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Simple Summary: Histone deacetylase inhibitors (HDACIs) represent a relatively new drug class
with potent regulatory effects on the epigenetics in cancer, ranging from apoptosis induction and
cancer cell death to cell cycle arrest. In spite of the fact that HDACIs have, so far, received approval
for the treatment of mainly hematologic malignancies, there are numerous preclinical, as well as,
clinical trials in the setting of (triple negative) breast cancer with very promising results. In this
study, we aimed at assessing the clinical importance of HDAC-2 in triple negative breast cancer. A
total of 138 breast cancer specimens were examined immunohistochemically. This current study
demonstrated that increased HDAC-2 expression correlates with significant clinicopathological
parameters of triple negative breast cancer patients, such as survival, recurrence, and disease stage.

Abstract: Background/Aim: Triple negative breast cancer belongs to the most aggressive breast cancer
forms. Histone deacetylases (HDACs) constitute a class of enzymes that exhibit a significant role in
breast cancer genesis and progression. In this study, we aimed at assessing the clinical importance
of HDAC-2 in triple negative breast cancer. Materials and Methods: A total of 138 breast cancer
specimens were examined on an immunohistochemical basis. A statistical analysis was performed in
order to examine the association between HDAC-2 and the survival and clinicopathological features
of the patients. Results: Increased HDAC-2 expression was observed in every fourth case of triple
negative breast cancer with positive HDAC-2 staining, whereas only 12 out of 98 non-triple negative
breast cancer samples showed high HDAC-2 expression. HDAC-2 overexpression correlated with
prolonged overall survival (OS) and disease-free survival (DFS) in triple negative breast cancer.
Conclusions: High HDAC-2 levels in triple negative breast cancer seem to positively influence patient
survival, disease stage and recurrence.
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1. Introduction

In the United States, breast cancer is the leading malignancy and the second most
prevalent cancer death cause in female patients [1]. Triple negative breast cancer composes
a breast cancer type whose cells do not express receptors for the human epidermal growth
factor receptor 2 (HER2) protein or the hormones progesterone and estrogen, and accounts
for roughly 15% of all breast cancer [2]. Signs and symptoms of patients with triple
negative breast cancer are similar to other common breast cancer types, yet triple negative
breast cancer correlates with higher metastasis and recurrence rates, hence accounting
for a more aggressive behavior [3]. Consequently, the diagnosis of triple negative breast
cancer commonly occurs in advanced tumor stages, while the 5-year survival rate drops to
12%, in the presence of distant metastases [4]. In initial stages, breast-conserving surgery,
followed by postoperative radiotherapy, and complete mastectomy represent first-line
therapeutic options for localized triple negative breast cancer [5]. Chemotherapy represents
the key systemic therapy form, alongside a main element of combined treatment [6],
with currently applied chemotherapeutic regimens ranging from taxanes and platinum
compounds, to anthracyclines or antimetabolites [7]. Due to the lack of progesterone
receptor (PR), estrogen receptor (ER) and HER2 expression, triple negative breast cancer
patients may not profit from endocrine and trastuzumab therapy, but require targeted drugs,
antibody-drug conjugates, or immunotherapy, especially in advanced tumor stages [4].

The fundamental unit of DNA structural organization that makes it easier for genetic
material to be packaged into a denser form that fits inside the eukaryotic nucleus is called
a nucleosome. More specifically, a positively charged histone octamer made up of two
identical copies of each of the four core histone proteins—H2A, H2B, H3, and H4—is
wrapped by a negatively charged DNA strand [8–10]. The assembly of basal factors to
form the preinitiation transcriptional complex is hampered by this condensed formation
with low levels of acetylation on the lysine residues of the aminoterminal tails [11,12]. The
lysine residues’ positive charge is neutralized by post-translational acetylation of their
NH2-terminal tails, which reduces the histones’ affinity for the negatively charged DNA.
As a result, transcription and DNA strand uncoiling are possible [13,14]. Histone acetylases
(HATs) and histone deacetylases (HDACs) work against each other to modulate histone
acetylation [15]. HDACs catalyze the removal of acetyl groups from the NH2-terminal
lysine residues of core nucleosomal histones, which results in transcriptional repression
and the silencing of tumor-suppressor genes (Figure 1) [16,17]. Consequently, a multitude
of studies have demonstrated the connection between histone acetylation/deacetylation
and carcinogenesis [18,19], suggesting that dysregulation of histone acetylation may be a
significant factor in the onset and spread of human cancer.

There are 18 identified human HDACs, which are divided into 4 classes according to
both their function and structure (Table 1). Bearing in mind that these HDACs can affect
human DNA, the scientific interest was shifted towards the study of their inhibitors. As
a matter of fact, several HDAC inhibitors (HDACIs) have received approval by the U.S.
Food and Drug Administration (FDA) and are being used against hematological malig-
nancies [14]. Additionally, numerous HDACIs seem to play promising therapeutic role
against a variety of malignancies including non-small cell lung, hepatocellular colorectal,
endometrial, pancreatic, thyroid, breast, cervical cancer, and melanomas [10,14,20].
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Specifically, for the HDAC-2, it has been shown to be involved in various cancer
entities, ranging from melanoma, lung cancer, medulloblastoma, and hematological ma-
lignancies, to colorectal, pancreatic, urothelial, and prostate cancer [21]. Interestingly,
numerous study groups recently also explored the role of HDAC-2 in breast cancer and
highlighted its oncogenic capacities in different breast cancer types [14,22–26]. Hu et al.
recently reported that pan-HDAC inhibitors that target the neural precursor cell-expressed
developmentally down-regulated 9 (NEDD9)-focal adhesion kinase (FAK) pathway in-
crease breast cancer metastasis in preclinical models, potentially seriously impeding the
therapeutic success of these drugs. It is worth considering that pan-HDAC inhibitors
have the potential to change the course of breast cancer by enhancing invasion [27]. In
addition, by increasing secretory pathway calcium ATPase 2 (SPCA2) expression, HDAC
inhibitors encourage the transition from mesenchymal to epithelial in triple negative breast
cancer cell lines, indicating that aberrant epigenetic regulation of SPCA2 is linked to poor
prognosis and breast cancer metastasis [28]. Treatment with HDAC inhibitors can also
cause pro-apoptotic proteins like BAK and BAX to express. Consequently, they can be used
in conjunction with tamoxifen, which primarily induces apoptosis in ER-positive breast
cancer cells [28].

Nevertheless, patient-derived triple negative breast cancer tumor samples are not
included in the majority of these studies; instead, HDAC-2 expression has been examined
in breast cancer cell lines or xenograft tumor models. This current study aims to investigate
the expression of HDAC-2 by immunohistochemistry in tissue samples from triple negative
breast cancer patients and its relationship to the clinicopathological characteristics of the
tumor and the prognosis of the patient.



Cancers 2024, 16, 209 4 of 11

2. Materials and Methods
2.1. Clinical Material

Between 2008–2018, female patients with a breast tumor diameter < 20 mm were
included in this study. All patients solely underwent surgery but did not receive (neo-)
adjuvant chemo- or radiotherapy, either due to lack of indications or personal choice.
Patients included in the current study were only stage I–III patients with recurrent triple
negative breast cancer whose cause of death was directly related to disease recurrence.
Stage IV triple negative breast cancer patients, patients with tumor size > 20 mm, pre-
operatively treated patients, and patients whose death correlated with irrelevant medical
conditions were excluded from the study (Scheme 1).
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The seventh edition of the American Joint Committee on Cancer (AJCC) Grouping
system and the Tumor, Node, Metastasis (TNM) system were used to assess tumor stag-
ing [29]. Disease-free survival (DFS) was defined as the time interval between the initial
diagnosis and the recurrence of the disease, whereas overall survival (OS) was defined as
the duration from surgery to death. Written informed consent was obtained from each
patient involved in this study before their clinical data and biological specimens were
evaluated. The National and Kapodistrian University of Athens Medical School gave its
approval to the study (Approval ethic code: 1718004914).
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2.2. Immunohistochemistry

Initially, tissue samples from triple negative breast cancer were fixed with formalin
and embedded in paraffin. Using rabbit polyclonal anti-HDAC-2 (H-5, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA, sc-7899) antibodies, the expression of HDAC-2 was assessed
by immunohistochemistry. Following the manufacturer’s instructions, the antigen was
recovered by heating slides in 10 mM citrate buffer for 15 min. After combining 0.3%
hydrogen peroxide with methanol and letting it sit for 30 min at room temperature in the
dark, the endogenous peroxidase activity was eliminated. After that, all sections were
incubated with anti-HDAC-2 antibodies (H-54, sc-7899, Santa Cruz Biotechnology) at room
temperature for one hour at a dilution of 1:200 in phosphate-buffered saline (PBS—Primary
Antibody Diluent, ScyTek Laboratories Inc., Logan, UT, USA). Thereafter, there were two
more 10 min room-temperature incubations, one with a biotinylated linking reagent and
one with a streptavidin label conjugated with peroxidase. Then, to increase immune
peroxidase activity, a 3,3′-diaminobenzidine tetrahydrochloride (DAB) substrate kit (Ultra-
Vision Quanto HRP Detection System, Thermo Fisher Scientific, Labvision Corporation,
Fremont, CA, USA) was used. Hematoxylin was used to stain the sections. The study
employed irrelevant anti-serum or primary antibody omission as negative controls, while
tissue sections from pancreatic adenocarcinoma with observably elevated HDAC-2 levels
served as positive controls. The tumor’s cell proliferative index was assessed using p53
immunohistochemical expression (−: negative, +: low, ++: middle, +++: high).

2.3. Evaluation of Immunohistochemistry

Two separate pathologists measured at least 1000 malignant cells per section using
immunohistochemistry; they were not aware of the clinical details. The intensity (0: nega-
tive, 1: mild, 2: moderate, 3: strong) and percentage of HDAC-2 positive cells (0: negative
staining, 1: less than 10%, 2: equal to or more than 10% and less than 33%, 3: equal to or
more than 33% and less than 66%, and 4: equal to or more than 66%) were used to evaluate
immunohistochemical staining. The cases were then divided into two groups based on
the HDAC-2 immunohistochemistry scores, which were calculated by multiplying these
two parameters: 0–6 points indicated low HDAC-2 expression, and 7–12 points indicated
high HDAC-2 expression. Ki67 staining was regarded positive in case the percentage of
positively stained tumor nuclei exceeded 10%.

2.4. Statistical Analysis

Standard deviation (SD) was used to express mean values for quantitative variables.
Both absolute and relative frequencies are displayed for qualitative variables. The Mann–
Whitney test was used for non-normal distribution, while the student’s t-test was calculated
for mean value comparisons in the case of a normal distribution. Over the course of the
follow-up period, Kaplan–Meier survival estimates for the events were plotted. Survival
curves were compared using log-rank tests. The Cox proportional hazard model was
employed to identify independent variables related to survival and recurrence. From the
outcomes of the Cox-regression analyses, hazards ratios (HR) with 95% confidence intervals
(95% CI) were calculated. The statistical software SPSS 22.0 (SPSS Corporation, Chicago, IL,
USA) was used for the analyses, with a significance level of p < 0.05.

3. Results

Triple negative breast cancer tissue samples from forty female patients with an average
age of 67.3 years (SD = 10.8 years) and a tumor diameter of less than 20 mm were included
in the study. The mean tumor size was 14.3mm (SD = 8.3mm) in diameter, and the resection
margin was tumor free (R0 resection) with a mean margin of 0.6 mm (SD = 1.1 mm). In
total, 90% of the patients had ductal, 30% Grade 2 and 70% Grade 3 triple negative breast
cancer. 20% of the cases were at stage I, 30% at stage II and the remaining 50% at stage III.
The mean Ki67 value was 38% (SD = 21.1%). The median follow-up period was 4.7 years.
Sample demographics, clinical and pathological characteristics are presented in Table 2. To
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assess the intensity of immunohistochemical staining of the triple negative breast cancer
samples, an additional 98 samples of non-triple negative breast cancer from patients who
met the study criteria were employed as well.

Table 2. Sample demographics and clinical characteristics.

Clinicopathological
Parameter Mean Value Standard Deviation (SD)

Patients Age 67.3 10.8

Tumor Diameter (mm) 14.3 8.3

Resection Margin (mm) 0.6 1.1

Ki67 38.0 21.1

Tumor Samples (N) Percent (%)

Histological type
Ductal 36 90

Lobular 4 10

Grade
2 12 30
3 28 70

p53
− 4 10
+ 0 0

++ 8 20
+++ 12 30

Stage
0 0 0
I 8 20
II 12 30
III 20 50

−: negative, +: low, ++: middle, +++: high.

Increased HDAC-2 expression was observed in 11 (27.5%) of the 40 cases of triple
negative breast cancer that showed positive HDAC-2 staining (Figure 2 and Table 3).
Tumor-free tissue sections were negative for HDAC-2 expression.

The 40 triple negative breast cancer tissue specimens showed a higher percentage of
HDAC-2 overexpression, compared to the 98 non-triple negative breast cancer tissues that
met the study criteria (27.5% vs. 12.2%, p = 0.029) (Table 3 and Figure 3).

As stated in the study criteria, all patients experienced disease relapse and breast
cancer-associated death. Mean DFS was 17.8 months (SD = 2.7 months), with the median
being 9 months. Mean OS was 29.9 months (SD = 2.99 months), with the median being
30 months. Kaplan–Meier estimates for both OS and DFS significantly differed for low
versus high HDAC-2 expression (log-rank test, p < 0.05) (Figure 4).
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Table 3. Immunohistochemical HDAC-2 expression in triple negative breast cancer.

Tissue Samples

Immunohistochemical Expression

Low High

N % N %

Triple negative breast cancer 29 72.5 11 27.5

Non-triple negative breast cancer 86 87.8 12 12.2

Multiple Cox-regression analysis for survival showed an 81% lower hazard for patients
with high HDAC-2 expression (p = 0.014) after adjusting for age, immunohistochemical
expression, stage, grade, and Ki67 (Table 4).

Table 4. Multiple Cox-regression analysis results for survival.

Variables

95% CI—HR

HR
Immunohistochemical Expression

p
Low High

Age 1.02 0.98 1.06 0.281

Immunohistochemical expression 0.19 0.05 0.72 0.014

Grade (3 vs. 1–2) 0.94 0.36 2.47 0.903

Stage 1.06 0.66 1.69 0.824

Ki67 0.99 0.97 1.01 0.369
HR: Hazard Ratio (95% Confidence Interval).

Multiple Cox-regression analysis for relapse revealed that patients with high HDAC-2
expression had a 74% lower hazard (p = 0.017) and that stage increase by 1 increases the
relapse hazard by 4.27 times (p = 0.006), after adjustment for age, immunohistochemical
expression, stage, grade, and Ki67 (Table 5).
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Table 5. Multiple Cox-regression analysis results for the relapse.

Variables

95% CI—HR

HR
Immunohistochemical Expression

p
Low High

Age 1.01 0.97 1.05 0.685

Immunohistochemical expression 0.26 0.08 0.78 0.017

Grade (3 vs. 1–2) 1.30 0.47 3.56 0.615

Stage 2.05 1.23 3.41 0.006

Ki67 0.97 0.94 1.00 0.053
HR: Hazard Ratio (95% Confidence Interval).

4. Discussion

HDAC-2 has been stated to play an important role in various breast cancer sub-
types [14,22–26]. In this present study, we investigated the clinical importance of the
expression of HDAC-2 in triple negative breast cancer. Our results indicated that triple
negative breast cancer shows a higher percentage of HDAC-2 overexpression, in compari-
son with non-triple negative breast cancer tissues. DFS and OS were positively associated
with the overexpression of HDAC-2, with patients with high HDAC-2 expression levels
exhibiting significantly lower hazard for survival and relapse. Notably, stage increase
significantly increases the relapse hazard.

So far, only three studies have explicitly investigated the role of HDAC-2 in triple
negative breast cancer. Xu et al. investigated the expression of HDAC-2 in triple negative
breast cancer cells, and found it to be significantly lower in non-triple negative breast cancer
than in triple negative breast cancer. However, the survival analysis from the online website
GEPIA2 revealed an association of high HDAC-2 expression with poor prognosis in breast
cancer patients [22]. Furthermore, Xie et al. found levels of pyruvate dehydrogenase kinase
1 (PDK1), which are upregulated by HDAC-2, to be significantly higher in MDA-MB-231
triple negative breast cancer cells. Of note, a correlation analysis between PDK1 and HDAC
levels in breast cancer samples from the Cancer Genome Atlas (TCGA) dataset highlighted
that high HDAC-2 expression had a poor OS probability [23]. On the contrary, Garmpis
et al. indicated ER- and HER2-positive breast cancer specimens to exhibit higher HDAC-2
levels than PR-positive or triple negative breast cancer specimens, whereas DFS and OS
showed a negative association with the overexpression of HDAC-2 [14].

Our study results are, hence, partly contradictory to the outcomes of the aforemen-
tioned relevant studies. Nevertheless, these discrepancies may be, first of all, justified
by the differences in the chosen study materials. In our study, we incorporated 40 triple
negative breast cancer tissue samples from 40 female patients with a tumor diameter of
less than 20 mm and compared them with 98 non-triple negative breast cancer tissue
samples, whereas the other study groups either used triple negative breast cancer cell lines
or extensive breast cancer datasets. In comparison with the previous relevant work of
our study group [14], double so many patients with triple negative breast cancer were
included in the present study, hence providing a more extensive and consequently more
reliable database in terms of statistical analysis. Secondly, the inclusion criteria differed
for each study, while the criteria for HDAC-2 expression evaluation were not the same,
respectively. Thirdly, the use of different antibodies, as well as different methods in terms
of tissue sample processing, might have also led to the above contradictions.

5. Conclusions

In summary, this present study demonstrated that increased HDAC-2 expression is
associated with very important clinicopathological parameters of triple negative breast
cancer patients, such as survival, recurrence and disease stage. Given both the rarity and the
aggressiveness of this breast cancer subtype, more research incorporating larger datasets
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needs to be conducted, in order for HDAC-2 to be defined as a novel trustworthy index of
aggressiveness, as well as a target in the context of triple negative breast cancer treatment.
Future trials should, thus, focus on the role of HDAC-2 in triple negative breast cancer, by
explicitly using or, at least, distinguishing triple negative breast cancer samples from other
breast cancer subtypes that evidently exhibit distinctive molecular patterns. This is also a
precondition in terms of the future development of effective HDAC inhibitors that could
suppress the action of HDACs and express efficient anti-tumor activity, hence paving the
way for novel therapeutic approaches in (triple negative) breast cancer treatment.
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