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Simple Summary: Tumor cells shed pieces of DNA that circulate in biofluids like blood and urine.
The amount of circulating tumor DNA is related to the amount of cancer in the body. Knowing the
amount of cancer helps doctors predict outcomes and decide treatments for patients. Tumor DNA has
methylation patterns that makes it distinct from non-cancer DNA. In this study, we describe a new
method called tumor methylated fraction (TMeF) that quantifies the cancer-indicative methylation
patterns within circulating tumor DNA from blood samples. This method is non-invasive because it
does not need tumor tissue to estimate the amount of cancer in the body. In the future, doctors could
use TMeF to supplement current cancer screening methods.

Abstract: Estimating the abundance of cell-free DNA (cfDNA) fragments shed from a tumor (i.e., circu-
lating tumor DNA (ctDNA)) can approximate tumor burden, which has numerous clinical applications.
We derived a novel, broadly applicable statistical method to quantify cancer-indicative methylation
patterns within cfDNA to estimate ctDNA abundance, even at low levels. Our algorithm identified
differentially methylated regions (DMRs) between a reference database of cancer tissue biopsy samples
and cfDNA from individuals without cancer. Then, without utilizing matched tissue biopsy, counts of
fragments matching the cancer-indicative hyper/hypo-methylated patterns within DMRs were used
to determine a tumor methylated fraction (TMeF; a methylation-based quantification of the circulating
tumor allele fraction and estimate of ctDNA abundance) for plasma samples. TMeF and small variant
allele fraction (SVAF) estimates of the same cancer plasma samples were correlated (Spearman’s cor-
relation coefficient: 0.73), and synthetic dilutions to expected TMeF of 10−3 and 10−4 had estimated
TMeF within two-fold for 95% and 77% of samples, respectively. TMeF increased with cancer stage and
tumor size and inversely correlated with survival probability. Therefore, tumor-derived fragments in the
cfDNA of patients with cancer can be leveraged to estimate ctDNA abundance without the need for a
tumor biopsy, which may provide non-invasive clinical approximations of tumor burden.

Keywords: biomarkers; circulating tumor DNA; DNA methylation; computational methods; machine
learning algorithms; liquid biopsy; cell-free DNA; tumor fraction; variant allele fraction

1. Introduction

Estimates of tumor burden (i.e., the amount of cancer in the body) can guide the
clinical management of cancer. Tumor burden is associated with disease outcomes and acts
as a prognostic indicator [1–3]. As such, it can inform treatment decisions and therapeutic
strategies. In addition, response to treatment and disease recurrence can be evaluated
by assessing changes in tumor burden over time [4,5]. Yet, measuring tumor burden
for broad clinical applications remains a challenge, as current options are mostly limited
to radiological imaging. The current standard of care, computed tomography (CT), is
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relatively accessible but has limitations [6]. For example, detectability is dependent on the
size and location of lesions [7], uni- or bi-dimensional measurements of diameter may not
correspond to actual tumor volume [5,7–9] (with acknowledgment that methods like FDG-
PET/CT measure metabolic tumor volume and are being adopted in some clinical practices
and trial designs [10–12]), the subjective nature of selecting and measuring lesions can
lead to variability in tumor measurements [13–15], and serial scanning must be balanced
with increasing radiation burden [16]. A promising supplemental approach to quantifying
tumor burden and capturing tumor growth kinetics is cell-free DNA (cfDNA) analysis.

Biofluids (e.g., blood, urine) from individuals with cancer contain cfDNA derived
from both normal cells and cancer cells. Blood levels of cancer-derived cfDNA, termed
circulating tumor DNA (ctDNA), have been shown to correlate with tumor volume for
multiple cancer types [17–19]. Additionally, clinical markers of cancer aggressiveness
(e.g., tumor mitotic and metabolic activity, depth of invasion) correlate with ctDNA levels,
suggesting that ctDNA analysis captures information on tumor growth, which could better
inform risk stratification and prognosis prediction compared to imaging-based assessments
of tumor size [20]. Thus, estimating ctDNA abundance in patient blood samples is a
promising surrogate measure of tumor burden that can augment imaging.

A portion of ctDNA fragments contain cancer-associated alleles, which allow ctDNA to
be distinguished from normal cfDNA. This fraction of cfDNA in circulation that originates
from a tumor and contains cancer-associated alleles is defined as the circulating tumor
allele fraction (cTAF) [21]. cTAF is a measurement of ctDNA, and thus approximates overall
tumor burden. Higher cTAF, as estimated across a variety of ctDNA detection platforms,
has been correlated with worse clinical outcomes [20–24].

Current strategies for estimating cTAF largely rely on small variant allele fraction
(SVAF) measurements. This approach uses the direct measurement of cfDNA fragments con-
taining small variants, such as somatic single nucleotide variants (SNVs), small insertions,
and deletions using digital PCR, quantitative PCR, and error-corrected deep sequencing [25].
To improve sensitivity, this approach is often “tumor-informed,” meaning it requires se-
quencing of matched tumor samples to identify the small variant alleles subsequently used
to detect ctDNA in blood samples [26–28]. However, sufficient quantities of tumor tissue are
not always available following diagnostic and prognostic testing, and obtaining additional
tissue biopsies can be difficult or impossible depending on the tumor location [29,30]. Addi-
tionally, these tumor-informed methods are anchored on the primary tumor specimen and
can be limited by the clonal diversity and ongoing clonal evolution of the tumor itself [31].
SVAF can be measured with a tissue-free (cfDNA-only; no tumor tissue required) approach,
but this is limited by any lack of overlap between tumor-derived variants and the previously
defined variants assessed in existing assays. Noise from sources like clonal hematopoiesis
of indeterminate potential is also problematic with this approach [32,33], although white
blood cell sequencing can be performed as an extra step to remove noise.

DNA methylation patterns provide an alternative, optionally tissue-free means of
distinguishing cancer from non-cancer cfDNA to estimate cTAF and approximate tumor
burden. Site-specific DNA methylation patterns are characteristic indicators of cellular
identity, including neoplastic state [34,35]. The DNA methylation patterns in tumor cells
are preserved in ctDNA where they are indicative of cancer presence as well as cancer
type [36,37]. Several investigators have evaluated techniques to estimate cTAF from methy-
lation patterns in cfDNA using targeted sequencing, whole-genome bisulfite sequencing
(WGBS), and qPCR, with mixed performance [38–46]. Most of these methods have not
been applied to targeted methylation data, nor have they demonstrated accurate quantifi-
cation of ctDNA at low concentrations, which is critical for clinical applications (e.g., early
cancer detection and minimal residual disease (MRD) monitoring). Here, we describe a
novel, sensitive, tissue-free statistical method to quantify cancer-indicative methylation
patterns within cfDNA from biofluids to calculate the tumor methylated fraction (TMeF).
We robustly demonstrate an order of magnitude improvement in the lower limit of accurate
quantification over previously published approaches.
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2. Materials and Methods
2.1. Sample Origin and Prior Processing

Plasma of participants with and without cancer had been previously obtained through
the Circulating Cell-Free Genome Atlas (CCGA; NCT02889978) substudy 1 (n = 398 non-
cancer) [47], CCGA substudy 2 (n = 2061 cancer, 1585 non-cancer) [36], and CCGA substudy
3 (n = 1434 cancer, 1051 non-cancer) [37]. Inclusion and exclusion criteria for the CCGA
substudies have been described previously [36,37]. Briefly, all participants were over
20 years of age and provided written informed consent. Participants with cancer across all
clinical stages diagnosed by screening or clinical presentation were enrolled. Participants
with current or prior treatment for a diagnosed cancer were excluded. Blood and tissue
samples were collected before enrolled participants started definitive therapy. For the
substudies, participant samples were selected to meet a pre-specified distribution of cancer
types. Formalin-fixed paraffin-embedded biopsy tissues (n = 1113) had also been obtained
from participants with cancer in the CCGA substudies. Additional tissue and cell type
samples had been obtained commercially via Discovery Life Sciences, Huntsville, AL, USA
(formerly Conversant Biologics, Inc.). Tissue samples were selected so that each pre-defined
cancer label category was represented by at least 15 WGBS tissue samples (note that only
the Anus label had less than 15, with 14 sequenced tissue samples; Figure 1b,c).
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values correspond to the number of cancer tissue samples per cancer label. 

Tumor sample collection, accessioning, storage, and processing were performed pre-
viously as described in the supplemental information provided in Liu et al. 2020 [36]. 
WGBS of tumor tissue and plasma samples from CCGA substudy 1 was performed pre-
viously as described in the supplemental information provided in Liu et al. 2020 [36]. Tar-
geted methylation processing and bisulfite sequencing of plasma samples from CCGA 
substudies 2 and 3 were performed previously as described in the supplemental infor-
mation provided in Liu et al. 2020 [36]. 
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cfDNA (red) relative to non-cancer-derived cfDNA. (b) Within each cancer sample, hundreds to
thousands of DMRs were identified. The number of DMRs identified per sample per cancer label is
plotted and overlaid as a violin plot summarizing the distribution across the samples. (c) For each
DMR identified within each cancer label, the prevalence of the DMR (i.e., the fraction of cancer tissue
samples in which the DMR occurs) per cancer label was estimated. The distributions of the DMR
prevalence estimates per cancer label are each displayed as a violin plot overlaid with a box plot. N
values correspond to the number of cancer tissue samples per cancer label.

Tumor sample collection, accessioning, storage, and processing were performed previ-
ously as described in the supplemental information provided in Liu et al. 2020 [36]. WGBS
of tumor tissue and plasma samples from CCGA substudy 1 was performed previously
as described in the supplemental information provided in Liu et al. 2020 [36]. Targeted
methylation processing and bisulfite sequencing of plasma samples from CCGA substudies
2 and 3 were performed previously as described in the supplemental information provided
in Liu et al. 2020 [36].

2.2. Data Processing and Statistical Analysis

We reanalyzed data previously obtained from the CCGA substudies, and R version
4.1.2 (RRID: SCR_001905) was used for all statistical analyses.

2.3. Data Processing and Statistical Analysis—Differentially Methylated Region Calling

To distinguish cancer-derived cfDNA from cfDNA shed from non-cancerous cells,
we identified a differentially methylated region (DMR) for each cancer-indicative methy-
lation pattern (i.e., a methylation pattern identified from cancer tissue WGBS samples
that was hyper- or hypo-methylated relative to non-cancer cfDNA at 5 contiguous CpG
sites; Figure 1a). DMRs were identified separately for 1113 CCGA cancer tissue biopsy
samples relative to plasma-derived cfDNA WGBS pooled from 398 individuals without
cancer from CCGA and defined using data processing and calling thresholds detailed in the
Supplementary Materials (Supplementary Methods and Supplementary Methods Figures
SM1 and SM2). Briefly, selected DMRs had cancer-indicative methylation patterns that
(1) occurred in less than 0.1% of fragments from the non-cancer plasma WGBS samples (i.e.,
<0.1% noise) and (2) were present in at least 20% of fragments that contain the contiguous
CpG sites of the DMR in at least one cancer sample.

2.4. Data Processing and Statistical Analysis—DMR Clustering

In addition to distinguishing cancer from non-cancer, DMRs can distinguish different
cancer types. To identify DMRs for different cancer types, we limited our analysis to regions
corresponding to a panel of targeted methylation regions from a previously validated multi-
cancer early detection (MCED) test (Galleri®, GRAIL, LLC, Menlo Park, CA, USA) for each
cancer tissue biopsy sample [36,37]. This MCED test assesses differentially methylated
patterns at these targeted regions to provide up to 2 cancer signal origin (CSO) predictions
among 20 CSO label options. Similarly, in the present study, the DMRs identified in
individual cancer tissue biopsy samples were merged into 20 cancer labels (defined to be
consistent with the MCED test CSO labels): Anus, Bladder and Urothelial Tract, Bone and
Soft Tissue, Breast, Cervix, Colon and Rectum, Head and Neck, Kidney, Liver and Bile
Duct, Lung, Lymphoid Lineage (excluding the Plasma Cell Lineage; this includes both
Hodgkin’s and non-Hodgkin’s lymphoma as well as B-cell chronic lymphocytic leukemia
and B-cell lymphoblastic leukemia/lymphoma), Melanocytic Lineage (defined here as
melanoma of the skin), Myeloid Lineage (includes Acute Myeloid Leukemia and Chronic
Myeloid Leukemia), Neuroendocrine Carcinoma (NEC) of Lung or Other Organs, Ovary,
Pancreas and Gallbladder, Plasma Cell Lineage, Prostate, Stomach and Esophagus, and
Uterus. For each cancer tissue WGBS sample, we calculated the observed frequency of
each cancer-indicative methylation pattern occurring within DMRs from all cancer labels.



Cancers 2024, 16, 82 5 of 20

The frequencies within cancer tissue samples of the 50 most prevalent DMRs per cancer
label (767 unique DMRs in total) were visualized in a heatmap (Figure 2). DMR prevalence
was defined as the expected fraction of cancer tissue samples with a particular cancer label
that possesses a particular DMR. Both DMRs and samples within each cancer label were
hierarchically clustered using Manhattan distance. Cancer labels were clustered using
Spearman’s distance applied to the mean DMR frequency profile across samples of the
same cancer label.
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Figure 2. DMRs delineated cancer type-associated methylation patterns. A heatmap depicting the
observed DMR frequency of the 50 most prevalent DMRs per cancer label (x-axis) across tissue
samples (y-axis). Samples within each cancer label were clustered using Manhattan distance, and
cancer labels were clustered using Spearman’s distance applied to a per cancer label average. DMRs
were clustered by Manhattan distance.

2.5. Data Processing and Statistical Analysis—DMR Heme Filtering

DMRs for solid cancer labels were additionally filtered to remove any DMRs derived
from the hematopoietic lineage by removing overlapping DMRs from custom DMR sets
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comprising lymphoid lineage, myeloid lineage, and plasma cell lineage. This reduced
interference from potentially confounding blood conditions when utilizing DMRs in down-
stream applications (e.g., cTAF estimation) and filtered DMRs derived from hematopoietic
lineage cells resident in tissue biopsy samples. A median of 62% of DMRs were filtered out
per solid cancer label (Table 1).

Table 1. Number of DMRs within each cancer label. DMRs identified in solid cancer labels were
filtered to remove DMRs identified in the plasma cell lineage, lymphoid lineage, or myeloid lineage
(i.e., “heme filtering”). The number of DMRs before and after filtering as well as the fraction removed
are depicted.

Number of DMRs in Each Cancer Label

Cancer Label Unfiltered DMRs Heme-Filtered DMRs Fraction Removed

Anus 27,804 10,176 0.63
Bladder and Urothelial

Tract 39,587 16,278 0.59

Bone and Soft Tissue 7389 3875 0.48
Breast 76,882 32,916 0.57
Cervix 30,740 10,397 0.66

Colon and Rectum 111,576 47,363 0.58
Head and Neck 51,231 21,965 0.57

Kidney 15,173 7542 0.5
Liver and Bile Duct 21,186 7856 0.63

Lung 66,613 28,583 0.57
Lymphoid Lineage 80,078 80,078 0

Melanocytic Lineage 11,559 5111 0.56
Myeloid Lineage 4876 4876 0

NEC of Lung or Other
Organs 28,289 13,716 0.52

Ovary 30,070 14,800 0.51
Pancreas and Gallbladder 33,631 10,262 0.69

Plasma Cell Lineage 3558 3558 0
Prostate 25,525 11,696 0.54

Stomach and Esophagus 99,424 41,219 0.59
Uterus 30,335 11,671 0.62

2.6. Data Processing and Statistical Analysis—DMR Prevalence Estimation

DMR prevalence was estimated per DMR per cancer label as the median Bayesian
posterior estimate of the prevalence given the estimated tumor fractions (TF; i.e., the fraction
of cfDNA derived from a tumor) and fragment counts for a set of plasma cfDNA targeted
methylation samples labeled with the cancer label of interest (n = 2019). Computational
details are included in the Supplementary Materials.

2.7. Data Processing and Statistical Analysis—Tumor Methylated Fraction Estimation

DMRs were filtered to highly informative non-sex specific regions that had low noise
(noise rate below 1/10,000), a strong methylation pattern (i.e., completely methylated
or unmethylated), and robust assay performance. The refined DMRs were then used to
infer the TF of plasma cfDNA targeted methylation samples from cancer participants by
modeling the observed counts of fragments with DMRs as a function of TF (computational
details provided in the Supplementary Materials). The TF was converted to an allele
fraction, termed TMeF, by multiplying the TF by a scaling factor designed to reflect that
a typical cancer-derived small variant allele is heterozygous (Figure 3; Supplementary
Materials). Thus, TMeF can serve as an estimate of SVAF.
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sentative subset of cancer types and stages. cfDNA cancer samples with reliably estimated 

Figure 3. Quantification of TMeF by comparing DMR cancer-indicative methylation patterns.
(a) Schematic of the information flow for generating a TMeF estimate. First, DMRs were identi-
fied that differentiate tissue biopsy methylation WGBS for a particular cancer type from non-cancer
cfDNA WGBS. Next, DMRs were annotated with information derived from non-cancer cfDNA tar-
geted methylation (an estimate of biological noise), cancer cfDNA targeted methylation (an estimate
of DMR prevalence), and both control sample targeted methylation and WGBS (an estimate of pull-
down efficiency). Finally, counts of fragments with annotated DMRs in a targeted methylation cfDNA
sample were used to estimate TMeF. (b) Schematic illustrating the TMeF computation. Sequenced
fragments are shown as solid lines with DMRs (red dots) and without DMRs (gray dots) at 2 genomic
sites (position A and position B). Unobserved fragments both with and without DMRs are depicted
by dashed lines. Site specific counts of fragments with DMRs are consistent with a range of possible
TMeF levels with each level conveying a specific likelihood. Aggregation of likelihoods across loci
results in a sample-level TMeF estimate.

2.8. Synthetic Dilutions

Pre-treatment plasma cfDNA targeted methylation samples from participants with
solid cancers (solid cancer plasma samples) in CCGA substudy 2 [36] and substudy 3 [37]
that were held out from TMeF algorithm training and refinement were used for evalu-
ation of TMeF (n = 457 cancer and 568 non-cancer). Samples were selected to create a
representative subset of cancer types and stages. cfDNA cancer samples with reliably
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estimated TFs > 0.005 were synthetically mixed with non-cancer cfDNA samples. Each
cancer sample was mixed with 3 randomly selected non-cancer samples at the following
mixing fractions: r = 3 × 10−5, 1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2,
1 × 10−1, 3 × 10−1, 1 × 100, forming 3 dilution series per cancer sample with 10 concen-
trations each. The mixing fractions were post hoc corrected for the difference in coverage
between the undiluted cancer and non-cancer samples used in each dilution series using
calculations detailed in the Supplementary Materials. Following synthetic dilution, TMeF
was estimated for each titrated sample and compared with the theoretical value.

2.9. Small Variant Allele Fraction Estimates

Forty-two pre-treatment, solid cancer plasma samples from the CCGA substudy 2 [36]
representing 16 different cancer types spanning stages I-IV (16 stage I, 11 stage II, 8 stage
III, 7 stage IV samples), an age range of 27 to 85+ (median 63), males (38%) and females
(62%), and multiple self-reported ethnicities (2 Asian, Native Hawaiian, or Pacific Islander;
1 Black, non-Hispanic; 2 Hispanic; 2 other/unknown; 35 White, non-Hispanic) were held
out from TMeF development and used for SVAF analysis. Samples were selected based
on tissue availability and low cancer signal. SVAF estimates were generated using custom
targeted panel enrichment and sequencing. Detailed sample processing and data analysis
methods are documented in Calef et al. (manuscript in preparation) [48]. Briefly, we used
a custom caller designed to identify variants in WGBS data post-bisulfite conversion and
whole-genome sequencing of matched cfDNA. Custom targeted panels were then designed
for pools of patients with up to 500 small variants selected for each patient. Error-corrected
targeted sequencing was performed from cfDNA and read-level data were processed
through a custom analysis pipeline to produce counts of fragments with reference and
alternate alleles for each set of selected small variants. These counts were used in Bayesian
inference to estimate SVAF.

2.10. Biophysical Modeling of ctDNA Shedding

Study samples were selected to create a cross-section of solid cancer types and stages
and included pre-treatment plasma samples from individuals diagnosed with colorectal,
non-small cell lung, breast, prostate, kidney, ovarian, or uterine cancer in CCGA substudy
3 [37] representing clinical stages I-III (n = 396; stage IV cancers were excluded to limit
the effect of distant metastasis). Tumor size measurements from radiological imaging
were extracted from electronic case report forms and summarized as a single maximum
tumor size measurement per primary tumor mass. Linear modeling on the log scale was
performed to determine scaling of TMeF with tumor size. Robust linear regression was
used to confirm the validity of the fit for each model. Details on scaling factor calculations
are provided in the Supplementary Materials.

2.11. Survival Modeling

Study samples included pre-treatment, solid cancer plasma samples from the CCGA
substudy 3 [37] representing clinical stages I-IV (n = 1434). The 98th percentile of non-cancer
TMeF was used as a cutoff to visually indicate potentially reduced accuracy of TMeF values
below this level. One cutoff for each cancer label was empirically determined as the 98th
percentile of TMeF values computed on a set of 1051 non-cancer samples. Cutoff values
ranged from 6.14 × 10−5 to 1.95 × 10−4 with a median of 9.80 × 10−5. Overall survival
was extracted from the study data. Study participants were stratified into 4 groups by
their TMeF values (TMeF <10−4, 10−4–10−3, 10−3–10−2, >10−2) and Kaplan–Meier survival
curves were generated in R. Cox proportional hazards modeling was used to assess the
significance of the association of the TMeF-stratified groups and survival. To provide a
reference for survival rates accounting for the heterogeneous mix of sex, ages, clinical
stages, and cancer types in the CCGA study, we obtained population-based data of the
quarterly overall survival of individuals diagnosed with cancer in 17 regions of the United
States from the National Cancer Institute’s Surveillance, Epidemiology, and End Results
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(SEER) Program and related SEER*Stat program (version 8.4.1). These statistics, which
included patients with primary cancer diagnosed between 2006 and 2015 stratified by sex,
age (20 years or older to match enrolled CCGA participant ages; 5-year age group), stage at
diagnosis (American Joint Committee on Cancer 6th edition stage I, II, III, IV, or unknown),
and cancer type (SEER site recode), were adjusted to the CCGA distributions of sex, age,
clinical stage, and cancer type. Adjusted SEER data were used to estimate the expected
overall survival of the CCGA TMeF-stratified populations, which was compared to the
observed overall survival.

3. Results
3.1. DMRs Are Diverse and Cluster by Cancer Type

By assessing DNA methylation patterns, we identified DMRs to distinguish cancer
from non-cancer DNA fragments. As detailed in the Methods, DMRs consist of at least
five contiguous CpGs with a single cancer-indicative methylation pattern differentially
methylated relative to non-cancer cfDNA (Figure 1a). DMRs were refined to improve signal
to noise, which included heme filtering to reduce interference from potentially confounding
blood conditions and remove DMRs derived from hematopoietic lineage cells resident
in tissue biopsy samples (Table 1). A median of 1911 and 11,683 DMRs were identified
per cancer tissue biopsy sample and per cancer label, respectively (Figure 1b). DMRs
displayed a wide distribution of prevalence (<1–99%) within each cancer label (Figure 1c).
Identified DMRs shared a moderate degree of similarity (<0.6 cosine similarity) between
solid cancer labels, with cancer labels of closer biological origins having more overlap in
identified DMRs (Figure S1). Visualization of DMR frequencies within cancer tissue biopsy
samples via heatmap clustering with the 50 most prevalent DMRs identified per cancer
label revealed clusters of both shared and cancer type-specific DMRs (Figure 2). Thus,
DMRs may distinguish CSO, consistent with the previously observed high CSO prediction
accuracy of the MCED test [37].

3.2. TMeF Can Accurately Quantify ctDNA Abundance

One purpose of identifying DMRs is to calculate TMeF from plasma samples without
the need for matched tissue sequencing (see Methods). TMeF calculated from plasma
cfDNA is a measure of cTAF and overall ctDNA abundance. First, to begin to evaluate the
accuracy of TMeF estimations at low ctDNA levels, synthetic dilutions of cancer and non-
cancer cfDNA samples were generated at various dilution levels (Figure 4a). At an expected
TMeF of 10−3, 95% of samples had measured TMeF within 0.5- to 2-fold of the expected
TMeF; at an expected TMeF of 10−4, it was 77% of samples (Figure 4b,c). TMeF tapers off
around 10−5; thus, below this level, cTAFs cannot be accurately estimated currently.

Next, we assessed the accuracy of TMeF estimates in 42 pre-treatment, solid cancer
plasma samples from the CCGA substudy 2 [36]. Samples represented 16 different cancer
types spanning stages I-IV. TMeF estimates were well correlated to SVAF estimates of these
samples (Spearman’s correlation of 0.73, p = 2.3 × 10−7), with 86% of samples (36/42)
having a TMeF estimate within 10-fold of the matched SVAF estimate (Figure 5). Of the
six samples with a greater than 10-fold discordance in TMeF versus SVAF, four had higher
TMeF than SVAF and two had lower TMeF than SVAF. It is important to note that perfect
correlation between TMeF and SVAF was not expected due to the limitations of the SVAF
measurement. As SVAF is an estimate itself and does not represent the true quantity
of ctDNA, it is an imperfect comparator, yet at this time, it is the best method to assess
accuracy of the TMeF approach.
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Figure 4. Synthetic dilution analysis assessed TMeF linearity. (a) Synthetic dilutions were generated
by mixing each of 457 pre-treatment, solid cancer cfDNA samples from CCGA substudy 3 into a
paired randomly matched non-cancer cfDNA background sample. Dilutions were generated in
triplicate across a series of dilution levels, and the measured TMeF was plotted against the expected
TMeF. The red line indicates y = x (i.e., expected TMeF = observed TMeF). The green lines represent
y = 0.5x and y = 2x (in log space this results in a difference in intercept) as a visual reference for how
many curves are within 0.5- to 2-fold of the target. The blue line shows the best fit as determined
using a general additive model with the restricted maximum likelihood method. A small number of
outlier series can be seen with high observed TMeF across all dilution levels. This is due to the high
level of background signal in the specific matched non-cancer samples used in each of these cases.
(b) For vertical slices in (a) at fixed expected TMeF values, the cumulative fraction of observed TMeF
was interpolated and plotted. (c) For each cumulative distribution in (b) at a fixed expected TMeF
value, the fraction of measured TMeF within 0.5- to 2-fold of the expected TMeF and the median
fold-change deviation from the expected TMeF were calculated. The expected TMeF values include
10−6 to demonstrate the limited TMeF accuracy at this low ctDNA level.
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Figure 5. DMRs enabled allele fraction estimation. A scatter plot depicting TMeF (y-axis) vs. patient-
specific panel small variant estimates (x-axis) in pre-treatment plasma samples from CCGA substudy
2 participants with solid cancers. TMeF and SVAF estimates correlated with a Spearman’s correlation
of 0.73, p = 2.3 × 10−7. Points indicate posterior median. Error bars represent the 95% credible
interval defined by the 2.5 and 97.5 percentiles of the posterior allele fraction distribution.

3.3. TMeF Is Associated with Clinical Stage and Tumor Size

To probe the relationship between TMeF and tumor burden, TMeF was first computed
in a subset of CCGA substudy 3 [37] pre-treatment, solid cancer plasma samples that were
held out from algorithm training and refinement. In these samples, TMeF increased with
increasing clinical stage both across cancer types (Figure 6a) and within individual cancer
types (Figure S2). Additionally, in prostate cancer participant samples stratified by Gleason
score, TMeF was higher for participants with scores 4 + 3 and above versus 3 + 4 and below
(Figure S3).

TMeF was significantly associated with primary tumor size across a variety of cancer
types and subtypes, including colorectal cancer (Figure S4), non-small cell lung cancer
(NSCLC) [33] (Figure S5), hormone receptor positive and triple negative breast cancer
(TNBC) (Figure S6), and Gleason 4 + 3 and above prostate cancer (Figure S7). Additionally,
scaling factors, which represent how tumor shedding relates to tumor size (a scaling factor
of 2 or 3 indicates shedding proportional to tumor surface area or volume, respectively),
were biologically reasonable (≤3). For kidney cancer (Figure S8), ovarian cancer (Figure S9),
and uterine cancer (Figure S10), the scaling factors were small (<1) and not statistically
significant, suggesting no association of TMeF and tumor size. This lack of association
could indicate that a biological variable other than tumor size is driving the shedding rate
in these cancer types. Of note, TNBC had a scaling factor of ~5. This is consistent with the
presence of important unmodeled biological variables correlated with tumor size, such
as mitotic volume, which was previously found to be a critical factor influencing ctDNA
shedding [20].
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Figure 6. TMeF correlated with clinical stage and survival. (a) TMeF for 1434 pre-treatment plasma
samples from CCGA substudy 3 participants with solid cancers is plotted against clinical stage.
Points are colored gray if the sample’s TMeF was lower than the 98th percentile of TMeFs computed
on a set of 1051 non-cancer samples to indicate that these TMeF values were less accurate. TMeF
and stage correlated with a Spearman’s correlation of 0.65, p = 1.2 × 10−173. (b) In total, 1434 solid
cancer participant plasma samples were stratified by their TMeF, and Kaplan–Meier plots of overall
survival were generated for each stratified set of participants. Dashed lines depict the expected time-
dependent overall survival based on SEER populations matched for sex, age, cancer type, and stage
for each TMeF stratum. (c) The Cox proportional hazards model HRs and p-values were calculated
for TMeF-stratified participant groups. Caveats of the model and associated HRs are described in
the Results.

3.4. TMeF Is Associated with Overall Survival

Lastly, participants were stratified by TMeF, and those in lower TMeF strata had
better overall survival probability compared to participants in higher TMeF strata across
cancer types (Figure 6b,c) and within individual cancer types (Figure S11). For all TMeF
strata, the observed overall survival of CCGA participants was better than the expected
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time-dependent overall survival based on SEER populations matched for sex, age, cancer
type, and stage. Fold change differences in observed versus expected death rates were
greater for lower TMeF strata. In the simple Cox proportional hazard model (Figure 6c),
the hazard ratios (HRs) in higher TMeF strata include effects of cancer type and stage due
to their correlation with TMeF. Higher TMeF strata are enriched for later-stage cancers, and
lower TMeF strata are enriched for earlier-stage cancers (Figure S12a), consistent with the
observed increase in TMeF with cancer stage (Figure 6a). Nevertheless, lower TMeF was
significantly associated with better survival when modeled jointly with clinical stage and
cancer type, suggestive of cTAF being prognostic when added to these readily available
clinical data (Figure S12b).

4. Discussion

There is a growing need for estimates of tumor burden to inform the clinical man-
agement of cancer. However, the current methods to do so are based on imaging, which
is burdensome for patients over time and prone to reader variability [6]. Evidence for
ctDNA as a surrogate or supplementary marker of tumor burden is growing [49–52], but
means of easily and effectively measuring ctDNA from biofluid samples are still needed.
This paper describes an approach to estimate cTAF using cfDNA methylation patterns and
thereby provides an optionally tissue-free means of quantifying tumor burden. Measured
TMeF estimates are accurate when compared to the expected TMeF in a synthetic titration
series, and TMeF estimates correlate with SVAF estimates of cTAF in the matched plasma
samples from patients with cancer. Importantly, TMeF correlates with clinical cancer stage,
tumor size, and overall survival, suggesting it may be able to fill the prognostic need for
quantifying tumor burden.

The advantages of using a methylation-based estimate of tumor burden are numerous.
First, blood-based methods for cancer detection are less dependent on tumor location
and may eventually enable detection before tumors are large enough to be detectable by
imaging. Second, methylation patterns can distinguish different cancer types, which could
be useful to guide diagnostic imaging when using TMeF in clinical applications of cancer
detection and recurrence monitoring. Third, TMeF may capture other clinical markers of
cancer aggressiveness and growth, such as tumor mitotic and metabolic activity and depth
of invasion, as these markers correlate with ctDNA levels [20], thereby providing better
risk stratification and prognosis prediction compared to tumor size alone.

A fourth advantage of TMeF is that ctDNA estimates are expected to be robust across
the clonal evolution of tumors among different individuals and within individuals across
time because there are many DMRs (typically hundreds to thousands) that are common
to each cancer type. In contrast, SNV-based approaches are limited by fewer and patient-
specific SNVs [53]. In addition, treatment pressure can contribute to clonal evolution, which
can change small variant profiles, making ctDNA less detectable [54]. Due to the broad
nature of the signal used to compute TMeF across numerous cancer types, TMeF likely
measures ctDNA levels originating from all shedding cancer cells—both from the primary
tumor and metastatic sites—regardless of clonal lineage. Lineage transformation is a
hallmark of treatment resistance for many cancer types, with cancer cells often transforming
to neuroendocrine-like states [55]. We expect methylation patterns of neuroendocrine
tumors to emerge, which would be detectable by the TMeF technology; however, additional
studies are needed to confirm detectability following lineage transformation.

Finally, TMeF estimates are reliable in the absence of tumor tissue but retain the
flexibility of utilizing matched tissue when tissue samples are available. This is possible
because DMRs are both abundant and prevalent within cancer types, making them accurate
cancer markers across patient samples without the need for patient-specific, tumor-derived
variants to guide detection. Although the tissue-informed approach to SVAF-based cTAF
estimates is highly specific, it is limited by tumor tissue quantity, tissue availability, and
assay turnaround time. The requirement of obtaining tumor tissue if additional material is
needed after diagnostic biopsy places a much greater burden on patients and the healthcare
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system [56]. Importantly, we confirmed that tissue-free TMeF estimates correlate with
tissue-informed SVAF estimates of the same cancer plasma samples.

We noted a few instances of differences between the SVAF and TMeF metrics, which
could be explained by limitations of either the SVAF assay (Calef et al. in preparation [48]) or
the methylation assay. Elevated TMeF relative to SVAF could be explained by the presence
of tumor DNA shedding with a small variant profile differing from the sampled biopsy, or
the existence of multiple health conditions in the participant, such as a second undiagnosed
cancer or a pre-malignant heme condition. On the other hand, underestimation of TMeF
relative to SVAF could occur if the DNA methylation patterns of the sample of interest
differ substantially from what is typically observed in the clinically diagnosed cancer
type, or if SVAF estimates are artificially inflated by confounding biological signals (e.g.,
clonal hematopoiesis of indeterminate potential). For this comparison of TMeF and SVAF
estimates, samples were purposefully selected to have a low cancer signal, pushing the
limits of TMeF and SVAF assay detection. In samples with higher tumor fractions, the
correlation between the two assays would likely improve.

Other methods to estimate cTAF have been published. For example, copy-number
alterations (CNAs) can be used to estimate cTAF without matched tissue genotyping and
have been shown to correlate to metastatic prostate cancer prognosis [57]. CNA-based
approaches lose accuracy below ~1% tumor fraction, limiting their utility [58], but they can
be useful when low limits of detection are not necessary, like evaluating cTAF in advanced
disease. Like TMeF, other published methods have focused on methylation patterns in
cfDNA to estimate cTAF (Figure S13) [38–46]. However, these approaches did not utilize
targeted methylation data and have not demonstrated accurate detection at low, clinically
meaningful ctDNA levels. These approaches cannot be used with the data in this study
without substantial adaptation to account for bias introduced by the targeted pull-down
step in our targeted methylation assay. Given the need to generate benchmarking data
on an orthogonal platform, SVAF was chosen to assess the accuracy of TMeF estimates
given its established low limit of accurate quantification compared to other methylation-
based approaches. Although we were not able to perform a head-to-head comparison with
existing methylation-based cTAF estimation approaches, from our review of the existing
literature, we believe that we are the first to demonstrate a lower limit of accurate tissue-free
ctDNA quantification below 0.1% (Figure S13).

There are limitations to tissue-free approaches, namely the potential for interference
from alternative sources of cancer-like molecular signals. For example, clonal hematopoiesis
of indeterminate potential can be difficult to distinguish from cancer signals without
matched tissue or white blood cell sequencing [32]. Here, we filtered out regions with
potential interference from hematopoietic lineages. Another limitation for some tissue-free
approaches that do not use methylation biomarkers is that they often sample a limited
number of markers, rendering them vulnerable to low ctDNA abundance due to a low
fraction of cancer-derived fragments. In contrast, measuring the extent and location of
methylation yields many widely spread patterns, allowing accurate quantitation even at
low ctDNA abundance. Addressing the challenges of tissue-free estimations of tumor
burden facilitates clinical implementation of these methods, which could improve clinical
cancer management throughout patient care.

There were multiple limitations of this study that will be addressed in future work.
Here, TMeF linearity upon dilution (to support assessment of TMeF accuracy at low ctDNA
levels) was determined by in silico analysis. Although TMeF linearity was consistent with
previously reported results from in vitro dilution assays that used TMeF to assess the limit
of detection of a post-diagnosis cancer detection test [59], future validation of TMeF with
in vitro cfDNA dilutions will be performed to more fully assess its linearity. It should also
be noted that there are epigenetic differences within the cancer label groupings used in this
study. An important challenge in the presented work was the balance between choosing
cancer label definitions that capture cancer types with shared methylation patterns while
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also having sufficient sample numbers to capture both the diversity and prevalence of these
methylation patterns.

Additionally, TMeF will be further validated in diverse populations of clinical subjects
including different ages, sexes, races/ethnicities, cancer types, and cancer stages. TMeF
relies on DMR prevalence estimates defined for specific cancer labels and is expected
to be most accurate in subjects with cancer methylation patterns most closely aligned
with those of the corresponding training set for the given cancer label. Future work
will be needed to measure the effect of methylation pattern heterogeneity from genetic
ancestry, cancer subtypes, and cancer clonal evolution on TMeF accuracy. Preliminary
analysis of methylation patterns across different self-reported ethnicities suggests that
methylation pattern differences by ancestry would not have a significant effect on assay
performance [60].

Lastly, the analysis of TMeF prognostic power within stage and cancer type is limited
here by the small sample sizes for specific stage and cancer type groups. We noted that
in cases where TMeF had a weaker correlation to tumor size, it was for cancer types such
as kidney, ovarian, and uterine, which are known to have low rates of shedding into the
bloodstream [61,62] and may not be detected given the current lower limit of TMeF at
approximately 10−5. We also noted that CCGA participants had better survival relative
to SEER-expected survival in each TMeF stratum, which could be explained by a healthy
volunteer effect and this population’s access to medical care [24].

TMeF has many possible clinical applications. The TMeF technology described here
complements the methylation-based machine learning classifier used by the GRAIL MCED
test. The MCED test detects a shared cancer signal within cfDNA methylation patterns
and provides a binary cancer signal ”detected” or ”not detected” output along with a CSO
prediction [36,37]. TMeF, an independent algorithm, provides a means of quantifying the
cancer signal, allowing estimations of tumor burden. The association of TMeF and survival
probability supports the use of TMeF to stratify clinical trial participants by identifying
those at high risk of recurrence [33]. Recent studies to develop a prognostic test for early-
stage lung adenocarcinoma (LUAD) have applied a methylation-based machine learning
classifier, for which ctDNA detection is well correlated with TMeF, to assess ctDNA status
from blood samples [63,64]. Pre-surgical ctDNA detection in stage I LUAD was associated
with worse recurrence-free survival and overall survival [64]. With further development,
this prognostic test may be useful to guide clinical decision making and identify high-risk
participants for clinical trials.

At the patient level, TMeF could be used as a complement to imaging to provide a
baseline evaluation of tumor burden at the start of cancer treatment. Tumor burden at
baseline can act as a prognostic indicator, with high tumor burden associated with worse
outcomes. For example, Chabon et al. showed that low cTAF levels in pre-treatment,
early-stage NSCLC were significantly associated with decreased risk of recurrence [22].
Furthermore, tumor burden at baseline may act as a predictive marker for certain therapies.
For example, high tumor burden may indicate immune checkpoint inhibitors are less likely
to be effective [3]. Additionally, TMeF estimates of tumor burden could be useful during
treatment to enable tracking of tumor kinetics in response to therapy and potentially act
as a predictive biomarker. Nabet et al. demonstrated that a decreasing ctDNA trajectory
after a single cycle of immune checkpoint inhibition treatment in NSCLC was significantly
associated with improved progression-free survival [23]. Finally, TMeF could be used in
MRD applications after treatment completion. Multiple studies have demonstrated the
association of post-treatment ctDNA detection with worse prognosis [65,66]. As a sensitive
tissue-free measure of ctDNA abundance, TMeF could act as a prognostic marker in the
MRD setting. In addition to clinical applications, TMeF is a potential metric for analytical
validation studies, due to its ease of implementation and accuracy, specifically to assess
the abundance of an analyte in sensitivity (limit of detection) and specificity studies [59].
Studies investigating the use of TMeF in these clinical applications are underway.
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5. Conclusions

In summary, TMeF is a broadly useful metric applicable to the study of ctDNA abun-
dance in biofluids. In this work, we demonstrated that TMeF, derived from plasma samples
of patients with cancer, can be used as an estimate of cTAF without need for matched
tumor samples. Further studies are needed to validate TMeF as a clinical measure of cTAF
and tumor burden. Beyond reflecting tumor volume, TMeF may capture additional tumor
biology (mitotic and metabolic activity, depth of invasion) that could be used to predict
tumor aggressiveness [20]. In the future, TMeF estimates of ctDNA can be applied to other
biofluids such as urine, and it may be used for a variety of clinical applications, such as
early cancer detection, prognosis predictions, MRD, and recurrence monitoring.
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