
genomic-dependent morphometric biomarkers.
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1. Introduction

The tumor signature observed in whole slide imaging (WSI) is often heterogeneous,
which reflects a complex gene expression program that is unique to each patient. Tumor
heterogeneity (TH) can be based on distinct morphological and phenotypic profiles, such
as morphology and gene expression. TH is also a strong factor in the tumor burden, with
implications for patients’ prognosis and treatment. The goal of our study is to investigate
whether biomarkers of tumor heterogeneity can be captured based on computed nuclear
indices and their organization in WSIs of the Glioblastoma Multiforme (GBM) dataset in
The Cancer Genome Atlas (TCGA). GBM is a Grade IV cancer with a five-year survival
rate of 9% [1], in which TH should play an important role. The genomic subtypes of GBM
have been characterized [2], providing additional constraints for heterogeneity analysis.
However, characterizing heterogeneity is not without challenges in a TCGA dataset, as
there may be artifacts in WSI (e.g., pen marks), technical variations in sample preparation
and staining, and computational strategies for associating heterogeneity to the outcome
need to be developed. Furthermore, the confounding factor of age is the single most
important variable in predicting survival in GBM. Therefore, any prediction of biomarkers
must incorporate rigorous statistical criteria for validation. In fact, learning survival from
histology images has been quite challenging, and coupling with CNN has continued to
make incremental improvements [3].

Analysis of WSI has benefited from the integration of various technologies, including
whole slide scanning, annotations, and filtering to remove artifacts. Recent advances in com-
putational histopathology, which is based on cytological analysis (such as nuclear atypia
and cellular density) and automated feature learning, have also contributed significantly
to this field. These techniques enable classification, such as tumor grading and detection
of micrometastasis, or association via regression to an outcome such as survival. Deep
learning is now the preferred method for image-based analysis and representation [4]. For
instance, cytological analyses use nuclear segmentation that extends U-Net [5,6] coupled
with adversarial training [7], which is highly effective, particularly in identifying vesicular
nuclear phenotypes [8] that traditional methods [9] could not detect. Although a thor-
ough review of nuclear segmentation and feature-based representation for computational
histopathology is beyond the scope of this manuscript, this article provides a summary of
several studies focused on the analysis of low-grade glioma and GBM.

Mobadersany et al. [10] developed a pipeline for training a modified VGG19 model
to learn features and associate them with survival using manually selected regions of
interest from a WSI. Each image is assigned a risk vector for input to a Cox proportional
hazards layer, which computes a loss function for model construction [3]. This approach
was applied to diffused gliomas, resulting in a significant prognostic outcome. Chen et
al. [11] integrated CNN for feature-based representation, graph-convolutional network
following nuclear segmentation, and an attention mechanism to predict tumor grading
or survival. Their pipeline was also applied to diffused gliomas with improved statistical
analysis. Kong et al. [12] stratified patients based on transcriptomics and morphometric
indices computed from tumor biopsy and histology, respectively. Zhang et al. [13] used
multi-kernel learning to integrate histopathology and multi-OMIC data (e.g., gene ex-
pression, methylation) to perform prognostic tasks. However, the performance of these
techniques is hindered as a result of (a) the absence of color normalization across the cohort,
(b) not adjusting for age as a strong confounder, (c) failing to incorporate TH in predictive

models, and (d) not addressing the sole special needs of GBM. Although some researchers
have stratified GBM patients based on aggressive versus non-aggressive therapies and/or
integration with molecular data [9,12], the strict utility of histology and TCGA clinical data,
such as age, has been lacking. Moreover, from a translational perspective, it would be
more valuable to predict the outcome from a low-cost histology section or, at most, coupled
with one or two transcripts from an interpretative representation (e.g., nuclear chromatin
content, cellularity). These are the issues we aim to investigate.
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The overall process and an example of TH are shown in Figure 1. Each WSI underwent
artifact and background removal, followed by segmentation of nuclei in each patch, and
optical density-based normalization for feature extraction. An important step was to
normalize the color images, based on an extension from Navab’s Lab, to ensure optical
density could be used as a biomarker. Computed indices were then combined to represent
TH using two alternative strategies for computing subtypes. These subtypes were then
analyzed rigorously using a likelihood ratio and forest plots to predict survival. The
premise for using alternative representations is that differences in TH can be quantified,
revealing phenotypes that are typically masked by averaging or other higher-order statistics.
Section 2 outlines the computational methodologies for representing WSIs, while Section 3
lists statistically significant biomarkers predicted using morphometric analysis, both in the
absence and presence of genomic subtypes. Finally, Section 4 provides additional insights
into our findings and concludes the manuscript.

2. Methods
2.1. Preprocessing the WSIs

The GBM cohort contains not only technical variations due to sample preparation
and staining, but also technical anomalies such as pen marks and out-of-focus images.
Initially, we attempted to filter out pen marks using PyHist [14], which utilizes an edge
filter and graph cut segmentation. However, this approach did not effectively identify
many regions containing pen marks. Therefore, we chose to annotate a dataset of pen
marks and create a support vector machine (SVM) classifier that identifies patches of
224-by-224 containing pen marks based on their concatenated RGB pixel histogram (i.e., a
vector of 768 × 1). With 625 annotated images and a 90–10 training and testing split, we
achieved a training accuracy of 97%. PyHist was effective in removing other artifacts
(e.g., blur) and white regions (e.g., background), and we also used it to partition each WSI
into 224-by-224 regions.

Figure 1. Eash WSI is represented in the context of tumor heterogeneity for biomarker discovery:
(a) a WSI is partitioned to patches of 224-by-224, where each patch is analyzed for pen marks or
other aberrations; (b) nuclei are segmented in patches; (c) H&E optical density is normalized in
each patch; (d) nuclei organization is quantified in each patch; (e,f) computed indices from nuclei
and their organizations are used for the dictionary- and PDF-based representations. (g) Predictive
morphometric indices of survival are identified.
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2.2. Nuclear Segmentation

Segmentation of nuclei in H&E stained images can be challenging due to technical
variations such as sample preparation and staining, biological heterogeneity such as nu-
clear atypia and pleomorphism, and variations in Hematoxylin optical density (HOD)
and texture such as vesicular phenotype. This important topic has been addressed by
numerous researchers [6–8]. In our implementation, we modified an earlier approach for
segmenting 3D organoids [15] using the U-Net architecture with a modified loss func-
tion that integrates a potential field for delineating touching nuclei. We annotated and
extended H&E stained images from previous datasets [8,9] and complemented the data
augmentation step with local/global contrast adjustment for nuclei/background optical
density. For local contrast adjustment, we randomly selected between 10–20% of nuclei
and modulated their color intensities, as well as the background regions. This step was
crucial because the GBM cohort is diverse in terms of nuclear chromatin or protein contents,
contributing to tumor heterogeneity. We started with 57 annotated training images, each
no less than 1000-by-700 pixels. Following data augmentation, the sample size increased to
200,000 patches, each sized 224-by-224. Using the leave-one-out method, we computed an
Aggregated Jaccard Index (AJI) [16] of 0.62 for the 57 annotated images.

2.3. Image Normalization

The TCGA histology cohort lacks standardization in terms of staining, which may not
be a significant issue for preprocessing or segmentation, but can affect feature extraction.
To address this, we proposed that an improved color normalization approach would yield a
more reliable HOD and protein readout for biomarker discovery. We applied a state-of-the-
art technique in color normalization [17] to normalize WSIs across the entire cohort, which
involves incorporating an L1 regularization term in the loss function for non-negative
matrix factorization (NMF) to estimate the source image’s stain matrix, and then mapping
the deconvolved image back into a RGB space using a target image’s stain matrix. We also
utilized the nuclear mask to aid in rapid convergence and ensure consistent ordering of
the two stained channels following NMF. The color normalization method [17] maps each
candidate H&E-stained image in the RGB space to a single target image that corresponds
to the desired staining, after which we use NMF to estimate HOD. An example of color
normalization is shown in Figure 2. In the results section, we compared this approach with
a classical method for color decomposition [18] and found that rigorous normalization
associates HOD as a statistically validated biomarker predictive of survival.

Figure 2. H&E stain is heterogeneous between patients. Two patches from two WSIs indicate a diverse
staining signature. They are normalized for quantifying HOD and visualized in the RGB space.
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2.4. Computation of the Morphometric Indices

A number of morphometric indices per nucleus were computed following color
correction. Indices included were: nuclear size; HOD content; cellularity (a measure of
cellular density computed from Delaunay Triangulation); eccentricity (e.g., elongation)
(a measure of spindle geometry); and solidity (a measure of nuclear pleomorphism).

2.5. Association of the Morphometric Indices with Survival

Predicting biomarkers, based on heterogeneity, requires a representation and a distance
metric for computing stable clusters or tumor subtypes. Each tumor subtype is then
examined for whether it is predictive of survival.

2.5.1. Representation

Our motivation is to capture heterogeneity while maintaining reduced dimensionality,
for example, using a single morphometric index at a time, in support of interpretation. To
achieve this, we chose to represent each index either as a PDF or an ensemble of vocabularies.
In the first case, a “cohort PDF” was constructed and binned for each morphometric index.
Then, each patient’s PDF was projected onto the cohort PDF, ensuring that each patient’s
PDF was on the same scale for computing distance. In the second case, the median of each
computed index per patch and per WSI was first aggregated across the entire cohort to
construct stable clusters. Once stable clusters (e.g., vocabularies) across the entire cohort
were constructed, each WSI was represented in terms of the frequencies of each cluster.

2.5.2. Distance Metrics and Clustering

Clustering based on the dictionary- and PDF-based methods are summarized below.
This is an important step since using the first-order statistics (e.g., mean) of the PDF did
not reveal any significant biomarkers.

The dictionary method (e.g., alphabet), which involves using the Euclidean distance
to compute distances between computed features, is advantageous due to its simplicity. To
cluster data, pairwise distances were computed and consensus clustering was performed
by varying the number of clusters from two to four. This particular implementation
of consensus clustering injected noise in each iteration, which helped reveal more stable
clusters. The clustering results based on optimal transport were visualized using a similarity
matrix, cumulative density function (CDF), and Silhouette plots (a visual measure of the
quality of clusters), as shown in Figure 3. Pinhole images of each cluster for the eccentricity
and cellularity index were shown in Figures 4 and 5, respectively. For clustering, a random
subset of 1000 samples was selected and k-means was iteratively performed on them. This
process was repeated 10 times to obtain the centroids of the final clusters, which were
determined by aggregating the median values corresponding to each sampled dataset for
consensus clustering. The stability of each cluster was determined by the change in the
CDF between the number of clusters and their silhouette scores. Subsequently, the learned
alphabets were projected back into each WSI to create a patient signature based on the
frequency of composition of each vocabulary, resulting in a vector (e.g., [0.34, 0.33, 0.33]) for
three alphabets. This vector representation was then used as a continuous variable input
to a Cox Hazard model to associate an increase in the percentage for each variable of the
vector to a hazard ratio. Figure 6 illustrates this entire process.

Using the euclidean distance metric to measure the distance between the PDFs of
two WSIs is inaccurate because it ignores the order of probabilities in a vector. In this study,
we used the optimal transport method, also known as earth mover distance, to compute
the distance between two PDFs. Optimal transport is a linear programming problem
that we implemented using the Python Optimal Transport Toolbox. After computing
pairwise distances between WSIs (i.e., PDFs), we performed linkage analysis [19,20] to
reveal subpopulations. Figure 7 displays similarity matrices based on the optimal transport
distance metric from PDF-based representations, and corresponding Kaplan–Meier curves
(a probabilistic representation of a patient to survive up to a time) using three computed
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morphometric indices of nuclear size (e.g., area, left column) solidity (middle column), and
total chromatin (right column).

2.5.3. Statistical Analysis of Morphometric Indices for Biomarker Validation

Various statistical techniques, such as Kaplan–Meier curves, can be used to evaluate
the predictive strength of each morphometric index on survival. However, the association
between a computed index and survival may be biased if there are unaccounted variables
(e.g., age) that strongly predict survival but are not balanced among the clusters formed by
an index. To avoid such bias, we combined the age confounder with one morphometric
index at a time in a regression model. For PDF-based representations of patients, we
estimated a Kaplan–Meier curve for each index and then used the Cox regression model to
estimate the hazard ratio and its p-value. However, when age was included, we observed
evidence of a violation of the proportionality assumption in the Cox model (a statistical
model for survival outcome with at least one predictor) [21], as hazards were not propor-
tional with a p-value of 0.01. By including both age and age-squared, we found no evidence
of a violation of the proportionality assumption, and an improved p-value. Therefore, we
chose to use the likelihood ratio with age and age-squared in all our analyses.

Figure 3. Dictionary-based learning identified two and three subpopulation (e.g., clusters) of patients
based on cellularity and eccentricity indices, respectively. (top row): Computed similarity matrices;
(middle row) the cumulative Density Function (CDF) of similarity matrices shows the quality of the
number of clusters for each index (e.g., a flat horizontal line indicates a low number of misclassified
samples between clusters). (bottom row) Silhouette plots of 800,000 randomly sampled nuclei show
the similarity of patients within a cluster (e.g., a silhouette score less than 1) and a red dashed
indicating the average silhouette score.
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Figure 4. Representative patches showing low, medium, and high eccentricities corresponding to
clusters 1, 2, and 3 from the dictionary-based method.

Figure 5. Representative patches showing low, and high cellularities corresponding to clusters 1 and
2 from the dictionary-method.
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Figure 6. Steps in the dictionary-based method for representing heterogeneity: (a) each WSI is
partitioned into patches; (b) each patch is quantified in terms of nuclear indices and organization;
(c) each computed index (e.g., HOD content, nuclear size) is aggregated across the entire cohort for
dictionary-based learning (e.g., alphabets, which are four in this example); and (d) each WSI is then
represented as a composition of learned alphabets.

Figure 7. Optimal transport identifies subpopulations of patients, based on PDF representation, for
survival analysis. Top row: similarity matrices identified by linkage analysis; Bottom row: Kaplan–
Meier plots, hazard ratio, and computed p-values for three computed morphometric indices of nuclear
size, solidity, and total chromatin.

The Likelihood-ratio test (LRT) is one of the three standard approaches for statistical
hypothesis testing that evaluates the goodness of fit of two competing statistical models by
comparing their likelihoods. In our study, we used the LRT to compare the Cox regression
model, which included only age and age-squared (the “null” model), to the model that
included age, age-squared, and the morphometric index (the “alternative” model). If
adding an index, such as nuclear size, improved the model’s fitness compared to the model
without the index, the p-value of the likelihood ratio test would be small (<0.05), indicating
evidence that the index is significantly associated with survival even after controlling for
age. Conversely, if the index did not improve the model’s fitness compared to using only
age and age-squared, the likelihoods of the null and alternative models would be similar,
and the likelihood ratio test would yield a large p-value (>0.05). When the LRT yields
a small p-value, it provides evidence that the index is predictive of survival, but it does
not provide information on the size of the effect or whether the range within the index is
significantly different. Therefore, for each condition where the LRT p-value is less than 0.05,
we also computed the 95% confidence intervals and tested pairwise differences between the
hazard ratios corresponding to the levels of the variable of interest. In some cases, hazard
ratios could not be estimated and were excluded from figures because either the patient’s
survival time was close to zero or censored.
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2.5.4. Computing Resources

The machine learning models were trained on a local server, which was equipped
with 8 NVIDIA GeForce RTX 2080 Ti GPUs, each with 12GB of RAM, 256 GB of RAM, and
a 64-core CPU. The model development and validation were performed using python
3 and the TensorFlow 2.2 framework. The source code has been made available at
https://github.com/gwinkelmaier/GBM-biomarkers (accessed date 31 March 2023).

3. Results
3.1. Biomarker Discovery
3.1.1. Biomarkers of Nuclear Morphometric Indices

Tables 1 display age-adjusted biomarkers based on PDF- and dictionary-based rep-
resentations, respectively. The PDF representation includes biomarkers such as average
chromatin content (e.g., HOD), nuclear size, solidity, and total chromatin (e.g., total HOD)
per nucleus. Notably, our results show that the method in [17], from Navab’s Lab, yielded
a statistically significant biomarker approximation of chromatin content, whereas the clas-
sical method based on known densities [18] did not. Additionally, the dictionary method
uncovered eccentricity (e.g., elongation) and cellularity. Figure 8 illustrates the forest plots
for predicted morphometric indices based on PDF-based methods without preconditioning.
Finally, Table 2 displays predicted morphometric indices from both PDF and dictionary-
based representations. This was achieved by (a) estimating the parameters of a Cox-Hazard
model by integrating morphometric indices from both representations and (b) comparing
the learned model with the baseline model of only age and age-squared, leading directly to
a p-value.

Table 1. Predicted morphometric biomarkers and their p-values from patients in the TCGA-GBM cohort.

Morphometric Index Number of Clusters p-Value

(a) PDF model

Area 2 0.026
Area 3 0.016
Area 4 0.013
Mean HOD 3 0.016
Mean HOD 4 0.006
Solidity 3 0.014
Solidity 4 0.007
Total HOD 2 0.044
Total HOD 3 0.037
Total HOD 4 0.025

(b) Dictionary model

Cellularity 2 0.008
Cellularity 3 0.040
Eccentricity 2 0.002
Eccentricity 3 0.005
Eccentricity 4 0.011
Mean HOD 2 0.019

https://github.com/gwinkelmaier/GBM-biomarkers
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Table 2. Predicted morphometric biomarkers and their p-values for the combined model without
genomic preconditioning.

Nuclear Morphometric Index Number of Clusters p-Value

Cellularity 2 0.025
Eccentricity 2 0.007
Eccentricity 3 0.013
Eccentricity 4 0.019
Mean HOD 4 0.028

Figure 8. The forest plot indicates biomarkers associated with the subpopulation at risk using the
PDF-based representation without any genomic preconditioning. The asterisks **, ***, and **** denote
the number of stratifications per morphometric index.

3.1.2. Biomarkers of Morphometric Indices Preconditioned on Genomics Signature

The same set of tests from the previous section was applied following stratification
based on published genomics subtypes [2] or EGFR expression (e.g., high versus low
expression rendered by linkage analysis).

There are four significant genomic subtypes: mesenchymal, proneural, neural, and
classical. Tables 3 display age-adjusted biomarkers based on these subtypes, computed
from both PDF- and dictionary-based representations. The corresponding forest plot for
the classical subtype in the PDF-based representation is shown in Figure 9, and Table 4
shows predicted biomarkers from the combined representation. For instance, nuclear size
is a biomarker for the neural subtype, total HOD is a biomarker for the classical subtype,
and solidity is a biomarker for the neural and mesenchymal subtypes. Therefore, there is
evidence that each genomic subtype can highlight specific biomarkers, leading to further
stratification of the patient population.

Table 3. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on genomic subtypes.

Nuclear Morphometric Index
Number

of Clusters
p-Value

Neural Proneural Mesenchymal Classical

(a) PDF method

Area 2 0.021 - - -
Area 3 0.020 - - 0.009
Area 4 0.018 - - 0.006
Mean HOD 4 0.024 - - -
Solidity 3 0.006 - - -
Solidity 4 <0.001 - 0.009 -
Total HOD 2 - - - 0.019
Total HOD 3 - - - 0.008
Total HOD 4 - - - 0.008

(b) Dictionary method

Area 4 - - - 0.040
Total HOD 2 <0.001 - - -
Total HOD 3 0.008 - - -
Total HOD 4 0.003 - - -
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Table 4. Predicted morphometric biomarkers and their p-values for the combined model precondi-
tioned on genomic subtypes.

Nuclear Morphometric Index
Number

of Clusters
p-Value

Neural Proneural Mesenchymal Classical

Area 2 0.04 - - -
Area 4 - - - 0.043
Mean HOD 4 - 0.031 - -
Solidity 3 0.010 - - -
Solidity 4 0.004 - 0.048 -
Total HOD 2 0.001 - - -
Total HOD 3 0.012 - - -
Total HOD 4 0.004 - - 0.036

Aberrant overexpression of EGFR is a dominant feature of GBM. As a result, patient
data were initially stratified based on low and high EGFR expression, followed by the
proposed analysis as described in the Methods section. Tables 5 and 6 present predicted
biomarkers for the subpopulation of patients with high or low EGFR expression. Table 7
shows predicted biomarkers based on combined models of the PDF- and dictionary-based
method preconditioned on EGFR expression. Note that Table 7 is quite similar to Table 2
as only a subset of patients with matched transcriptome data was used in this analysis.
Additionally, Tables 7 do not share a morphometric index, which serves as an internal con-
trol. The corresponding forest plot of morphometric biomakers, computed from the PDF
representation and preconditioned on low EGFR expression, is shown in Figure 10.

Table 5. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on patients with high EGFR expression.

Nuclear Morphometric Index Number of Clusters p-Value

(a) PDF model

Total HOD 4 0.048

(b) Dictionary model

Area 2 0.007
Area 3 0.009
Area 4 0.025

Table 6. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on patients with low EGFR expression.

Nuclear Morphometric Index Number of Clusters p-Value

(a) PDF model

Area 4 0.031
Cellularity 4 0.018

(b) Dictionary model

Cellularity 2 0.035
Total HOD 2 0.001
Total HOD 3 0.003
Total HOD 4 0.009



Cancers 2023, 15, 2387 12 of 15

Figure 9. Using the PDF method, pre-conditioned on the classical subtype, the forest plot indicates
the subpopulation at risk. The asterisks **, ***, and **** denote the number of stratifications per
morphometric index.

Figure 10. Using the PDF method, pre-conditioned on a high EGFR expression, the forest plot
indicates the subpopulation at risk. For example, Area cluster two has an 52% decreased risk of
death compared to Area cluster zero. The asterisks **** denote the number of stratifications per
morphometric index.

Table 7. Predicted morphometric biomarkers and their p-values for the combined model precondi-
tioned on the EGFR transcript.

Nuclear Morphometric Index Number of Clusters p-Value

(a) Biomarkers for patients with matched transcriptome data

Cellularity 2 0.047
Cellularity 3 0.033
Cellularity 4 0.019
Eccentricity 2 0.040
Mean HOD 3 0.010
Mean HOD 4 0.004

(b) Biomarkers of patients stratified with high EGFR expression

Area 3 0.004
Area 4 0.005

Cellularity 3 0.031
Cellularity 4 0.009

(c) Biomarkers of patients with low EGFR expression

Cellularity 2 0.034
Cellularity 4 0.018
Mean HOD 3 0.015
Mean HOD 4 0.021
Total HOD 2 0.001
Total HOD 3 0.002

4. Discussion

This manuscript presents our extended and applied methodologies for identifying
biomarkers in GBM while taking into account tumor heterogeneity. Our approach involves
using age-adjusted representations of nuclear morphometric features or their organization
in WSIs and utilizing linear associations to improve interpretation while reducing the
number of parameters. We suggest that incorporating the Cox Hazard Model in the loss
function (as done in [22]) increases the likelihood of finding associations by noise or chance.
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Therefore, we advocate for using linear associations instead, as they offer simplicity and
using a single computed index at a time improves interpretability and robustness. Lastly,
we statistically explored viable patient pathology stratifications by preconditioning on
either EGFR expression or genomic subtypes.

The methodological innovations used in this study included image normalization,
representation and distance metrics, integration of age as a confounder, and the utility of
age-squared to satisfy the proportionality assumption of statistical models. Image normal-
ization is an important step in using HOD as a biomarker because of technical variations in
sample preparation and staining. Navab’s Lab provided the foundation for normalizing
each patch in a WSI to a reference template. NMF enabled the readout of the HOD per
nucleus using the nuclear mask computed from the segmentation step. Nuclear masks
provided the required initialization for NMF, making convergence rapid without needing
a ranking based on the blue channel. Alternatively, image normalization based on clas-
sical color deconvolution [18] did not reveal HOD as a biomarker. Because tumors are
heterogeneous, the study designed representations based on the PDF or dictionary-based
method for each morphometric index in WSIs. The PDF method represents each WSI
in terms of its own nuclear morphometric architecture. In contrast, the dictionary-based
method represents each WSI in terms of learned alphabets that represent the entire cohort.
The PDF method identifies biomarkers that are globally persistent within a WSI because
attributes with a low frequency of occurrence can diffuse with the PDF representation. The
two methods are complementary. While the distance measures for the dictionary-based
method can be Euclidean, a distance measure based on optimal transport is introduced
to compute distances between pairwise PDFs followed by linkage analysis. In GBM, age
is the single most important predictor of the outcome. In the absence of the utility of
age as a confounder, many biomarkers are either erroneously predicted or the propor-
tionality assumption of the Cox Hazard model is violated. However, by using both age
and age-squared, a more rigorous statistical analysis can be achieved. For example, since
both the dictionary- and PDF-based methods predicted the age-adjusted HOD index as
a biomarker, this index is more stable. A larger value of HOD content, a surrogate index
for nuclear hyperchromasia, is consistently associated with a higher hazard ratio, which
could be due to a higher rate of proliferation. Using the dictionary-based method, increased
cellularity (e.g., hypercellularity) is also associated with a higher rate of proliferation and a
higher HR. Another biomarker in the PDF method is solidity, which is a surrogate index
for pleomorphism. Figure 8 suggests that lower pleomorphism corresponds to a better
HR, where higher pleomorphism is associated with a higher tumor grade and worse prog-
nosis. These observations are consistent with key diagnostic points in GBM, including
cytological criteria of astrocytoma (e.g., GFAP, spindle-shape nuclei) and anaplasia (e.g.,
hypercellularity, pleomorphism, nuclear hyperchromasia) [23].

In conclusion, the computational pipeline has stratified tumor heterogeneity within
the TCGA GBM cohort and has identified interpretable biomarkers that align with GBM
diagnostic criteria [23]. This pipeline provides a valuable platform for evaluating emerging
therapies for the treatment GBM patients. The same pipeline can also be applied to
other tumor types. For example, it can be applied to WSI collected from Low-Grade
Glioma (LGG) because of the similarities of the microanatomy. However, it may require
additional extensions if it is to be applied to other organs, such as the breast or pancreas
with glandular structures. In these types of organs, normal gland structures and stromal
regions need to be delineated prior to the analysis of the tumor regions. This step requires
another computational module that can be facilitated by annotation and training of the
corresponding regions of the microanatomy.
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