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Simple Summary: Patients with inflammatory bowel disease (IBD) are at an increased risk of
developing colorectal cancer (CRC), mainly because of chronic intestinal inflammation. Some unique
molecular differences occur in colitis-associated CRC, resulting in a different sequence of events,
primarily of inflammation–dysplasia–carcinoma, compared to sporadic cases. In this context, the
recent and continuous evolution in our understanding of the genetic and molecular mechanisms
underlying IBD-associated CRC and the development of new OMIC techniques has opened up new
possibilities for personalised and organ-sparing therapies. This review provides an overview of
the IBD-related carcinogenesis pathway with a focus on the interaction between microbiota and
the gut barrier and the role of currently available therapies for IBD in the inflammation–dysplasia–
cancer sequence.

Abstract: Patients affected by inflammatory bowel disease (IBD) have a two-fold higher risk of
developing colorectal cancer (CRC) than the general population. IBD-related CRC follows a different
genetic and molecular pathogenic pathway than sporadic CRC and can be considered a complication
of chronic intestinal inflammation. Since inflammation is recognised as an independent risk factor for
neoplastic progression, clinicians strive to modulate and control disease, often using potent therapy
agents to achieve mucosal healing and decrease the risk of colorectal cancer in IBD patients. Improved
therapeutic control of inflammation, combined with endoscopic advances and early detection of
pre-cancerous lesions through surveillance programs, explains the lower incidence rate of IBD-
related CRC. In addition, current research is increasingly focused on translating emerging and
advanced knowledge in microbiome and metagenomics into personalised, early, and non-invasive
CRC screening tools that guide organ-sparing therapy in IBD patients. This review aims to summarise
the existing literature on IBD-associated CRC, focusing on new insights into the alteration of the
intestinal barrier and the interactions with the gut microbiome as the initial promoter. In addition,
the role of OMIC techniques for precision medicine and the impact of the available IBD therapeutic
armamentarium on the evolution to CRC will be discussed.

Keywords: carcinogenesis; colitis-associated cancer; inflammation; IBD therapy; gut barrier; OMIC;
microbiome

1. Introduction

Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn’s
disease (CD), are chronic relapsing inflammatory disorders in which a complex interplay
of genetic predisposition and environmental factors alter host–microbiota interactions and
lead to dysregulation of gut immune responses in a genetically susceptible individual [1].
The literature has widely consolidated that IBD is associated with an increased risk of
colorectal cancer (CRC) compared to the general population [2,3]. A meta-analysis of
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116 studies by Eaden et al. [3] reported that the incidence of IBD-associated CRC was 2%,
8%, and 18% at 10, 20, and 30 years after the onset of UC, respectively. Concerning CD,
the risk of CRC is debatable and considered slightly elevated compared to the general
population. A subsequent meta-analysis [4] estimated a cumulative risk of 2.9% at 10 years,
5.6% at 20 years, and 8.3% at 30 years in patients with CD. Several risk factors are associated
with the development of colonic neoplasia, including longer disease duration, greater extent
of colonic involvement, a family history of CRC, primary sclerosing cholangitis, male sex,
and younger age at diagnosis. There is also additional risk related to worse disease severity,
including high inflammatory burden, backwash ileitis, pseudopolyps, prior dysplasia,
and colonic strictures [2]. However, recent evidence suggests that the incidence rates of
IBD-associated CRC decreased over the last decade due to better control of inflammation
and advances in the endoscopic detection and resection of precancerous lesions which have
improved surveillance programs [5]. Nevertheless, it should be noted that most of these
data came from tertiary referral centres wherein the study population was selected.

IBD-associated CRC (IBD–CRC) has been considered a distinct entity compared to
sporadic CRC (sCRC), and little is known about the pathogenesis and mechanisms be-
hind the IBD–CRC [6]. The key driver of neoplastic changes and progression is chronic
inflammation that contributes to dysplasia and is considered the most critical risk factor for
developing colitis-associated CRC [7].

Chronic inflammation generates oxidative stress-induced DNA damage that may
activate tumour-promoting genes and inactivate tumour-suppressing genes [8]. As a result,
markers of oxidative damage and DNA double-strand breaks increase progressively in
the inflammation–dysplasia–carcinoma sequence rather than the ‘adenoma–carcinoma’
sequence typical of sCRC (Figure 1). In addition, recent studies have demonstrated a
potential role for the gut microbiome and host immune system. These lead to subsequent
events that cause genetic and epigenetic alterations followed by clonal expansion of somatic
epithelial cells, influenced by surrounding stromal and immune cells [9].
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Figure 1. Pathogenic pathway of sporadic colorectal cancer and IBD-related colorectal cancer.
The figure shows the different molecular pathways related to sporadic and IBD-related colorec-
tal cancer (CRC). The sporadic CRC prevails in the adenoma-to-carcinoma sequence, while the
inflammation–dysplasia–carcinoma cascade characterises the colitis related-CRC. In addition, the
main gene mutations determining the progression of the two tumour phenotypes are reported with
emphasis on the earliest mutations in the two processes. Namely, these entail APC loss of function, the
WNT-beta catenin pathway activation for sporadic CRC (see zoom circle at left), and p53 mutations
with consequent impacts on cell cycle, DNA repair, and cell viability for IBD-related CRC (see zoom
circle at right). Finally, high-definition white light endoscopic images and virtual chromoendoscopic
images (obtained through the Narrow Band Imaging technology) are provided for each phenotype
of tumours. Created with “Biorender.com”. Abbreviations: CRC, colorectal cancer; IBD, inflammatory
bowel disease.
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Here, we aim to provide an overview of the molecular pathway of IBD-related CRC
with a particular focus on the role of multi-omics in the carcinogenesis process and the
impact of medical therapy on developing and preventing CRC.

2. IBD–CRC: A Distinct Molecular Pathway

The molecular pathways occurring in IBD–CRC differ from those observed in sCRC.
The adenoma-to-carcinoma pathway prevails in sporadic cancer, while the sequence
inflammation–dysplasia–carcinoma characterises the colitis related-CRC (Figure 1).

More in-depth, constitutive activation of WNT/b-catenin signalling via loss-of-function
mutations in APC is the primary and earliest player of sCRC development, regulating cell
fate, proliferation, polarity, and stemness via b-catenin-dependent and independent mecha-
nisms [10]. Multiple other driver genes, such as KRAS, P53, PIK3CA, SMAD4, ARID1A,
MYC, etc., are involved in the following progression of sCRC. These genes are also in-
volved in IBD–CRC even though the timing and frequency of some of the common gene
alterations are different [11,12]. Notably, mutation and loss of function occur frequently
and very early in the process, even before dysplasia, suggesting an alternative mechanism
of WNT pathway activation [6]. Moreover, KRAS mutations occur less frequently and later
in IBD–CRCs; nuclear accumulation of b-catenin is prevalent compared to sCRCs.

Interestingly, a “Big Bang” model of CRC evolution has been formulated to support
this concept. Chronic inflammation induces tumour-promoting molecular alterations in
pre-existing clonal cell populations that occur sharply rather than a gradual accumulation
driven by pressures from the microenvironment [6,13].

A powerful tool to describe tumour transcriptional, genetic, epigenetic, and microen-
vironment characteristics is a transcriptome-based classification of CRCs that consists of
four consensus molecular subtypes (CMSs).

CMS1 (microsatellite instability immune, overall 14%) characterised by hypermu-
tated, microsatellite unstable and strong immune activation; CMS2 (canonical, overall 37%)
marked by epithelial cell differentiation with upregulated of WNT and MYC signalling
activation; CMS3 (metabolic, overall 13%), with epithelial and evident metabolic dysregula-
tion; and CMS4 (mesenchymal, overall 23%) mediate the activation of the pathway related
to the epithelial–mesenchymal transition and stemness with transforming growth factor–β
activation and a prominent stromal invasion [11,14].

Regarding IBD–CRC, the CMS distribution has yet to be fully clarified even though a
complete lack of CMS2 tumours and a skewing towards the CMS4-associated epithelial–
mesenchymal transition pathway is the most prevalent. These are associated with EMT,
matrix remodelling, transforming growth factor b (TGF-b) signalling, complement activa-
tion, and depletion of WNT/MYC-related expression signatures [6].

Rajamäki K et al. [11] have recently analysed whole-genome sequencing, single nu-
cleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and
immunohistochemistry from 31 patients with IBD–CRC.

Notably, they reported a complete absence of canonical epithelial tumour subtypes
associated with WNT signalling CMS2 tumours and a predominance of the mesenchymal
tumours related to oncostatin M receptor overexpression CMS4 among IBD–CRCs

Additionally, the propensity for a relative loss in expression of HNF4, a transcription
factor essential for the embryonic development of colonic epithelium and the overexpres-
sion of a receptor for cytokine oncostatin M (OSMR), which may contribute to a more
mesenchymal phenotype was observed.

Elevated intestinal OSMR and OSM expression are also associated with a subgroup
of IBD patients showing poor response to TNFa blockers. Hence, OSM could be consid-
ered a potential biomarker and therapeutic target for IBD. However, further studies are
required to establish the non-invasive detection of colorectal adenomas and carcinomas
from biomarkers.
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3. OMICS: Future Directions

Multi-omics studies consisting of meta transcriptomics, metaproteomic, and metabolomics
offer a great chance to fill knowledge gaps in IBD pathogenesis for a better understanding
of CRC development as well as its classification into different molecular subtypes for
patient stratification and the development of new biomarkers and targeted therapies [15]
(Figure 2).
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Figure 2. Multi—OMICs and its impact on inflammatory bowel disease and colorectal cancer.
This figure schematically represents the main OMIC techniques available to date: genomics—the
study of the genetic or epigenetic sequence information; transcriptomics—the evaluation of RNA
transcripts; proteomics—the investigation of the structure and function of proteins; metabolomics—
the identification and quantification of metabolites; metaomics—the application of the previously
described techniques to the gut microbiome. The multiple and integrated application of these
techniques, so-called multi-OMICs, will offer a great chance to fill knowledge gaps in inflammatory
bowel disease (IBD) and colorectal cancer (CRC). In more detail, the application of multi-OMICs will
provide (as specified in figure squares) the discovery of novel biological mechanisms below IBD and
CRC pathogenesis, the detection of new clinically relevant biomarkers, the definition of integrated
signatures able to stratify patients, and the enhancement of physician ability to establish disease
prediction, establish a prognosis, and treat patients appropriately. Created with “Biorender.com”.
Abbreviations: CRC, colorectal cancer; IBD, inflammatory bowel disease.

Further OMICs approaches allow better characterisation of the gut microbiome and
how the microbiome in turn influences the surrounding ecosystem in order to identify why
some IBD patients develop CRC and others do not [16].

However, most studies are based on individuals with sporadic CRC, whilst there is
still a relatively small number of studies integrating omic datasets from IBD patients. The
integrative human microbiome project (iHMP) collects host and microbiome-associated
data using multiple meta-omics strategies [17,18]. Specifically, this project aims to identify
microbial community changes over time that precedes human diseases such as IBD [19].

More recently, a comprehensive multi-omics project on the pathogenesis and outcomes
of primary sclerosing cholangitis (PSC) associated with IBD was developed. Based on the
hypothesis that multi-omics analyses of data capturing environmental exposures and the
associated biological responses, the project aims to better understand the role and interplay
of the genome, exposome, and microbiome on pathways influencing PSC pathogenesis and
outcomes [20].
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4. Primary Sclerosing Cholangitis (PSC) as a Risk Factor for IBD–CRC

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease with a pooled
prevalence in patients with IBD of 2.16%. When low-grade dysplasia is detected in patients
with PSC–IBD, they are at higher risk of developing advanced CRC compared to patients
with IBD without PSC, suggesting a more aggressive disease course [2].

Hence, in IBD with concomitant primary sclerosing cholangitis (PSC) the risk of
CRC increases substantially, yielding a 3-to 4-fold higher risk compared with having IBD
alone [21]. In an attempt to explain this augmented risk, in a recent study, de Krijger M
et al. [22] analysed DNA copy number variations, microsatellite instability (MSI), mutations
on 48 cancer genes, and the CpG island methylator phenotype (CIMP) from resection
specimens of 19 patients with PSC–IBD–CRC. Furthermore, they compared these genetic
profiles with two published cohorts of IBD-associated CRC (IBD–CRC; n = 11) and sporadic
CRC (s-CRC; n = 100). The excess risk of CRC in patients with PSC–IBD could not be
explained by copy number aberrations, mutations, MSI, or CIMP status in cancer tissue or
in adjacent mucosa.

Most importantly, no significant differences were found in patterns of chromosomal
aberrations in PSC–IBD–CRC concerning those observed in IBD–CRC and s-CRC. Mutation
frequencies were similar between the groups, except for mutations in KRAS, which were
less frequent in PSC–IBD–CRC (5%) versus IBD–CRC (38%) and sCRC (31%; p = 0.034)
and in APC which were less frequent in PSC–IBD–CRC (5%) and IBD–CRC (0%) versus
sCRC (50%; p < 0.001). Notable cases of PSC–IBD–CRC were frequently CIMP positive
(44%), similar to sCRC (34%; p = 0.574), whilst they were less frequent than in patients with
IBD–CRC (90%; p = 0.037) suggesting that epigenetic changes may play an important role.
Hence, these findings pave the way for further exome-wide and epigenetic studies.

5. The Role of the Intestinal Barrier in Colorectal Cancer Development

The interplay between the intestinal barrier and microbiome is crucial in IBD patho-
genesis. The impairment of the intestinal barrier (especially of the epithelium) and a
concomitant microbiome alteration (defined as ‘dysbiosis’) are considered the cornerstones
of disease development [23,24]. While it is unclear which is the primum movens in this
process, what is certain is that the alteration of mucosal barrier integrity, with the impair-
ment of tight junctions (TJ) and the interaction with a harmful microbiome act as triggers
for immune processes in the lamina propria, activating inflammatory immune processes,
with possible cancer development (Figure 3).

Under physiological conditions, if epithelial barrier function is preserved, commen-
sal bacteria interact with pattern recognition receptors (PRRs) in the apical membrane
of enterocytes, activating a process of microbial tolerance through the inhibition of NF-
kB signalling and the induction of a tolerogenic phenotype of dendritic cells (DCs) and
macrophages [25,26]. Conversely, in the case of dysbiosis and intestinal barrier impair-
ment, the activation of PRRs on basolateral membrane determines the activation of the
inflammatory pathway [27,28]. More in-depth, the interaction of microbial antigens with
lamina propria DCs and macrophages directs the inflammation through the production of
inflammatory cytokines (TNF-α, IL-12 and IL-23) and the consequent activation of innate
immune cells, such as neutrophils and eosinophils. In addition, the interaction between
DCs and microbes activates the adaptative (Th1 and Th17) immune response in mesenteric
lymph nodes. Through the vascular system, activated T cells reach the lamina propria,
spreading inflammation by producing additional inflammatory cytokines (such as IFN-
gamma, IL-17, and IL-22). As previously discussed, the persistence of inflammation can
lead to carcinogenesis and metastasis.
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Figure 3. Intestinal inflammation and evolution to cancer in IBD. The impairment of the mucus
layer and epithelial barrier, associated with dysbiosis, determines the inflammatory response, leading
to IBD disease development and possible cancer evolution. Bile acids and small-chain fatty acids
participate in initiating this process. In the lamina propria, dendritic cells and macrophages, after
their interaction with intestinal microbes, determine the activation of innate immune cells through
the release of numerous cytokines (neutrophils, eosinophils, etc.) and trigger the adaptative (Th1 and
Th17) immune cells differentiation in mesenteric lymph nodes. Activated T cells, through a vascular
homing mediated by the alfa4-beta7–MAdCAM-1 pathway, reach the intestinal lamina propria
and spread the inflammatory process. The persistence of inflammation can lead to carcinogenesis
and metastasis. Proteins involved in maintaining gut barrier function, such as intestinal fatty acid
binding protein and tight junction proteins (shown in the dotted-line circle box in the upper left
corner of the figure), have been proposed as potential biomarkers for cancer detection. Created with
“Biorender.com”. Abbreviations: E. coli, Escherichia coli; ETBF, Enterotoxigenic Bacteroides fragilis; iFABP,
intestinal fatty acid binding protein; IFN, interferon; IL, interleukin; JAM, junctional adhesion molecule;
MAdCAM, mucosal vascular addressin cell adhesion molecule; pks+, polyketide synthase productor; SCFA,
small chain fatty acid; TNF, tumour necrosis factor.

5.1. Microbiome Interaction in Colorectal Cancer Development

In recent years, the role of bacteria in the carcinogenic process has been extensively
explored in several studies through in vitro cell culture, intestinal organoid models, and
mouse models of inflammation.

Immuno-deficient mouse models of CRC supported the mechanisms of microbiota-
induced inflammatory tumorigenesis and susceptibility between individuals depending on
Toll-Like Receptor (TLR)/MyD88 and inflammasome signalling [29].

Currently, three bacterial species have been linked in particular to the process of
human colorectal carcinogenesis: Fusobacterium nucleatum (Fn), Escherichia coli containing
pathogen polyketide synthetase (pks) islands, and Bacteroides fragilis expressing B. fragilis
toxin (BFT) [6].

The intestinal microbiota of patients with IBD demonstrates a greater abundance of
Enterobacteriaceae/E. coli and patients with IBD and CRC have an increased prevalence of
mucosa-associated E. coli compared with non-IBD and non-CRC patients.
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E. coli strains that contain the pks gene cluster have been found more often in biopsies
from CRC (67%) and IBD (40%) than in healthy control subjects (21%). These results
in oncogenic phenotypes manifest in WNT independence and increased proliferation.
The pks encodes colibactin, a genotoxin that can stimulate tumour growth. In mucosal
inflammation, pks+ E. coli promoted DNA damage and neoplastic transformation in a
mouse model [30]. This suggests a direct link between colibactin exposure and increased
cancer risk.

Moreover, Enterotoxigenic Bacteroides fragilis expresses the pathogenic BFT which
binds to a specific colonic epithelial cell receptor, thus activating Wnt and NF-kB sig-
nalling pathways that determined increased cell proliferation, the epithelial release of
pro-inflammatory mediators, and DNA damage. In 90% of patients with sporadic CRC,
the BFT gene sequences were observed compared with 55% of controls and in the stool of
approximately 14% of patients with IBD. Of note, BFT induces acute and chronic colitis
in mice and it promotes IL-17-dependent colon carcinogenesis in the Min Apc+/− mouse
model [31,32].

Furthermore, metabolites such as short-chain fatty acids produced by the commensal
GI microbiota modulate immune cell activation, inflammatory responses, and carcinogen-
esis via tumour suppressor gene expression and regulatory T-cell proliferation through
histone deacetylase inhibition [16]. Other metabolic classes and pathways significantly
dysregulated in CRC include bile acids [33]. Experimental mouse models have shown
that elevated secondary bile acid concentrations promote intestinal tumorigenesis [16].
Wirbel et al. [34] found the bile acid-inducible (bai) operon to be highly abundant in the
stool of CRC patients. They confirmed this finding at both the genomic and transcriptomic
levels using qPCR. Moreover, they supported a link between high dietary fat intake and
CRC [35]. Together, all these data strongly support the promising role of microbiome-based
CRC diagnostics. In the future, identifying disease-specific microbiome signatures for both
IBD and CRC, together with metagenomics sequencing and other culture-independent
technologies, may be helpful for personalised, early, and noninvasive CRC screening in
IBD patients [36].

5.2. Markers of Gut Barrier Functionality for the Early Detection of CRC

Considering the main role of intestinal barrier disruption in CRC development, mark-
ers evaluating its function have been considered for early cancer detection.

Proteins involved in maintaining gut barrier function, such as intestinal fatty acid
binding protein iFABP, have been proposed as potential biomarkers for detecting early-stage
colorectal cancer (CRC) or assessing the malignant potential of adenomas [37]. iFABP is
found in intestinal epithelial cells and its leakage into circulation during intestinal damage
can upregulate its expression. Interestingly, plasma levels of iFABP are higher in patients
with severe UC than in those with mild disease [38].

In addition to iFABP, tight junction proteins such as claudins (CLDNs) and junctional
adhesion proteins (JAMs) have also been implicated in the pathogenesis of gastrointestinal
cancers [39]. The overexpression of CLDNs has been linked to neoplastic transformation
in premalignant epithelial tissue, while lower expression of junctional adhesion proteins
(JAM2) is associated with CRC progression, metastasis, and poor prognosis [40]. Examining
and identifying colonic mucosal barrier integrity markers may aid the early detection and
prediction of the progression of CRC-associated IBD. Probe confocal laser endomicroscopy
(pCLE) is an in vivo histology imaging tool capable of assessing ultrastructural and dy-
namic changes in the intestinal barrier consisting of epithelial cells connected by tight and
adherent junctions.

This technique could predict the therapeutic response, thus paving the way to precision
medicine [41]. The combination of innovative endoscopic techniques able to study intesti-
nal anatomy and cell function as well as new OMICs techniques, termed “Endo-Omics,
will in the future enable a better understanding of IBD, the optimisation of therapeutic
management, and cancer prevention [42].
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6. Selective and Targeted IBD Therapies and Their Anticarcinogenic Role

A commonly acknowledged goal in managing inflammatory bowel disease (IBD) is
to effectively control inflammation and thus induce and maintain deep remission [43,44].
Several studies have emphasised the correlation between decreased inflammatory activity
and a reduced risk of developing CRC [45,46]. Over the last decades, biological therapies
have revolutionised the treatment of IBD. In this context, the role of therapies has been
controversial as it requires a careful assessment of the ratio between the potential benefits
and risks.

It has been hypothesised that the chemopreventive properties of the main classes of
drugs available for IBD treatment are due to their direct (anticarcinogenic mechanisms)
and indirect activity (reducing inflammatory activity) [47,48]. The scientific community
has recently questioned the risk of developing colorectal cancer in IBD patients after being
treated with immunomodulator therapy. However, precise and individual long-term safety
profiles of biologicals, such as monotherapy or in combination with immunomodulators, are
poorly studied. In this context, therapies are considered a double-edged sword in IBD–CRC.
While the curative role of immunosuppressive therapies on chronic intestinal inflammation
is supposed to reduce the risk of colitis-associated CRC, a secondary neoplasm is one of the
most feared sequelae of immune system manipulation [49].

Several studies using different drug classes have yielded conflicting results, ranging
from a protective effect to a negative or absence of an effect. These negative findings are
increasingly attributed to methodological differences. Randomised controlled trials are
often lacking in this field and most studies are observational, including retrospective and
prospective cohort or case-control studies. To overcome these problems, new drugs are
becoming more and more selective, thus reducing the risk of general immunosuppression.

6.1. 5-ASA Compounds

Aminosalicylates (5-ASA), including mesalazine, sulfasalazine, olsalazine, and bal-
salazide are among the oldest therapies currently used to manage IBD. However, despite
new treatment options, 5-ASA compounds remain the effective first-line therapy for a
step-up approach in treating mild to moderate UC and for maintenance of remission [44].
Remarkable, lifelong treatment with 5-ASA is recommended as it has a chemopreven-
tive effect attributed to both direct anticarcinogenic and anti-inflammatory effects. The
immediate anticarcinogenic effect is due to the medication’s interference with multiple
pathways related to DNA replication, response to damage, cell growth and proliferation,
carcinogenesis, and tumour signalling.

Of note, there are several mechanisms involved, including the modulation of proteins
that control the cell cycle [50], inhibition of molecules that regulate angiogenesis [51,52],
scavenging of molecules that increase DNA oxidative stress, and reduction of β-catenin
accumulation in APC-mutated cells [53,54]. In addition, 5-ASA also suppresses the Wnt/β-
catenin pathway, which is an effective anticarcinogenic mechanism. Finally, it has also been
found to induce a cell cycle stop or apoptosis in carcinomatous cells with deficient/mutated
β-catenin or mutated COX-2 [47].

The relationship between 5-ASA use and the risk of CRC has been widely investi-
gated in clinical studies. In a recent meta-analysis, a patient who had been treated with
5-aminosalicylic acid (5-ASA) for their reduced risk of advanced colorectal neoplasia
(aCRN), as indicated by a pooled univariable odds ratio (OR) of 0.53 (95% CI, 0.39–0.72;
I2 = 67%). Furthermore, six studies that provided multivariable ORs also showed a lower
risk (pooled OR, 0.51; 95% CI, 0.39–0.66). However, most included studies had a retrospec-
tive design [55].

Several studies found no or minimal protective effect of sulfasalazine for dose
>2 g/die [55–57]. Accordingly, the central hypothesis for this was lack of efficacy and
poor adherence to treatment. Improving patients’ knowledge is crucial as it could enhance
adherence given that current adherence rates have been reported to be around 40% [58].
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6.2. Thiopurines

Both 6-mercaptopurine and azathioprine are approved as maintenance treatment for
steroid-dependent or refractory IBD [59,60]. Before the widespread use of biological agents,
they were administered in about 50% and 20% of CD and UC patients, respectively [61].
Currently, they are mainly used in addition to monoclonal antibodies, such as anti-tumour
necrosis factor-α and anti-α4β7 inhibitors, to prevent immunogenicity [43,44] and to in-
crease their efficacy. Studies evaluating the chemoprotective effect of thiopurines have had
discrepant results, with most showing no benefit in chemoprevention.

The CESAME (Cancers Et Surrisque Associé aux Maladies inflammatoires intesti-
nales en France) was the first nationwide prospective observational cohort that included
19,486 patients designed to assess the possible excess risk of cancer in patients with IBD
receiving thiopurines. Noteworthy patients receiving thiopurines have an increased risk of
developing lymphoproliferative disorders [62]. Subsequently, a case-control study nested
in the CESAME cohort showed that a significant decrease in the risk of colorectal cancer in
IBD was associated with exposure to aminosalicylates but not to thiopurines [63]. A recent
large meta-analysis with a total of 27 studies showed that thiopurine use reduced the risk
of CRC, particularly in patients with an IBD history of at least 8 years; however, subgroup
analysis based on the geographical location revealed that no protective effect was observed
in studies conducted in North America [64]. These results align with a retrospective cross-
sectional study conducted by Alkhayyat et al. which found a statistically insignificant
correlation between thiopurine usage and CRC in patients with CD and a slight elevation
in the risk of CRC in patients with UC [65]. Several studies showed controversial results;
they may be chemopreventive for CRN but not for ACN/CCR [66] while others found that
they were protective for ACN [67,68]. A systematic review and meta-analysis revealed
that thiopurines may have a protective effect against the development and progression
of colorectal neoplasia (dysplasia and/or cancer), particularly in cases where treatment
exceeds six months, disease duration surpasses eight years, and hospital-based studies
are conducted. Additionally, the protective effect against LGD progression was more
prominent in studies that excluded patients with primary sclerosing cholangitis. However,
there seems to be some discrepancy in the research: another study found that the antineo-
plastic effect primarily targeted ACN/CCR rather than low-grade dysplasia and another
review did not discover a significant protective effect on the risk of colorectal neoplasia
(dysplasia and/or cancer). Finally, several studies investigated the side effects of long-term
thiopurine therapy, revealing an increased risk of extraintestinal cancer (lymphoma and
non-melanoma skin cancer) [69]. Consequently, the long-term use of thiopurines should
not be recommended for colorectal cancer prevention.

6.3. Anti-TNF α Agents

Although anti-TNFα agents have been introduced in clinical practice for many years,
studies evaluating their chemoprotective effect are scarce. Data are mainly extrapolated
from works about long-term safety concerns. Their anticarcinogenic effect seems mainly
due to their anti-inflammatory properties by inducing mucosal healing. However, a direct
antineoplastic role can be hypothesised.

TNF-α is a cytokine that promotes apoptosis of intestinal epithelial cells and acti-
vates the NF-kB transcription pathway, thereby influencing the activity of innate immune
cells [70]. TNFα can promote early epithelial alterations observed in intestinal metaplasia-
dysplasia, inducing epigenetic changes and increasing oncogene expression levels [71]. In
mouse models, TNFα levels were raised in the mucosa and submucosa before CAC was
developed. Treatment with anti-TNFα antibodies significantly improved mucosal healing,
with fewer tumour lesions than controls [72].

The effect of anti-TNF treatment in real-life observational studies has yet to be exten-
sively examined, particularly in population-based settings. However, two cohort studies
that followed IBD patients treated with infliximab for a long-term follow-up did not report
an increased incidence of colorectal cancer [73,74]. Furthermore, data from a multicenter US
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large-scale database study revealed a significant reduction in the risk of colorectal cancer
among patients receiving anti-TNF agents in both CD (OR 0.69; 95% CI, 0.66–0.73) and UC
(OR 0.78; 95% CI, 0.73–0.83), as well as in combined treatment (anti-TNFα and immunomod-
ulators) in CD (OR 0.73; 95% CI, 0.63–0.84) and UC (OR 0.83; 95% CI, 0.70–0.99) [65].

In a recent study from France, the risk of colorectal cancer was only reduced in
patients with long-standing colitis (more than 10 years) (HR 0.41; 95% CI, 0.20–0.86) and
not in all patients treated with anti-TNF [75]. Another study that considered patients who
underwent liver transplantation for primary sclerosing cholangitis and were treated with
infliximab or adalimumab revealed that 3 patients developed colorectal cancer, despite
64% of patients showing endoscopic improvement and 21% achieving remission. However,
due to concomitant immunosuppressive treatment and short-term therapy with anti-TNFα,
clear conclusions could not be drawn [76]. Thus, decisions on the use and timing of
treatment with TNFα antagonists could be made case by case.

6.4. Anti-Lymphocyte Trafficking Agents

Vedolizumab is a humanised IgG1 monoclonal antibody that selectively blocks α4-β7
integrin, preventing the translocation of T cells from vessels to the intestinal and colonic
mucosa. This mechanism of action leads to a drastic drop in mucosal inflammation, making
it effective both for induction and maintenance of the clinical response and remission [77,78].
Given the local immunosuppressive effect, there was a concern that vedolizumab may
increase the risk of epithelial cell dysplasia. However, some studies have suggested that it
may reduce the risk of colorectal cancer by promoting mucosal healing through their local
anti-inflammatory activity rather than through a direct anti-carcinogenic effect.

The initial study examining the impact of vedolizumab treatment on colonic dysplasia
incidence was conducted retrospectively on patients enrolled in the extension phase of the
GEMINI trials. These patients received 300 mg of vedolizumab every 4 weeks for over a year.
The long-term safety study also included patients who were not previously randomised in
the GEMINI trials but received open-label induction therapy with vedolizumab.

Endoscopic/combined healing was reached in 29%/21% CD and 50%/32% of UC
patients, respectively. Surveillance colonoscopies highlighted that low-grade dysplasia in
targeted biopsies (obtained from areas with abnormal mucosal appearance) was observed
in four UC and two CD patients (10%) and none progressed to high-grade dysplasia or
cancer. The only case of high-grade dysplasia was identified in the colectomy specimen
of a UC patient with low-grade dysplasia at biopsies and recurrent moderately active
endoscopic and histological colitis [79].

Some studies report no increased risk for CRC [80,81] in patients with a history of
cancer [82]. In a retrospective observational cohort study, after a median follow-up period
of 19.4 [14.0–29.9] months, 9 out of 75 patients with IBD and PSC treated with vedolizumab
developed CRC. However, it is essential to bear in mind that PSC itself is a risk factor for
CRC [83]. Finally, the Vedolizumab Global Safety Database has reported post-marketing
surveillance data for patients with CD or UC treated with vedolizumab, notably with over
four years of follow-up. These medium-term safety data, covering 208,050 patient years of
vedolizumab exposure, showed no overall increased signals for malignancy in either CD or
UC patients [84].

Other therapies targeting leukocyte trafficking, such as etrolizumab and ontamalimab,
are under investigation. However, although preliminary data showed no increased cancer
risk, more data are needed [85,86].

6.5. Targeting the IL12/IL23 Axis

IL23 is a cytokine produced by immune cells and is involved in the pathogenesis of
IBD and CRC [87]. Its production is increased in the mucosa of mice with colitis and CAC,
and it is associated with an increased level of transcription of BATF, which can induce Th17
cells. It is involved in the development of colitis-associated colon tumours [88].
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The suppression of the function of its receptors (IL12/IL23 p40, IL23 p19, or IL23R)
leads to a marked decrease in colonic inflammation by reducing the activation of immune
cells usually stimulated by this cytokine (mainly, Th 17 cells, granulocytes, and NK cells)
together with the reduced production of proinflammatory cytokines.

Studies on mouse models showed that knocking out molecules involved in IL23
production led to protection from colitis-associated tumours [89] and decreased levels of
antitumorigenic IL12 [90]. Although other studies are needed, targeting IL23 emerges as an
important concept for suppressing gut inflammation and inflammation-associated cancer
growth. Consistently, neutralising antibodies against IL12/IL23 p40 and IL23 p19 have
been successfully used in clinical trials for the therapy of CD [91] and UC [92].

Current evidence does not show an increased overall cancer risk in IBD patients treated
with anti-IL12/23 agents. However, long-term data are lacking in IBD. The IM-UNITI
program followed up with patients with CD for up to 5 years and found no increased risk
of malignancy associated with ustekinumab treatment. In the initial 44 weeks, there were
8 cases of non-melanoma skin cancer (NMSC) across the entire study population with no
significant differences between patients receiving ustekinumab or placebo. From weeks
44 to 96, the rate of treatment-emergent malignancies per 100 patient-years was 2.60 for
the placebo and 0.37 for ustekinumab, though the results are limited by the lack of an
adequate reference group as only 61 patients continued with the placebo beyond week
44 in the long-term extension study [93]. With regard to UC, data from the UNIFI program
with a follow-up period of 3 years revealed an incidence of malignancy per 100 years of
follow-up of 0.72 [95% CI: 0.33–1.36] for ustekinumab and 0.66 [95% CI: 0.08–2.38] for
the placebo. However, the limited size of the placebo reference group during the long-
term extension study (which included only 115 stable patients receiving placebo) makes
interpretation challenging [94]. Observational studies support these findings, suggesting
that malignancies are rare. In a multicentre cohort of 142 CD patients, dose escalation of
ustekinumab up to every 4 weeks did not increase the risk of adverse events, including
malignancies. Over a follow-up period of up to 52 weeks, only one case of cervical
intraepithelial neoplasia and NMSC were reported [95].

Other promising drugs targeting the IL-12/IL-23 axis are mirikizumab, guselkumab,
and risankizumab. These selectively inhibit the p19 subunit of IL23 which seems to be
related to a reduced malignant transformation of colonic lesions [96]. Despite limited real-
life data, cancer risk does not seem to be increased [97]. Nevertheless, more prospective
data are necessary to better understand this context.

6.6. Small Molecules
6.6.1. Targeting the JAK/STAT Pathway

Tofacitinib is a small oral molecule able to mainly inhibit JAK1 and JAK 3. It was
approved for treating ulcerative colitis in 2018 [48]. The activation of the JAK/STAT
pathway determines the production of several proinflammatory cytokines.

Thus, its inhibition can improve colitis and reduce the risk of colorectal cancer [49].
Real-lifee studies about its ability to reduce the risk of colorectal cancer are lacking due to
the short follow-up time. However, an indirect anticarcinogenic effect can be hypothesised
due to its anti-inflammatory action. However, so far there is no evidence that the overall risk
of cancer is increased in patients with IBD treated with JAK inhibitors [98]. A meta-analysis
of RCTs did not find any significant differences in the risk of NMSC between JAK inhibitors
and either placebo or active comparator [RR: 1.21; 95% CI: 0.19–7.65] [99]. Real-world
safety data on tofacitinib in UC patients are limited. In a study by Deepak et al. involving
260 UC patients, only 2 cases of malignancy were observed [100]. Another real-world
cohort of 113 IBD patients showed that only one patient who had prior immunosuppressive
exposure, developed a neoplasm [101]. Moreover, in the long-term extension phase of the
OCTAVE study, only four patients receiving 10 mg of tofacitinib developed CRC during
the follow-up period compared to zero cases among the controls [102].
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Further prospective studies are needed to fully assess the risk of malignancy associated
with JAK inhibitors in IBD. Currently, there are no data on the potential cancer risk of other
Jak inhibitors being developed for IBD. Upadacitinib is a JAK inhibitor highly selective
for JAK1. As well as the aforementioned drugs, data on reducing the risk of CRC can
be hypothesized by its ability to induce endoscopic remission since real word data are
upcoming [103]. In CD, the CELEST extension study showed a rate of endoscopic remission
of 30% after 24 months of follow up and no cases of CRC [104]. In UC, the U-ACHIEVE
maintenance study showed a rate of endoscopic remission of 25% at W52 and one case
of CRC in the 30 mg group [105]. Furthermore, data from clinical trials of the filgotinib
in rheumatoid arthritis show a similar incidence of malignancies compared to other JAK
inhibitors [106,107]. The tyrosine kinase inhibitor decruvacitinib is still in phase II trials
and its safety profile with respect to cancer risk is unknown [108].

6.6.2. Sphingosine-1-Phosphate Receptor Modulators

S1P1 receptor agonists block the migration of lymphocytes from lymphoid organs by
the internalisation and degradation of the S1P1 receptor [109]. Etrasimod and ozanimod
are more selective S1P modulators. Ozanimod is an S1P1 and S1P5 receptor modulator
licensed for UC, while etrasimod is a selective S1P1, S1P4, and S1P5 receptor modulator
under investigation in UC and CD [108]. However, data concerning the risk of colorectal
cancer require a long-term follow-up period; thus, they are not yet available [110] (Table 1).

Table 1. Current and upcoming selective therapies for IBD.

Class Molecule Target Mechanism of Action Licensed Data on CRC Risk

Anti-TNFα
Infliximab

Adalimumab
Golimumab

TNFα
Inhibition of the
TNFα pathway

UC, CD
Not increased [73–75]

UC

Anti-
lymphocyte
trafficking

agents

Vedolizumab α4-β7 integrin
Prevention of

translocation of T cells
from vessels to the

gut mucosa

UC, CD Not increased * [80–82]

Etrolizumab
β7 subunit of
α4β7-αEβ7

integrins
No Not available

Ontamalimab MAdCAM-1 No Not increased ** [86]

IL12/IL23 axis

Ustekinumab p40 subunit of
IL23/IL12

Inhibition of the
IL12-23 pathway UC, CD Not increased * [92–94]

Risankizumab p19 subunit
of IL23

Inhibition of
IL23 pathway

CD Not increased ** [97]

Mirikizumab p19 subunit
of IL23 No Not available

Guselkumab p19 subunit
of IL23 No Not available

JAK inhibitors

Tofacitinib JAK1 and 3

Reduced immune
activation by

inhibition of the
JAK/STAT pathway

UC Not increased * [102]

Upadacitinib JAK 1 UC, upcoming
for CD Not increased ** [103,105]

Filgotinib JAK 1 UC Not increased ** [111]

Deucravacitinib Tyrosine
kinase 2 No Not available

S1P receptor
modulators

Ozanimod S1P1 and
5 receptor Block the migration of

lymphocytes from
lymphoid organs

UC Not increased ** [76]

Etrasimod S1P1, 4 and
5 receptor No Not available

Abbreviations: CD, Crohn’s disease; CRC, colorectal cancer; JAK, Janus kinase; IL, interleukin; MAdCAM,
mucosal addressin cell adhesion molecule; S1P, sphingosine 1 phosphate; STAT, signal transducer and activator of
transcription; UC, ulcerative colitis. * Data from long term safety studies and real-life studies, despite prolonged
follow up, are required. ** Preliminary data from long term safety studies, more data are needed.
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7. Conclusions

Patients with IBD have an increased risk of developing CRC, and the sequence of
events leading to CRC in IBD differs from the sequence observed in sporadic cases. In
IBD–CRC, inflammation plays a significant role in developing dysplasia and, ultimately,
carcinoma. Consequently, preventing inflammation is crucial in minimising the risk of
IBD–CRC.

Estimating the risk of cancer associated with IBD therapy is complex as it is difficult
to separate the risks associated with the therapy from those associated with the underly-
ing disease.

Therefore, an individualised assessment of the risk–benefit ratio of each therapy for
each patient is crucial.

While solid evidence supports the chemopreventive role of 5-ASA and anti-TNFα
in IBD patients, there is still a lack of long-term data on the safety and efficacy of newer
biological therapies such as vedolizumab, ustekinumab, and tofacitinib. Indeed, their long-
term safety profiles, particularly with respect to cancer risk, are not yet fully understood.

The I-CARE (Inflammatory Bowel Disease Cluster for Assessment of Risk and Epi-
demiology) initiative is an important collaborative effort involving 15 countries and over
10,000 IBD patients to investigate the risks associated with IBD therapy, particularly biologi-
cal therapies. It represents a significant step forward in understanding the risks and benefits
associated with IBD therapy, particularly with respect to newer biological agents [112]. The
data generated by this initiative will help inform clinical decision making and ultimately
improve patient outcomes.

However, the decision to use or continue IBD therapy should be made on a case-
by-case basis considering the patient’s individual risk factors, disease severity, and treat-
ment goals.

The close monitoring and surveillance of patients receiving IBD therapy are still
essential to detect any early signs of cancer development. Furthermore, the future of
Endo-Omics will enable better understanding of the mechanisms of IBD cancer prevention
and progression as well as early therapeutic management.
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