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Simple Summary: Wilms tumor (WT) is the most frequent pediatric tumor in children and shows
highly variable histology, leading to variation in classification. Artificial intelligence-based automatic
recognition holds the promise that this may be done in a more consistent way than human observers
can. We have therefore studied digital microscopic slides, stained with standard hematoxylin and
eosin, of 72 WT patients and used a deep learning (DL) system for the recognition of 15 different
normal and tumor components. We show that such DL system can do this task with high accuracy, as
exemplified by a Dice score of 0.85 for the 15 components. This approach may allow future automated
WT classification.

Abstract: (1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk
group classification to guide postoperative stratification in chemotherapy pre-treated WT cases.
However, due to the heterogeneous nature of the tumor, significant interobserver variation between
pathologists in WT diagnosis has been observed, potentially leading to misclassification and sub-
optimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate
and reproducible histopathological assessment of WT through recognition of individual histopatho-
logical tumor components. (2) Methods: We assessed the performance of a deep learning-based AI
system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the
Sørensen–Dice coefficient for fifteen predefined renal tissue components, including six tumor-related
components. We trained the AI system using multiclass annotations from 72 whole-slide images of
patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components
was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to
reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions:
Accurate histopathological classification of WT may be feasible using a digital pathology-based AI
system in a national cohort of WT patients.

Keywords: artificial intelligence; Wilms tumor; pediatric pathology; deep-learning; tumor segmentation

1. Introduction

Wilms tumor (WT), also called nephroblastoma, is the most common type (80–90%)
of pediatric renal tumor [1]. As a result of improved stratification, randomized trials,
improved treatment options, and enhanced supportive care, the 5-year survival rate has
increased from less than 30% in the 1930s to more than 90% at present. However, survival
rates have dropped to less than 30% in case of recurrence. Wilms tumors are heterogeneous,
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consisting of blastemal, stromal and epithelial components. Relapses are more common in
certain WT subtypes, such as those with large blastemal components after preoperative
chemotherapy and those with diffuse anaplasia, also identified as high-risk groups based
on several large-scale epidemiological studies [2,3]. Furthermore, toxic effects later in life
are reported in 25% of WT patients and particularly occur in those who received high-
dose chemotherapy in combination with radiotherapy [4,5]. Hence, to prevent under-
and overtreating patients, histopathological classification has become crucial for proper
treatment stratification and subsequent treatment choice. In the International Society of
Pediatric Oncology (SIOP) 2016 UMBRELLA protocol, this classification is response-based,
following pre-operative chemotherapy, in contrast to the histology-based classification
of the USA National Wilms Tumor Study Group (NWTSG)/Children’s Oncology Group
(COG) which is applied after direct surgery [6,7]. Nevertheless, it has been reported that
quantifying WT components using conventional histopathological assessment has low
reproducibility, and that this is subject to interobserver variability [8]. Artificial intelligence
(AI) could possibly contribute to a more accurate and reproducible quantification and
thereby improve risk stratification. Machine learning (ML) is an AI technique that uses
mathematical algorithms to learn from experience without being extensively supervised by
humans. Especially, deep learning (DL), a subtype of ML that uses multi-layered filtering
steps called neural networks (NNs), shows great promise in healthcare applications [9–11].
For image recognition, the most commonly used model of NN is the Convolutional Neural
Networks (CNNs), which have the ability to extract meaningful image features from pixels
and on the basis thereof derive a specific category [12]. In contrast to other medical fields,
such as dermatology [13], radiology [14] cardiology [15], and urology [16], where AI has
been widely implemented, the use of AI in pathology is still relatively new, and it mainly
focuses on common adult cancer types. Especially in radiology, where large datasets have
been available for a long time, AI has shown great potential. For instance, Yadav et al. [17]
showed that in radiology AI could be beneficiary for the classification of brain tumors;
Hameed et al. [16] displayed the wide range of using AI in the early diagnosis, treatment,
and classification of urological diseases; whereas Khan et al. [18] used AI in neuroimaging
for the early detection of Alzheimer’s disease. The introduction of digitization of glass
slides, called whole-slide imaging (WSI) paved the way for digital pathology [19]. WSI
provides the ability to annotate large datasets and to analyze multiple images using DL.
For example, a recent study on renal pathology showed that the use of a DL-based system
can assist and enhance the quality of classification [20]. Hermsen et al. [21] developed a
DL-based system that sustained a high segmentation performance in kidney components.
However, to provide a dataset that is large enough, time-consuming manual annotations are
needed. In our previous work, we have extensively annotated WTs to provide a sufficiently
large enough dataset [22].

In the current study, the performance of a DL-based system in recognizing normal and
tissue components on digital histological images in a series of Wilms tumors is assessed.
Although AI has been previously investigated in assessing urological diseases and renal
pathology, this will be the first study conducted on WT.

2. Materials and Methods
2.1. Study Design and Population

This study was conducted on 105 patients from a national cohort of WT in the Nether-
lands [23]. All children that were diagnosed between 2014 and 2019, younger than 18 years,
treated according to the SIOP 2001 or UMBRELLA protocol and with informed consent
were included. Approval by the Medical Ethics Committee (MEC 202.134/2001/122, MEC-
2018-026, and MEC-2006-348, and Netherlands Trial Register NL7744 with ethics committee
approval number MEC-2016-739) was obtained. Representative hematoxylin and eosin
(HE)-stained glass slides were retrieved from the pathology archives and digitized. Pa-
tients’ demographics were retrieved from the patient registry of the Princess Máxima
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Center, and histopathology findings were based on conventional pathology according to
SIOP classification [24].

2.2. Image Data Sets

Whole-slide images (WSIs) of WT in HE-stained tissue sections were generated using
a digital slide scanner (Pannoramic P1000; 3DHISTECH Ltd., Budapest, Hungary) with a
20× objective and adapter (additional magnification 1.6×) at a resolution of 0.24 µm/pixel.
The dataset contained 1181 glass slides. Slides of metastases, biopsies, multiple tumors,
and primary nephrectomy specimens without preceding chemotherapy were excluded
from this dataset. Eleven slides were excluded due to poor slide quality.

2.3. CNN Development and Design

For the purpose of the current study, twenty WSI’s were randomly selected. Using
the automated slide analysis platform software (ASAP), a total of 4995 manual annota-
tions with 19 predefined classes were developed, which included vital tumor components,
chemotherapy-induced changes and normal renal tissue, as depicted in Table 1 [22]. Be-
cause of insufficient data, we decided to exclude four components (background, anaplasia,
adrenal medulla and adrenal cortex). To facilitate accurate distinction between the fifteen
remaining classes, two additional overarching classes “tumor” and “non-tumor” were
included. The 4995 annotations were divided into 70% training (to train the algorithm),
15% validation (to fine-tune the algorithm) and 15% testing annotation (to evaluate the
performance of the algorithm) sets. Particular attention was paid to the fact that annotations
from cases used in one set were excluded from the other sets. From the annotations, a large
dataset of patches were extracted to train the model. Two CNN architectures (U-net and
DenseNet) commonly used in segmentation tasks were trained, and their performance
was compared to find the most optimal CNN for this task. The neural networks were
implemented according to Ronneberger et al. and Huang et al., for the U-net and DenseNet,
respectively [25,26]. We trained both neural networks for 200 epochs. Each epoch consisted
of 600 iterations with a batch size of 16 for the DenseNet and 4 for the U-net. During
training, patches measuring 412 × 412 for the U-net and 128 × 128 for the DenseNet
were randomly sampled from the annotated regions at a resolution of 0.5 µm/pixel. The
network was optimized using Adam with a categorical cross-entropy loss [27]. The initial
learning rate was set at 0.0005 and was reduced by a factor of two after a loss plateau of
5 epochs. In addition to standard rotation/flipping, we applied Gaussian blurring and
color augmentations to the patches during training to improve the networks generalization
to variations not seen in the training set. The final layer of both neural networks was a
softmax layer. To get an output of each network, we picked the class with the highest
probability after the softmax layer for each pixel in the input image. Outputs for the WSIs
were generated for both networks by slicing the image into smaller patches and putting
each patch through the network, after which the outputs were stitched together to get an
output for each pixel in the WSI. An overview of the network architectures can be seen in
Table 2. The models were implemented in python (3.6) using Tensorflow (1.15).

Table 1. Annotated tissue components.

Vital Tumor Components Chemotherapy-Induced
Changes Normal Renal Tissue

Blastema
Stroma
Epithelium

Necrosis
Bleeding
Regression

Glomeruli
Tubules
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Table 1. Cont.

Extra Renal Tissue Adrenal Gland Others

Fat
Mesenchyme
Vessels
Nerves
Lymph nodes

Adrenal cortex
Adrenal medulla

Urothelium
Anaplasia
Nephrogenic rest
Background

Table 2. Network architectures.

U-net Training Defaults DenseNet Training Defaults

Patch shape (412, 412) (128, 128)

Sampling spacing 0.5 µm/pixel 0.5 µm/pixel

Loss function categorical cross-entropy categorical cross-entropy

Optimization method Adam [27] Adam [27]

Epochs trained 200 200

Batch size 4 16

Initial learning rate 0.0005 0.0005

Learning rate decay 0.5 after plateau of 5 epochs 0.5 after plateau of 5 epochs

Augmentations used rotation, flipping, Gaussian
noise and color

rotation, flipping, Gaussian
noise and color

Final layer Softmax Softmax

2.4. Histopathological Classification

The conventional histopathological assessment of WT in HE-stained tissue was per-
formed by an experienced pathologist (member of the international SIOP-RTSG WT panel)
and a second review was conducted by a local, but experienced pediatric pathologist. To
classify each WT according to the SIOP-RTSG classification, the pathologist determined the
percentage of blastema, epithelium, stroma, and of therapy-induced changes [7]. Examples
of the histopathological classification are shown in Figure 1.
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Figure 1. Hematoxyin and eosin-stained sections showing histopathological components for WT. The
left image shows blastemal, one of the three recognized tumor components; the right image shows
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2.5. Statistical Analysis

SPSS was used for the descriptive statistics. The performance of the algorithm was
evaluated using the Sørensen–Dice coefficient (F1 score), defined as the ratio of correctly
labeled pixels and the total number of pixels (recall score). The highest score was 1.0
(all pixels correctly labeled) and the lowest score was 0 (no pixels correctly labeled). The
performance was visualized with a confusion matrix, which showed the correct and incor-
rect predictions. The values on the diagonal represent the fraction of correctly predicted
samples for each type of tissue.

3. Results
3.1. Study Population

Out of 105 WT cases, a total of 72 patients met the inclusion criteria; patients with
insufficient slides, metastatic cases, biopsies, primary nephrectomy specimens and patients
with multiple tumors were excluded. These 72 patients were classified and treated accord-
ing to the SIOP 2001 or SIOP-RTSG 2016 UMBRELLA protocol [7]. Tables 3 and 4 show an
overview of the patient characteristics and tumor types. The median age at diagnosis was
51 months (SD 41) and 58% of patients (n = 42) were female. WTs were histopathologically
classified as low risk in 3% (n = 2), intermediate risk in 90% (n = 65) and high-risk WT in
7% (n = 5). All of the 72 patients presented with localized stages; 35% (n = 25) stage I WT,
29% (n = 21) with stage II, and 36% (n = 26) with stage III. The majority was diagnosed with
regressive type, 32% (n = 23) or mixed type, 34% (n = 25).

Table 3. Patient characteristics.

Patient Demographics (n = 72) n (%)

Age in months at time of diagnosis,
Mean (SD) 51.4 (±41.3)

Female gender 42 (58.3)

Left-sided WT localization 41 (56.9)

Lymph node metastases 11 (15.3)

Histology * (n = 72) n (%)

Low risk 2 (2.8)

Intermediate risk 65 (90.2)

High risk 5 (6.9)

Tumor histology * (n = 72) n (%)

Completely necrotic1 2 (2.8)

Regressive 2 23 (31.9)

Epithelial 2 5 (6.9)

Stromal 2 12 (16.7)

Mixed 2 25 (33.8)

Blastemal 3 5 (6.9)

SIOP overall stage (n = 72) n (%)

I 25 (34.7)

II 21 (29.2)

III 26 (36.1)
* Tumor classification according to SIOP-2016. Low-risk 1; Intermediate-risk 2; High-risk 3.
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Table 4. Histopathological characteristics.

Tumor Characteristics (n = 72) n (%)

Chemotherapy-induced changes

<66% 47 (65.3)

>66% 23 (31.9)

100% 2 (2.8)

Blastema

<66% 62 (86.1)

>66% 8 (11.1)

Missing 2 (2.8)

Epithelium

<66% 64 (88.9)

>66% 7 (9.7)

Missing 1 (1.4)

Stroma

<66% 57 (79.2)

>66% 13 (18.1)

Missing 2 (2.8)

3.2. Algorithm Output

For the final result, the output of the DenseNet and U-net was combined, with indi-
vidual overall Dice scores of 0.7721 and 0.7083, respectively. The networks were combined
by taking the average output of the individual neural networks for each pixel in the input.
This yields a slight improvement over the performance of each individual network, with
a Dice score of 0.7767. Figure 2 gives an example of the outputs for DenseNet and U-net,
illustrating the differences between the two networks.
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Figure 2. (a) Prediction of DenseNet (b) Prediction of U-net in the same region, with some ground
truth annotations also depicted. In the image we see WT stroma (pink) interspersed WT blastema
(orange). This is correctly classified by the U-net (b), but not by the DenseNet (a), where no pixels
were classified as WT stroma (pink). However, the U-net is slightly more noisy in the normal stromal
tissue (green) than the DenseNet.

3.3. Algorithm Performance

The classification results are presented in Figure 3. The confusion matrix shows
the classification accuracy for the different classes, as a percentage of correctly labeled
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pixels. The CNN classified pixels were labeled with the histopathological tissue class of
blastema (recall 0.96), stroma (0.59), epithelium (0.38), necrosis (0.99), bleeding (0.92) and
regression (0.77). The overall recall among the fifteen tissue components ranged from 0.38
for epithelium to 1.0 for glomeruli. Incorrect classification of stromal regions occurred
mostly in the category of connective tissue (0.23), whereas connective tissue was mostly
incorrectly classified as regression (0.32). Incorrect classification of epithelium mostly
occurred in the category of blastema (0.29).
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Figure 3. Confusion matrix for the ensemble of DenseNet and U-net. This shows which tissue types
are being confused with each other; the values on the diagonal represent the fraction of correctly
classified pixels for each type of tissue.

An overview of the CNN performance is depicted in Table 5. The CNN yielded Dice
scores for the histopathological components of 0.82 (blastema), 0.67 (stroma),
0.48 (epithelium), 0.98 (necrosis), 0.69 (regression) and 0.36 (bleeding). The Dice score
for tissue components ranged from 0.37 (bleeding)–1.00 (glomeruli). The overall Dice score
of distinguishing the fifteen tissue components is 85% (0.85), and of distinguishing vital
tumor components is 70%. Bleeding yielded a high number of false positives (precision of
0.23), whereas epithelium revealed a high number of false negatives (recall of 0.38).
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Table 5. Accuracy of algorithm in terms of dice coefficient.

Tissue Element Precision Recall Dice Coef.

WT-blastema 0.71 0.96 0.82
WT-stroma 0.77 0.59 0.67
WT-epithelium 0.65 0.38 0.48
Necrosis 0.98 0.99 0.98
Bleeding 0.23 0.92 0.37
Regression 0.62 0.77 0.69
Glomeruli 0.69 1.00 0.82
Tubules 0.98 0.96 0.97
Fat 1.00 0.89 0.94
Mesenchyme 0.57 0.67 0.62
Vessels 0.85 0.77 0.81
Nerves 0.85 0.77 0.81
Lymph nodes 0.99 0.99 0.99
Urothelium 0.46 0.96 0.62
Nephrogenic rests 0.82 0.98 0.89
Chemotherapy-induced changes 0.79 0.90 0.84
Vital tumor components 0.74 0.66 0.70
Overall score 0.85 0.85 0.85

4. Discussion

In this study, we determined whether a DL-based algorithm can be applied to ac-
curately classify tissue elements of WT compared to the conventional assessment by a
pathologist. The overall Dice score was 85% for the DL-based system for distinguishing
fifteen tissue components. For vital tumor components this was 70% and for chemotherapy-
induced changes the Dice score was 84%. This indicates that the overall AI performance is
considered sufficiently high to be used for diagnostic applications. Nevertheless, AI-based
recognition of vital tumor components will benefit from further optimization.

Our system had a high accuracy in quantifying blastema (0.82). However, due to the
heterogeneous nature of Wilms tumors reflected in the HE slides, classification of specific
tissue elements was not always optimal. For example, due to preoperative chemotherapy
(according to the SIOP-RTSG policy), it is known that the distinction between viable tumor
stroma and paucicellular tissue following chemotherapy, that is classified as regression, can
be very hard to recognize and thus to annotate, even for experienced pathologists [28,29].
In addition, normal connective tissue outside the tumor may look identical to regressive
tissue within the tumor. These are the challenges with a DL-based system that derives its
categorization from recognition of individual pixels (i.e., being blind for the larger tissue
context), and has to learn from pathologists. Our results show that in cases where stroma
was misclassified, it was mostly incorrectly classified as connective tissue (0.23), regression
mostly as connective tissue (0.10) or stroma (0.08), and connective tissue as regression
(0.32) or stroma (0.07). Histopathological assessment plays an important role in current
risk group stratification of patients and is important for the future reliable application of
our findings. As an example, immature epithelium consisting of tightly packed tubular
structures with considerable nuclear pleomorphism may strongly resemble blastema and
may thus be hard to distinguish from it [28]. However, epithelial WT is currently classified
as intermediate risk histology in contrast to blastema type which is classified as high risk,
and is related to a higher recurrence risk. The importance is exemplified in our system in
which there was a suboptimal recognition of epithelium (Dice score of only 48%) and when
epithelium was misclassified, it was mostly incorrectly classified as blastema (0.29) [28].
This could potentially lead to misclassification as a higher risk group and therefore result in
treating WT patients too intensively. However, before such a statement can be made, formal
comparison of risk group classification on the basis of this AI system and by pathologists
on a sufficiently large set of cases needs to be pursued.
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The current study is different from previous DL approaches regarding urological dis-
eases/renal pathology. Hara et al. developed a U-net to evaluate tubulointerstitial compart-
ments to classify normal and abnormal renal tubes [20]. Hameed et al. showed the wide
range of DL-based radiology applications used in urological diseases, ranging from robotic
assisted surgery in adults to predicting the benefits of performing a voiding cystourethrogram
in children suspected of having vesicoureteral reflux [16]. Hermsen et al. [21] developed a
U-net for multiclass segmentation of kidney tissue with a Dice score ranging from 0.8–0.84.
This is the first study conducted on the classification of histopathological components of WT.

There are several limitations to this study. Firstly, this is the first study that investigates
automated quantification of WT components, and it is conducted on a limited series of
patients. Therefore, validation in a larger cohort is required. Secondly, anaplasia and
nephrogenic rests were not included in the DL-based system because of the low number
of patients and the rare occurrence of these features. Determining the presence of diffuse
anaplastic WT is often challenging for pathologists. However, diffuse anaplasia, which
is based on the simultaneous presence of three criteria, enlarged nuclei, hyperchromasia
of nuclei and atypical mitoses, represents an adverse prognostic group and is therefore
important to be recognized [28]. Criteria for anaplasia are challenging and teaching this
feature to a DL-based system requires an alternative approach based on point analysis
rather than the field analysis, which was employed here for the 15 tissue classes that were
studied. Thus, analysis of anaplasia was beyond the scope of this study but should be
considered in future studies.

The last limitation of the design of this study is that we only investigated tissue
components of WT without reference to other anatomical structures, such as the renal sinus
and resection margins. Additionally, lymph nodes in resection specimens were outside
the scope of this study. However, for current risk treatment stratification, both tumor
staging and risk group assignment on the basis of histopathological annotations are needed.
Therefore, before AI-based patient risk classification can be pursued and translated towards
treatment choices, further research including validation in a larger cohort including relevant
subtypes, such as diffuse anaplasia and nephroblastomatosis is required.

5. Conclusions

This first AI-translational study on WT histological assessment and automated recog-
nition of normal and tumor histological components showed an overall high performance
of the DL-based system with a Dice score of 85%, suggesting its applicability in clinical
practice for quantification of these rare tumors. Further research maybe conducted to
use a DL-based system in risk group classification in routine pathology. Further research
including the detection of anaplasia, renal sinus characteristics, lymph node histology and
other staging criteria, as well as a more accurate prediction of blastemal, epithelial cells
and nephroblastoma is required. Studies in parallel to a conventional risk classification
that include large international cohort studies (such as in SIOP-RTSG) with appropriate
treatment and outcome data are necessary to validate such an approach before it is feasible
to use in clinical practice.
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8. Vujanić, G.M.; Sandstedt, B.; Kelsey, A.; Sebire, N.J. Central pathology review in multicenter trials and studies. Cancer 2009,
115, 1977–1983. [CrossRef]

9. Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [CrossRef]
10. Chahal, A.; Gulia, P. Machine learning and deep learning. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 4910–4914. [CrossRef]
11. van der Kamp, A.; Waterlander, T.J.; de Bel, T.; van der Laak, J.; Heuvel-Eibrink, M.M.V.D.; Mavinkurve-Groothuis, A.M.C.; de

Krijger, R.R. Artificial Intelligence in Pediatric Pathology: The Extinction of a Medical Profession or the Key to a Bright Future?
Pediatr. Dev. Pathol. 2022, 25, 380–387. [CrossRef] [PubMed]

12. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

13. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]

14. Tariq, A.; Purkayastha, S.; Padmanaban, G.P.; Krupinski, E.; Trivedi, H.; Banerjee, I.; Gichoya, J.W. Current Clinical Applications
of Artificial Intelligence in Radiology and Their Best Supporting Evidence. J. Am. Coll. Radiol. 2020, 17, 1371–1381. [CrossRef]

15. Lopez-Jimenez, F.; Attia, Z.; Arruda-Olson, A.M.; Carter, R.; Chareonthaitawee, P.; Jouni, H.; Kapa, S.; Lerman, A.; Luong,
C.; Medina-Inojosa, J.R.; et al. Artificial Intelligence in Cardiology: Present and Future. Mayo Clin. Proc. 2020, 95, 1015–1039.
[CrossRef]

16. Hameed, B.; Dhavileswarapu, A.S.; Raza, S.; Karimi, H.; Khanuja, H.; Shetty, D.; Ibrahim, S.; Shah, M.; Naik, N.; Paul, R.; et al.
Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. J. Clin.
Med. 2021, 10, 1864. [CrossRef]

17. Yadav, A.S.; Kumar, S.; Karetla, G.R.; Cotrina-Aliaga, J.C.; Arias-Gonzáles, J.L.; Kumar, V.; Srivastava, S.; Gupta, R.; Ibrahim, S.;
Paul, R.; et al. A Feature Extraction Using Probabilistic Neural Network and BTFSC-Net Model with Deep Learning for Brain
Tumor Classification. J. Imaging 2022, 9, 10. [CrossRef]

18. Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble Model for Diagnostic Classification of Alzheimer’s Disease
Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics 2022, 12, 3193. [CrossRef]

19. Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Silva, V.W.K.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs,
T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019,
25, 1301–1309. [CrossRef]

https://doi.org/10.3978/j.issn.2224-4336.2014.01.09
https://www.ncbi.nlm.nih.gov/pubmed/26835318
https://doi.org/10.1586/14737140.1.4.555
https://www.ncbi.nlm.nih.gov/pubmed/12113088
https://doi.org/10.1002/pbc.21267
https://www.ncbi.nlm.nih.gov/pubmed/17539021
https://doi.org/10.3109/08880010903019344
https://www.ncbi.nlm.nih.gov/pubmed/19657990
https://doi.org/10.1038/nrurol.2016.247
https://doi.org/10.1136/wjps-2019-000038
https://doi.org/10.1038/s41585-018-0100-3
https://doi.org/10.1002/cncr.24214
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.35940/ijitee.L3550.1081219
https://doi.org/10.1177/10935266211059809
https://www.ncbi.nlm.nih.gov/pubmed/35238696
https://doi.org/10.1016/j.media.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.1038/nature21056
https://www.ncbi.nlm.nih.gov/pubmed/28117445
https://doi.org/10.1016/j.jacr.2020.08.018
https://doi.org/10.1016/j.mayocp.2020.01.038
https://doi.org/10.3390/jcm10091864
https://doi.org/10.3390/jimaging9010010
https://doi.org/10.3390/diagnostics12123193
https://doi.org/10.1038/s41591-019-0508-1


Cancers 2023, 15, 2656 11 of 11

20. Hara, S.; Haneda, E.; Kawakami, M.; Morita, K.; Nishioka, R.; Zoshima, T.; Kometani, M.; Yoneda, T.; Kawano, M.;
Karashima, S.; et al. Evaluating tubulointerstitial compartments in renal biopsy specimens using a deep learning-based approach
for classifying normal and abnormal tubules. PLoS ONE 2022, 17, e0271161. [CrossRef]

21. Hermsen, M.; De Bel, T.; den Boer, M.; Steenbergen, E.J.; Kers, J.; Florquin, S.; Roelofs, J.; Stegall, M.D.; Alexander, M.P.;
Smith, B.H.; et al. Deep Learning–Based Histopathologic Assessment of Kidney Tissue. J. Am. Soc. Nephrol. 2019, 30, 1968–1979.
[CrossRef]

22. Rutgers, J.J.; Bánki, T.; van der Kamp, A.; Waterlander, T.J.; Scheijde-Vermeulen, M.A.; Heuvel-Eibrink, M.M.v.D.; van der
Laak, J.A.W.M.; Fiocco, M.; Mavinkurve-Groothuis, A.M.C.; de Krijger, R.R. Interobserver variability between experienced and
inexperienced observers in the histopathological analysis of Wilms tumors: A pilot study for future algorithmic approach. Diagn.
Pathol. 2021, 16, 77. [CrossRef]

23. Roy, P.; van Peer, S.E.; de Witte, M.M.; Tytgat, G.A.M.; Karim-Kos, H.E.; van Grotel, M.; van de Ven, C.P.; Mavinkurve-Groothuis,
A.M.C.; Merks, J.H.M.; Kuiper, R.P.; et al. Characteristics and outcome of children with renal tumors in the Netherlands: The first
five-year’s experience of national centralization. PLoS ONE 2022, 17, e0261729. [CrossRef] [PubMed]

24. van den Heuvel-Eibrink, M.M.; Hol, J.A.; Pritchard-Jones, K.; van Tinteren, H.; Furtwängler, R.; Verschuur, A.C.; Vujanic, G.M.;
Leuschner, I.; Brok, J.; Rübe, C.; et al. Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP–RTSG 2016 protocol.
Nat. Rev. Urol. 2017, 14, 743–752. [CrossRef] [PubMed]

25. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.
[CrossRef]

26. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016.

27. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
28. Popov, S.D.; Sebire, N.J.; Vujanic, G.M. Wilms’ Tumour–Histology and Differential Diagnosis. In Wilms Tumor; Codon Publications:

Singapore, 2016; pp. 3–21. [CrossRef]
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