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Simple Summary: High-grade gliomas (HGGs) in the cerebellum of children have been rarely de-
scribed. We studied the histological and molecular features of a series of five pediatric high-grade
gliomas in the cerebellum. These unique cases showed histological and immunohistochemical simi-
larities to medulloblastoma, which is a main differential diagnosis of poorly differentiated tumors in
the cerebellum in children. Furthermore, these tumors showed high scores by NanoString-based tran-
scriptomic assay for medulloblastoma. Genomic methylation profiling, however, revealed that they
clustered to the glioblastoma subclasses. TP53 mutations were found in all cases by panel sequenc-
ing. This study adds to the rare pathological and molecular characterization of pediatric cerebellar
high-grade gliomas and shows that their histological, immunohistochemical, and transcriptomical
characteristics overlap with those of medulloblastoma. We recommend the use of both methylation
array and TP53 screening in the differential diagnoses of poorly differentiated embryonal-like tumors
of the cerebellum.

Abstract: Pediatric high-grade gliomas (HGG) of the cerebellum are rare, and only a few cases have
been documented in detail in the literature. A major differential diagnosis for poorly differentiated
tumors in the cerebellum in children is medulloblastoma. In this study, we described the histological
and molecular features of a series of five pediatric high-grade gliomas of the cerebellum. They
actually showed histological and immunohistochemical features that overlapped with those of
medulloblastomas and achieved high scores in NanoString-based medulloblastoma diagnostic assay.
Methylation profiling demonstrated these tumors were heterogeneous epigenetically, clustering to
GBM_MID, DMG_K27, and GBM_RTKIII methylation classes. MYCN amplification was present in
one case, and PDGFRA amplification in another two cases. Interestingly, target sequencing showed
that all tumors carried TP53 mutations. Our results highlight that pediatric high-grade gliomas of the
cerebellum can mimic medulloblastomas at histological and transcriptomic levels. Our report adds
to the rare number of cases in the literature of cerebellar HGGs in children. We recommend the use
of both methylation array and TP53 screening in the differential diagnoses of poorly differentiated
embryonal-like tumors of the cerebellum.
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1. Introduction

Brain tumors are the most common solid tumors in children and the leading cause of
childhood solid cancer deaths in children [1]. Around half of the CNS tumors in children are
gliomas [2]. In children, low-grade gliomas account for the majority of cases, whereas high-
grade gliomas (HGG) are infrequent [3,4]. High-grade gliomas in children in the cerebellum
are very rare, accounting for approximately <1% of all pediatric brain tumors [3–5].

Many large series of pediatric high-grade gliomas contain no or very few cerebellar
cases, and detailed molecular features have not been described or separated from those
of supratentorial pediatric HGGs [6–8]. In a series of 51 pediatric high-grade gliomas,
only a single case was located in the cerebellum [9]. In another large meta-analysis of
1069 high-grade gliomas in children, there were only 21 cerebellar-midline cases [10]. Only
5 of the 21 cases were examined for methylation profiling and mutations [10]. Reinhardt
et al. described a large series of 86 cerebellar glioblastomas of different ages [11]. Twenty-
five cases of this series were by methylation profiling high-grade astrocytomas of piloid
features, generally a circumscribed tumor found in adults [12,13]. Only thirteen cases
of this large series were pediatric [11]. Five of them were also secondary to previous
radiation treatment [11]. Mutational profiling was available only in 5/13 cases, and three
of the cases carried IDH mutations. These patients were, however, 15 years or above and
thus belonged to young adult gliomas [11]. In a recent study, Buccoliero et al. described
11 pediatric high-grade gliomas, and only one case was located in the cerebellum [14].
Histological anaplasia in pilocytic astrocytomas has been described, but this is currently
only categorized as a subtype of pilocytic astrocytoma by the World Health Organization
(WHO) Classification (2021), and they may be confused with high-grade astrocytomas of
piloid features mentioned above [13,15].

World Health Organization Classification (2021) now classifies many pediatric-type
high-grade gliomas into an IDH-wildtype H3-wildtype group. Korshunov et al. [16] classi-
fied such tumors into pedGBM_RTK1 (enriched for PDGFRA amplification), pedGBM_RTKII
(enriched for EGFR amplification), and pedGBM_MYCN (enriched for MYCN amplifi-
cation) groups, but only 4/87 cases of their series were cerebellar. So, overall, cerebellar
HGGs in children are poorly documented and characterized.

Although there is insufficient information concerning rare cerebellar high-grade
gliomas in children, a key differential diagnosis in poorly differentiated cerebellar tu-
mors in children is medulloblastoma, as both are histologically poorly differentiated neu-
roepithelial tumors. In this study, we found from the archives of our two institutions
five cases of pediatric cerebellar high-grade gliomas that not only histologically closely
mimicked medulloblastomas but also transcriptomically overlapped with the latter. We
further studied them by methylation profiling, bulk RNAseq, and target sequencing. They
clustered to glioma-related subtypes by methylation profiling and showed copy number
variations (CNVs) found in glioblastomas. We further demonstrated that all cases harbored
TP53 mutations.

2. Materials and Methods
2.1. Patients

The cases were identified from the archives of the Chinese University of Hong Kong
and Huashan Hospital, Fudan University, Shanghai. We reviewed cases from our hospital
systems cerebellar high-grade gliomas and medulloblastomas for the period 2002–2022 for
the Chinese University of Hong Kong and 2013–2022 for Huashan Hospital, Shanghai. The
latter only routinely admitted pediatric patients at a later period. The cases described in
this report, including three cases previously diagnosed as medulloblastomas as described
in the Results, were the only cases of cerebellar high-grade gliomas in children we could
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eventually identify. In the same period, there were 192 pediatric medulloblastomas resected
at our institutions. Histological review was carried out by two neuropathologists (HKN and
HC). Histological examination and immunohistochemistry were as per routine practice.

2.2. Fluorescence In Situ Hybridization (FISH)

BRAF fusion, MYCN amplification, and PDGFRA amplification were evaluated by
FISH. BAC clone (RP11-355H10) containing the genomic sequences of chromosome 2p24
and the centromeric probe (CEP 2 (D2Z1), Vysis) were employed to detect MYCN alter-
ation. For PDGFRA amplification, PDGFRA probes (CTD-2054G11 and RP11-231C18) and
centromeric probes (CEP 4, Vysis) were used. For KIAA1549-BRAF fusion, 3 clones of P1-
derived artificial chromosomes spanning the entire BRAF gene (RP4-726N20, RP5-839B19,
and RP4-813F11) and a centromeric enumeration probe for chromosome 7 (CEP7) were
used. The target probes were labeled with Spectrum Orange, and reference probes were
labeled with Spectrum Green. FISH criteria were described in our previous studies [17,18].
At least 100 non-overlapping signals were scored and analyzed in this study. BRAF fusion
was considered when BRAF/CEP7 ratio was ≥1.15, and more than 20% of tumor cells
showed relative BRAF gain [19]. MYCN and PDGFRA amplifications were defined when
>5% of cells displayed clusters or a ratio of target to reference signal > 2 [17].

2.3. Methylation Profiling

Genome-wide methylation profiling was performed on FFPE tissues by Sinotech Ge-
nomics Co., Ltd., Shanghai, China, and as previously used by us [20]. Briefly, DNA was
extracted, bisulfite modified, restored, and hybridized to an Illumina Infinium Methyla-
tion EPIC 850K BeadChip array. After hybridization, arrays were washed and scanned.
Signal intensities in the IDAT files were subjected to background correction and dye-
bias normalization, according to Capper et al. [21]. Sex chromosome probes and probes
targeting the known SNPs were excluded from the analysis. T-SNE (t-distributed stochas-
tic neighbor embedding) plot was generated with Rtsne R package v0.13 according to
Capper et al. [21]. IDAT files were also uploaded to DKFZ molecular classifier (www.
molecularneuropathology.org, accessed on 1 January 2024).

2.4. Identification of Copy Number Variations with 850K Array

Detection of copy number variations (CNV) was conducted similar to our previous
publication [22]. Briefly, the ‘conumee’ R package in Bioconductor was used to determine
copy number variations. The cutoff for amplification/loss and homozygous loss were
log2 ratios ±0.35 and −0.415, respectively [23].

2.5. Target Sequencing

Target sequencing was performed on FFPE tissues, as previously used [20]. Briefly,
DNA was extracted and purified from FFPE tissues with truXTRAC FFPE Kits (Covaris,
Woburn, MA, USA). Libraries were prepared using KAPA HyperPrep kit (Roche, Cape
Town, South Africa). The DNA libraries were evaluated for quality and quantity prior to
library sequencing with HiSeq platform (Illumina, San Diego, CA, USA). Paired-end reads
were aligned to the hg19 (GRCh37) build of the human reference genome. Variants were
called and annotated with smCounter2 and wANNOVAR. Variants that did not pass the
quality filters, had variant allele fractions < 10%, had variant allele counts ≤ 5, or had minor
allele frequencies > 1% in 1000 Genomes or gnomAD exome databases were excluded from
further analysis.

2.6. Detection of TERT Promoter Mutation

TERT promoter mutations were detected by Sanger sequencing as per our previous
study [24,25]. In brief, crude cell lysate was prepared from FFPE sections. DNA from the
lysate was mixed with forward primer, reverse primer, and KAPA HiFi HotStart ReadyMix
(Roche, Cape Town, South Africa) in a PCR reaction. The primer sequences were TERT-F
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(5′-GTCCTGCCCCTTCACCTT-3′) and TERT-R (5′-CAGCGCTGCCTGAAACTC-3′), and
the amplified fragment spanned the two mutational hotspots (C228T and C250T) in the
TERT promoter region. PCR products were visualized on electrophoresis gel, purified, and
sequenced with BigDye Terminator Cycle Sequencing kit v1.1 (Life Technologies, Carlsbad,
CA, USA).

2.7. Target RNA Sequencing

For target RNA sequencing, total RNA was extracted with RNeasy FFPE kit (Qiagen,
Hilden, Germany). The quantity and quality were evaluated, and RNA passing the quality
check was converted into cDNA. Libraries were then prepared with TruSight RNA Pan-
Cancer Target Genes (Illumina), which was designed to examine 1385 cancer-related genes.
Paired-end reads were aligned to human genome assembly GRCh37 (hg19). STAR aligner
and STAR fusion caller were employed to call for fusion genes.

2.8. Nanostring-Based Affiliation

A Nanostring-based assay was used previously to detect the transcript abundance
of 22 medulloblastoma group-specific genes and 3 housekeeping genes [26]. Together
with an R script, the assay provides molecular subgroup prediction for medulloblastoma
by a confidence score. This assay was widely used in the molecular subgrouping of
medulloblastomas [26,27]. In brief, RNA samples from FFPE tissues were extracted using
RNeasy FFPE Kit (Qiagen) and then were assessed by NanoDrop 2000 spectrophotometer.
RNA samples were then hybridized to the NanoString nCounter CodeSet at 67 ◦C for
20 h. Hybridized samples were then purified and immobilized on cartridges with the
nCounter Prep Station (NanoString Technologies, Seattle, WA, USA). Fluorescent signals
were then read by the nCounter Digital Analyzer (NanoString Technologies). Raw data was
then normalized with R package ‘NanoStringNorm’, and predictions for medulloblastoma
subgroups were made with package ‘pamr’.

2.9. Immunohistochemistry

GFAP, Ki67, Olig2, Synaptophysin, and p53 were examined by immunohistochemistry.
Briefly, FFPE tissues of 4 µm thickness were dewaxed in xylene and rehydrated in graded
alcohol. Immunohistochemical staining was performed in BenchMark ULTRA automated
tissue staining system (Ventana Medical Systems, Rotkreuz, Switzerland) or Bond Max
automated platform (Leica Biosystems, Nußloch, Germany). Sections were incubated with
the GFAP (Dako, Z0334, 1:2500), Ki67 (Thermo Fisher, Waltham, MA, USA, SP6, 1:200),
Olig2 (IBL-America, Minneapolis, MN, USA 18953, 1:120), Synaptophysin (Novocastra,
Newcastle Upon Tyne, UK, NCL-L-SYNAP-299, 1:50), and p53 (Dako, Santa Clara, CA,
USA, DO-7, 1:40). Immunostaining was detected with the OptiView DAB IHC Detection
Kit (Ventana Medical Systems). A tumor was scored as p53 positive if >10% of tumor nuclei
showed strong nuclear staining [28].

3. Results

The clinical features of this series of five patients are presented in Supplementary
Table S1. Four cases had very poor overall survival (OS) ranging from five months to a
year, and four patients received adjuvant therapy post-surgery (Supplementary Table S1).
The one surviving patient was a recent case. The MR images and histological features
are shown in Figure 1 and Supplementary Figure S1. The radiologic images of one case,
however, were already archived by the hospital and could not be found. By imaging, all
five cases were somewhat centrally rather than peripherally located in the cerebellum. The
epicenters of these tumors were all located in the cerebellar hemisphere or peduncles.
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Figure 1. Histological and immunohistochemical features of tumor samples. (A–E) Case 1. (A) T2
MRI showing large fourth ventricular tumor. (B) H&E showing monomorphic sheets of small
hyperchromatic embryonal-looking cells with no cytoplasm (×200). Tumor cells were positive for
(C) synaptophysin (×400), (D) Olig2 (×200), and (E) p53 (×200). Tumor cells were negative for GFAP
and NeuN, positive for INI-1, and showed high Ki67 labeling (not shown). (F–J) Case 2. (F) T2 MRI
showing large tumor involving cerebellar peduncle and fourth ventricle. (G) H&E showing features
similar to case 1 with sheets of primitive-looking cells (×200). Immunostaining for (H) synaptophysin
(×400), (I) Olig2 (×200), and (J) p53 (×200). Tumor cells were negative for NeuN and focally positive
for GFAP, positive for INI-1, and showed high Ki67 labeling (not shown). (K–O) Case 3. (K) T2
MRI shows tumor at cerebellar peduncle. Histology shows (L) groups of hyperchromatic cells with
no cytoplasm packed together (×200) with small foci of necrosis and microvascular proliferation
(not shown). Immunostaining for (N) synaptophysin (×200) and (M) GFAP (×400). Tumor cells
were focally positive for Olig2, negative for NeuN, positive for INI-1, positive for p53, and showed
high labeling for Ki67 (not shown). (O) FISH demonstrates PDGFRA amplification consistent with
CNV findings. (P–T) Case 4. (P) T2 MRI showing large cerebellar tumor. (Q) H&E shows sheets of
hyperchromatic embryonal cells with small foci of microvascular proliferation (×400). Expression of
(R) synaptophysin (×400) and (S) Olig2 (×200). Tumor cells were focally positive for p53 and GFAP,
negative for NeuN, positive for INI-1, and showed high labeling for Ki67. (T) FISH shows MYCN
gains consistent with CNV findings.
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Histologically, all five cases closely resembled medulloblastomas with structureless
sheets of closely packed, monomorphic, embryonal-like blue cells with hyperchromatic
nuclei and little cytoplasm. Homer-Wright rosettes were absent. Morphological features
of astrocytes-like fibrillary cells or gemistocytes were also absent. No nodules were seen.
No feature of pilocytic astrocytoma was present. Small foci of necrosis (cases 3 and 5) and
microvascular proliferation (cases 3 and 4) were noted. Immunohistochemically, all tumors
stained strongly for synaptophysin (one case focal) and also strongly for Olig2 (one case
focal), but only variably for GFAP. Ki67 labeling was very high for all five tumors. They
also stained strongly for p53 (one case focal) (Figure 1 and Supplementary Figure S1).

Two cases (#1 and 2) were interrogated by the Nanostring-based assay for molecular
grouping of medulloblastomas at the time of diagnosis. High confidence scores were
obtained, and these cases were assigned medulloblastoma molecular subgroups (Figure 2).
Two other cases were now similarly successfully studied, and one case achieved a high score
(Figure 2). One older case was unsuccessfully studied by Nanostring. Three cases, including
the two cases with initial high confidence scores, were diagnosed as medulloblastomas
with the corresponding molecular subgroups at the initial diagnoses (cases 1, 2, and 5). The
other two cases were diagnosed with high-grade gliomas at initial diagnoses.

Methylation profiling using Illumina Infinium 850K chips was performed retrospec-
tively for all cases, and they were mapped against the tSNE map of the DKFZ Molecular
Neuropathology reference cohort. According to Capper et al., glioblastomas can be epi-
genetically divided into GBM RTK II and GBM mesenchymal (MES), and less frequently,
GBM RTK I, GBM RTK III, GBM MID, GBM MYCN, and GBM G34 [21,29]. Three cases
were clustered in proximity to or overlaid with the GBM_MID class. One case was clustered
in proximity to the DMG_K27 class, and one other case was clustered to the GBM_RTKIII
class (Figure 3). Copy number variation (CNV) analysis of methylation profiling identified
MYCN amplification in one case and PDGFRA amplification in another two cases (Figure 2).
These amplifications were confirmed by fluorescence in situ hybridization (FISH) (Figure 1
and Supplementary Figure S1). As mentioned in the Introduction, PDGFRA and MYCN
amplifications were characteristic of some pediatric H3-wildtype high-grade gliomas [16].

We further carried out a custom-designed panel DNA sequencing on all five cases
(Supplementary Table S2). TP53 mutations were found in all five tumors, four being mis-
sense and one being frame-shift mutation consistent with the immunostaining
(Figures 1 and 2, Supplementary Figure S1). Other recurrent mutations identified in this
study were KMT2D and PDGFRA mutations. H3F3A, HIST1H3B, BRAF, TERT promoter,
and IDH mutations were not detected in all cases. The absence of H3 mutations was im-
portant in spite of their somewhat central locations in the posterior fossa, as that excluded
infiltration of the cerebellum from a diffuse infantile pontine glioma (DIPG), which is
usually H3K27-mutated. Germline mutations were screened by targeted sequencing in two
patients where blood samples were available, and one patient showed PBRM1 mutation
(p.D163N) and CCND1 mutation (p.A270V). Both variants were regarded as of unknown
significance by standard guidelines. No germline TP53 mutations could be identified.

RNA sequencing was conducted to test for the presence of fusion genes. Only three
cases (cases 1, 3, and 5) showed sufficient materials for the assay, and no fusion was
identified. All cases were also tested for BRAF fusion by FISH, and they were all negative.
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4. Discussion

Pediatric cerebellar high-grade gliomas are rare, and our current understanding of
the molecular alterations underlying these tumors is scarce. Only a very small number of
cerebellar tumors have been included in the large cohorts of pediatric high-grade gliomas
as mentioned in the Introduction. Our small series shows that rare pediatric cerebellar
high-grade gliomas may display histological, immunohistochemical, and transcriptomic
similarities to medulloblastomas. All five tumors of this series histologically resembled
medulloblastomas with sheets of closely packed hyperchromatic embryonal-like cells with
scanty cytoplasm. Moreover, histologically, they all showed strong immunostaining for
synaptophysin, which is one of the commonest stains used for the diagnosis of medulloblas-
toma in pathology practice [30]. Apart from ETMR, the mimics of medulloblastoma do not
usually express neuronal markers such as synaptophysin [30]. Conversely, Olig2 or GFAP
positivity should only be found in a small number of cells in medulloblastomas [30–32]. In
three of our cases, necrosis or microvascular proliferation was present; these histologic fea-
tures are not unique to glioblastomas but can be used as clues in such diagnostic scenarios
in addition to Olig2.

The nanostring-based assay has been widely used in the diagnostic and molecular
grouping of medulloblastomas [27], but it is also known that a small number of non-
medulloblastoma brain tumors may be misdiagnosed by the assay. Of 239 cases of “medul-
loblastomas” evaluated by Nanostring by Korshunov et al. [33], 18 cases (8%) were finally
diagnosed as other brain tumors by methylation profiling. The three cases illustrated in
this series show that cerebellar high-grade gliomas can achieve very high confidence scores
in Nanostring assay for medulloblastoma molecular groups, in addition to histological
similarity to medulloblastomas, and support the notion that methylation profiling should
be used as the investigation of choice for studying poorly differentiated cerebellar tumors
in children.

All five tumors showed TP53 mutations, which could be found in nearly half of the
non-brainstem pediatric high-grade gliomas and in almost all H3F3A G34V/R gliomas [7].
As detailed in the Introduction, cerebellar HGGs are rare, and only a few have been
molecularly characterized. Zhang et al. examined 854 pediatric brain tumors of different
types by whole genome sequencing (WGS) and/or RNAseq and identified only four
cerebellar high glioma gliomas, and three of them had TP53 mutations. The tumor without
TP53 mutations carried NF1 mutation [34]. Also, the only pediatric cerebellar high-grade
gliomas in the Buccoliero et al. study showed TP53 mutation, and this was the sole mutation
found in this tumor [14]. Furthermore, in a previous study of 32 radiation-induced pediatric
gliomas, 2 out of the 8 radiation-induced, cerebellum high-grade gliomas carried TP53
mutations [35]. Interestingly, TP53 is also mutated in a subgroup of SHH-medulloblastomas
with worsened progress [36]. Immunostaining for p53 is a useful screening method for
TP53 mutation in routine pathology practice [37].

In summary, we provided detailed histological and genomic characterization for a
small series of rare sporadic pediatric cerebellar high-grade gliomas. They may mimic
medulloblastoma histologically, immunohistochemically, and transcriptomically. Our
findings support the notion that in addition to the usual tools to differentiate embryonal
tumors, methylation profiling should be used as the investigation of choice for studying
poorly differentiated cerebellar tumors in children.

5. Conclusions

This study expands our knowledge of rare pediatric cerebellar high-grade gliomas.
We showed that pediatric cerebellar high-grade gliomas can be transcriptomically and
histologically similar to medulloblastomas. We recommend using methylation profiling
whenever feasible, Olig2 and p53 staining in delineating differential diagnoses of poorly
differentiated embryonal-like tumors of the cerebellum, in addition to the usual tools to
differentiate other embryonal tumors like ATRT (atypical teratoid/rhabdoid tumor) and
ETMR (embryonal tumor with multilayered rosettes).
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16010232/s1, Table S1: Clinical features of the five cases;
Table S2: List of genes used in target sequencing panel; Figure S1: (A–E) Case 5. MR images are not
available. (A) H&E shows sheets of embryonal cells with scanty cytoplasm, similar to the other cases.
(B) necrotic foci are seen (×200). Immunostaining for (C) synaptophysin (×400), (D) Olig2 (×200),
and (E) p53 (×200). Tumor cells were also focally positive for GFAP and negative for NeuN, positive
for INI-1, and showed high labeling for Ki67.

Author Contributions: Z.-F.S. and A.P.-Y.L. contributed equally and are co-first authors. Y.M. and
H.-K.N. are the co-corresponding authors. H.-K.N. and A.P.-Y.L. designed the study. H.-K.N., H.C.
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