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Simple Summary: This paper provides a review of statistical methods for tumor-agnostic clinical
trials. In particular, the review focuses on basket trials and provides methodological insights into
various Bayesian approaches. The key concept of borrowing information through Bayesian hierarchi-
cal models is emphasized, and some novel trial designs are introduced. The review is expected to
provide oncology and biostatistics researchers with more exposure to powerful Bayesian methods for
the design and analysis of tumor-agnostic clinical trials.

Abstract: Basket trials allow simultaneous evaluation of a single therapy across multiple cancer
types or subtypes of the same cancer. Since the same treatment is tested across all baskets, it may
be desirable to borrow information across them to improve the statistical precision and power in
estimating and detecting the treatment effects in different baskets. We review recent developments
in Bayesian methods for the design and analysis of basket trials, focusing on the mechanism of
information borrowing. We explain the common components of these methods, such as a prior model
for the treatment effects that embodies an assumption of exchangeability. We also discuss the distinct
features of these methods that lead to different degrees of borrowing. Through simulation studies, we
demonstrate the impact of information borrowing on the operating characteristics of these methods
and discuss its broader implications for drug development. Examples of basket trials are presented
in both phase I and phase II settings.

Keywords: basket trial; Bayesian method; borrow information; drug development; hierarchical
model; oncology; shrinkage estimation; prior

1. Introduction

The field of tissue-agnostic drug development has seen increasing interest due to recent
advances in molecular genetics and biomarker-driven treatment strategies. Basket trials, a
type of clinical trial, have gained particular attention in this area since they simultaneously
evaluate a single therapy across multiple cancer types or subtypes of the same cancer [1–6].
The rationale behind basket trials is that treatments targeting specific molecular alterations
can potentially treat tumors regardless of their origin in the body. By using master protocols,
basket trials can enhance operational efficiency and increase patient participation. Examples
of basket trials include a study of imatinib in multiple histological subtypes of advanced
sarcoma [7], a study of vemurafenib in BRAF V600 mutation-positive non-melanoma
cancers [8], and a study of larotrectinib in TRK fusion-positive cancers [9], among others.

The mechanism of a drug in a basket trial is based on modifying a cancer biomarker
that is prevalent across different cancer types or subtypes. Instead of conducting one trial
for one disease, a basket trial includes multiple baskets, each representing a disease, so that
the drug efficacy can be tested at the same time across baskets in a single clinical trial. In a
way, a basket trial can be seen as a collection of multiple single-arm subtrials, one for each
disease. There are typically no control arms in a basket trial, and patients are enrolled in
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parallel. An obvious benefit of basket trials is that only one study team and study protocol
are needed for a trial. In a basket trial, the statistical analysis of each substudy can be
independent of the others. This is known as stratified analysis. However, if a basket has a
small sample size, e.g., for a rare cancer type, the stratified analysis often results in large
uncertainty and lacks sufficient power for efficacy evaluation. To mitigate this issue, it may
be desirable to borrow information across baskets since the same treatment is tested across
all of them. This enables the treatment effect in one basket to be informed by the treatment
effects in other baskets, leading to improved statistical precision and power. The Bayesian
paradigm provides a natural way to achieve information borrowing. For example, by
assuming a common prior distribution on the basket-specific response rates, their estimates
are shrunk toward a common value and tend to have lower variances.

Numerous Bayesian methods [10–23] have been developed to facilitate information
sharing for basket trials, or more broadly, in clinical trials involving multiple patient sub-
populations. We review the common components of these methods, such as a sampling
model for the numbers of responders which involves the response rates as parameters, a
transformation applied to the response rates, a prior model for the transformed response
rates which typically expresses an assumption of exchangeability, a criterion for selecting
the promising baskets, and a possible interim analysis plan. With the same general com-
ponents, these methods mainly differ by the transformation applied to the response rates,
which reflects what information is borrowed, and the prior model for the transformed re-
sponse rates, which determines how information is borrowed. For example, some methods
directly borrow the raw response rates, while others borrow the response rate increments
from the reference rates; some methods model the transformed response rates as a random
sample from a unimodal distribution, while others utilize multimodal mixture distributions.
We discuss the impact of these modeling choices, particularly those related to the degree of
borrowing, on the operating characteristics of the methods.

The methods for information borrowing can be extended and applied to trials in-
volving both multiple diseases and multiple doses. Such extensions are useful for dose
optimization trials under the recent Project Optimus initiative launched by the U.S. Food
and Drug Administration (FDA) [24,25]. For example, after a dose escalation stage, multiple
doses may be considered for expansion in multiple disease indications [26,27]. In this case,
the baskets are nested in the dose expansion cohorts. We review some recent developments
in this area [28].

The remainder of this paper is structured as follows. In Section 2, we review the general
components, possible modeling choices, and operating characteristics of Bayesian methods
for basket trials in a phase II setting. In Section 3, we review some recent developments
of Bayesian methods for basket trials in the context of phase I dose optimization, which
accommodate both multiple diseases and multiple doses. In Section 4, we present a
discussion on future directions. Finally, Section 5 encapsulates our conclusions.

2. Basket in Phase II Studies
2.1. Trial Examples

A large number of basket trials are conducted in an exploratory phase II setting.
The primary endpoint is typically tumor response. If the drug is deemed promising in
some cancer (sub)types, it would warrant further investigation in a confirmatory study or
conditional marketing approval.

We review three such trials. The first trial was aimed at assessing the efficacy of
imatinib in patients with one of 10 different subtypes of advanced sarcoma [7]. These
included angiosarcoma, Ewing sarcoma, fibrosarcoma, leiomyosarcoma, liposarcoma,
malignant fibrous histiocytoma (MFH), osteosarcoma, malignant peripheral-nerve sheath
tumor (MPNST), rhabdomyosarcoma, and synovial sarcoma. The primary endpoint was
tumor response, defined as complete response (CR) or partial response (PR) at 2 months,
or stable disease, CR or PR at 4 months. The trial was designed based on a Bayesian
hierarchical model [10]. Table 1 summarizes the patient responses by sarcoma subtype.
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A total of 179 patients were available for analysis. By comparing the response rates to
a reference rate of 30%, the authors concluded that imatinib was not an active agent in
advanced sarcoma in these subtypes.

Table 1. Data from the imatinib trial. Here, y represents the number of responders, and n is the total
number of patients by sarcoma subtype.

Subtype y n %

1. Angiosarcoma 2 15 13.3
2. Ewing 0 13 0.0
3. Fibrosarcoma 1 12 8.3
4. Leiomyosarcoma 6 28 21.4
5. Liposarcoma 7 29 24.1
6. MFH 3 29 10.3
7. Osteosarcoma 5 26 19.2
8. MPNST 1 5 20.0
9. Rhabdomyosarcoma 0 2 0.0
10. Synovial 3 20 15.0

Total 28 179 15.6

The second trial was conducted to study vemurafenib in BRAF V600 mutation-positive
non-melanoma cancers. The study included the following cancer cohorts that received
vemurafenib monotherapy: non-small-cell lung cancer (NSCLC), cholangiocarcinoma
(CCA), Erdheim–Chester disease or Langerhans’ cell histiocytosis (ECD/LCH), anaplastic
thyroid cancer, breast cancer, ovarian cancer, multiple myeloma, colorectal cancer (CRC-V),
and all others. An additional cohort of patients with colorectal cancer received vemurafenib
combined with cetuximab (CRC-VC). The primary endpoint was tumor response at week 8,
as assessed by the site investigators according to the Response Evaluation Criteria in
Solid Tumors [29], or the criteria of the International Myeloma Working Group [30]. The
trial was designed using Simon’s two-stage method [31,32], separately for each cohort.
Due to insufficient accrual, patients in the breast cancer, multiple myeloma, and ovarian
cancer cohorts were eventually included in the all-others cohort. Table 2 summarizes the
patient responses by cohort (not including the all-others cohort). A total of 84 patients
were available for analysis. By comparing the response rates to a reference rate of 15%, the
authors concluded that BRAF V600 appeared to be a targetable oncogene in some, but not
all, non-melanoma cancers. Specifically, preliminary vemurafenib activity was observed in
NSCLC and in ECD/LCH.

Table 2. Data from the vemurafenib trial. Here, y represents the number of responders, and n is the
total number of patients by cancer cohort.

Cohort y n %

1. ATC 2 7 28.6
2. ECD/LCH 6 14 42.9
3. CCA 1 8 12.5
4. CRC-V 1 26 3.8
5. CRC-VC 0 10 0.0
6. NSCLC 8 19 42.1

Total 18 84 21.4

The data from the imatinib and vemurafenib trials have since then been reanalyzed
multiple times [12,16,21].

A third example is the recent pivotal study of larotrectinib [9]. A family of genes called
NTRK1, NTRK2, and NTRK3 encode a protein called tropomyosin receptor kinases (TRK).
Mutation in NTRK genes results in TRK fusion proteins that lead to tissue-independent
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oncogenic transformation [33–35]. TRK fusion proteins are found in more than 20 different
tumor types. As a result, a phase II basket trial was conducted to evaluate the therapeutic
effect of larotrectinib, a TRK inhibitor, in 55 patients diagnosed with 12 different cancer
types. The overall response rate was 75% based on central assessment with a 95% con-
fidence interval of (61%, 85%). Larotrectinib was well tolerated in both adult and child
populations. Based on the efficacy and safety data, the drug has been approved for treating
NTRK gene fusion-positive tumors in adult and pediatric patients across cancer types.
Statistical analysis pooled all the patients enrolled in the trial regardless of their tumor
types. Therefore, the baskets were not differentiated in the statistical inference of drug
effects. This is a special case where the biomarker, NTRK gene fusion, is highly specific and
causal to a small fraction of cancers, regardless of their tissue types. In general, a targeted
therapy may work in some cancer types or subtypes, which requires more sophisticated
statistical design and analysis.

2.2. Statistical Setup

Consider a basket trial with J baskets. Let nj denote the number of patients enrolled
in basket j. The number of responders in basket j, denoted by yj, is typically modeled by a
binomial distribution,

yj | nj, πj ∼ Bin(nj, πj), j = 1, . . . , J. (1)

Here, πj represents the true but unknown response rate of the treatment in basket j.
The efficacy of the treatment can be evaluated by comparing πj to a prespecified reference
rate π0j via a hypothesis test,

H0j : πj ≤ π0j vesus H1j : πj > π0j. (2)

This reference rate can vary across baskets due to different cancer (sub)types being
considered. If the observed data show strong evidence in favor of H1j, the null hypothesis
H0j is rejected and the treatment is determined to be efficacious in basket j. Under the
Bayesian paradigm, one assigns a prior distribution to πj and calculates its posterior
distribution according to Bayes’ rule. The treatment is deemed promising in basket j if
the posterior probability of the alternative hypothesis exceeds a prespecified threshold qj
(e.g., 0.95),

Pr(πj > π0j | data) > qj.

As mentioned earlier, it is desirable to specify a prior for πjs which allows information
borrowing across baskets. In the following sections, we discuss several considerations
involved in the prior specification.

2.3. Prior Specification and Exchangeability

Most existing methods start by transforming πj into a real value using, for example,
a logit transformation. We denote the transformation and the real-valued parameter as
γj = h(πj). Note that each basket j is indexed by a different parameter γj. Then, the γjs are
modeled as a random sample from a common population distribution G,

γj | θ
iid∼ G(θ), (3)

where θ denotes the vector of hyperparameters that parameterize G. Figure 1 displays a
graphical representation of the hierarchical model given by Equations (1) and (3). More
discussions on the choices of h and G(θ) are deferred to Sections 2.3 and 2.4. Importantly,
θ is unknown and is estimated based on data from all baskets. As a result, the posterior
of γj is informed by both the responses within basket j, through the likelihood (1), and
those in other baskets, through the prior (3). Figure 2 illustrates the effect of information
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borrowing through an analysis of the imatinib data in Table 1. The point estimates of πj for
individual baskets are shrunk towards the overall response rate. Additionally, the interval
estimates of πj have shorter lengths under borrowing compared to those under stratified
analysis. More details of the analysis can be found in the caption of Figure 2.
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Figure 1. Graphical representation of the hierarchical model that allows information borrowing
across baskets.
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Figure 2. Illustration of the effect of information borrowing through an analysis of the imatinib data.
Dots represent point estimates and error bars represent 95% confidence or credible intervals. In the
stratified analysis, yj/nj is used as a point estimate for πj, and the Clopper–Pearson exact method
is used to construct a confidence interval. For information borrowing, the following hierarchical

model is used: γj = logit(πj)− logit(π0j), γj | µ, σ2 iid∼ N(µ, σ2), µ ∼ N(0, 1002), σ ∼ Half-N(3).
Then, the posterior mean of πj is used as its point estimate, and the 2.5th and 97.5th percentiles of its
posterior distribution are used to form a credible interval. The dashed horizontal line corresponds to
the observed overall response rate, 15.6%.

Suppose a prior p(θ) is placed on θ. Implicit in model (3) is the (marginal) prior
dependence among the γjs. Note that

p(γ1, . . . , γJ) =
∫ [

J

∏
j=1

p(γj | θ)

]
p(θ)dθ ̸=

J

∏
j=1

p(γj). (4)

In fact, it can be shown that the γjs are positively correlated a priori [36], which enables
information borrowing across baskets. Furthermore, model (3) implies an assumption of
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prior exchangeability among the γjs. Mathematically, a sequence of random variables is
called exchangeable if their joint distribution is invariant to permutations. From Equation (4),
the joint density p(γ1, . . . , γJ) is invariant to permutations of the indexes (1, . . . , J). The
assumption of prior exchangeability is reasonable when no information is available before
the trial to claim that the treatment is more likely to be efficacious in certain baskets
than others [37]. We note that modeling the γjs as independent draws from a common
distribution is a stronger assumption than finite exchangeability: the former implies the
latter, but not vice versa.

If there is prior knowledge to distinguish some γjs from others, one may incorporate
an expanded notion of exchangeability in the prior construction. For example, historical
clinical trials may suggest that the baskets can be divided into several subgroups. Each
subgroup consists of baskets with similar historical success rates. Then, one may specify a
separate prior model for the γjs within each subgroup. While the parameters within the
same subgroup are exchangeable, those across different subgroups are not. This is known
as partial exchangeability. For another example, patient responses are often associated
with basket-level and patient-level covariates. If these covariates are available, they may
be used to construct a regression model with an underlying assumption of conditional
exchangeability. For the rest of this paper, we will restrict our attention to the exchangeable
model given by Equation (3), which is employed by most existing methods.

2.4. What Information to Borrow?

The transformation γj = h(πj) reflects what information is borrowed across baskets.

A straightforward choice is to directly borrow the response rates by assuming πj | θ
iid∼

G(θ), where G(θ) is a distribution on the unit interval, e.g., a beta distribution. In this
case, h(πj) = πj is the identity transformation, and the underlying assumption is that
the treatment has similar response rates across baskets. A variation in this choice is to
consider a logit transformation, h(πj) = logit(πj) = log[πj/(1 − πj)]. This can simplify
posterior computation by allowing G(θ) to be a distribution over the real line, e.g., a
normal distribution.

An alternative choice of h incorporates an adjustment for the reference rate π0j. Typ-
ically, the reference rate for each basket is determined based on how well the cancer
(sub)type responds to the standard of care. If there are substantial differences in the ref-
erence rates across baskets, it may be implausible to assume that the πjs are similar. This
is because baskets with lower (or higher) reference rates are also more likely to respond
poorly (or positively) to the new treatment. To account for the differential reference rates, it
may be more appropriate to model the response rate increments from the reference rates.
For example, Berry et al. [11] considered borrowing the increments of the logit response
rates, h(πj) = logit(πj)− logit(π0j).

Lastly, a different strategy is to borrow information at the hypothesis level by letting
γj = h(πj) = 1(πj > π0j). See, e.g., Zhou and Ji [21]. Here, γj = 1 (or 0) represents H1j
is true (or false), indicating that the treatment is efficacious (or inefficacious) in basket j.
The prior G(θ) for γjs can be a Bernoulli distribution. Borrowing across γjs reflects the
assumption that if the treatment is promising, it is likely to be efficacious across multiple
baskets simultaneously. This is a more general assumption than assuming the response
rates are similar. For example, πj and πj′ may be quite different, but as long as they are
larger than π0j and π0j′ , respectively, the treatment is efficacious in both baskets j and j′. An
additional complexity of this approach is that h is a many-to-one transformation, and the
value of πj cannot be uniquely determined by γj through πj = h−1(γj). Instead, one needs
to construct a prior for πj conditional on the value of γj. For example, πj | γj = 0 can be a
beta distribution truncated to the interval [0, π0j], and πj | γj = 1 can be a beta distribution
truncated to the interval (π0j, 1]. The prior p(πj | γj) establishes the connection between γj
and πj in Figure 1.
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2.5. How Is Information Borrowed?

The choice of the prior G(θ) determines how information is borrowed across baskets.
To illustrate ideas, suppose γj is real-valued, e.g., γj = logit(πj)− logit(π0j). A natural
choice of G(θ) is then a normal distribution,

γj | µ, σ2 iid∼ N(µ, σ2), (5)

where the hyperparameter vector θ = (µ, σ2). The mean parameter µ represents a trans-
formed version of the overall response rate of the treatment across all baskets. The basket-
specific γjs are shrunk toward the common µ. The variance parameter σ2 controls the
degree of borrowing, with smaller values implying stronger shrinkage effects. At one
extreme, when σ2 = 0, all γj values must be equal. At the other extreme, when σ2 ap-
proaches infinity, the shrinkage effects become negligible. The estimation of σ2 plays a
crucial role in the statistical analysis. On the ond hand, overestimating σ2 may lead to
inadequate borrowing, diminishing the benefits of shrinkage estimation. On the other
hand, underestimating σ2 may result in excessive borrowing, leading to inflated type I
error rates and potential failures in drug development (more on this point in Section 2.6).
Yet, due to the typically limited number of baskets in a basket trial, accurate estimation of
σ2 is a challenging task.

Taking a full Bayesian approach, a hyperprior is assigned to σ2. A computationally
convenient choice is the inverse-gamma prior, σ2 ∼ IG(α, β). See, e.g., Thall et al. [10]
and Berry et al. [11]. It is commonly thought that small values of α and β produce a
noninformative prior for σ2. However, Gelman [36] showed that even with small values of
α and β, the IG(α, β) prior could still be quite informative and might lead to underestimation
of σ2. Instead, the author advocated the use of a half-t prior as a less informative choice for
the hierarchical standard deviation parameter, σ ∼ Half-tν(A), with small ν and large A.
Here, ν is the number of degrees of freedom, and A is the scale parameter. Special cases
of the half-t prior include the half-Cauchy (when ν = 1) and half-normal (when ν = ∞)
priors. The half-t prior was used by Neuenschwander et al. [12] and Zhou and Ji [21].

Alternatively, Chu and Yuan [14] proposed an empirical Bayesian approach to specify
the value of σ2 based on a measure of homogeneity among the baskets. The relationship
between σ2 and the homogeneity measure is determined through a simulation-based
calibration procedure.

To further reduce the risk of excessive borrowing, the normal distribution prior in
Equation (5) may be replaced by a distribution with heavier tails, e.g., a t-distribution.
Such a prior accommodates occasional extreme parameters. In a basket trial, the response
rates in a few baskets may be quite different from the others. A heavy-tailed prior still
shrinks these extreme response rates toward the overall mean but avoids pulling them too
much [37].

2.5.1. Mixture Models

In some basket trials, patient responses across baskets exhibit a clustering structure.
For example, in the vemurafenib trial (Table 2), the ECD/LCH and NSCLC cohorts have
similar proportions of responses, suggesting they can be clustered together. The same
applies to the CRC-V and CRC-VC cohorts. To exploit such a clustering structure, a
multimodal mixture prior can be placed on γj [12,15,18,21]. For example, consider G(θ) to
be a mixture of normal distributions,

γj | µ, σ2, w, K iid∼
K

∑
k=1

wk · N(µk, σ2
k ). (6)

In this case, the hyperparameter vector θ = (µ, σ2, w, K) with µ = (µ1, . . . , µK), σ2 =
(σ2

1 , . . . , σ2
K), and w = (w1, . . . , wK). Here, K is the number of mixture components, and wk,
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µk, and σ2
k are the weight, mean, and variance of mixture component k, respectively. The

weights satisfy ∑K
k=1 wk = 1.

To facilitate interpretation, observe that the mixture prior in Equation (6) is equivalent
to the following hierarchical prior,

γj | µ, σ2, K, sj = k ∼ N(µk, σ2
k ), Pr(sj = k | w, K) = wk. (7)

In other words, each basket can be thought of as belonging to one of K latent subgroups.
The indicator sj ∈ {1, . . . , K} denotes the subgroup membership for basket j, and wk
represents the prevalence of subgroup k. Conditional on the subgroup memberships,
information borrowing only occurs within each subgroup. Therefore, compared to the
simple normal prior, the normal mixture prior allows for more judicious information
borrowing. Specifically, in the presence of substantial heterogeneity among baskets, the
normal mixture prior usually leads to less borrowing, reducing the risk of type I error
rate inflation. Note that the subgroup memberships are unknown a priori, and all baskets
share the same prior probability of belonging to any given subgroup. As a result, prior
exchangeability of the γjs still holds under model (6) or (7). This differs from the situation
where prior knowledge exists to distinguish some baskets from others, thereby breaking
the prior exchangeability assumption as discussed in Section 2.3.

The estimation of µ and σ2 follows a similar logic as in the simple normal prior case.
The number and weights of mixture components, K and w, may be prespecified or esti-
mated from the data. Standard prior choices include a symmetric Dirichlet distribution
prior for w conditional on K, and a zero-truncated Poisson distribution prior for K [38].
Since the dimensions of µ, σ2, and w depend on K, posterior computation under this ap-
proach typically requires trans-dimensional Markov chain Monte Carlo [39]. To avoid such
computational complexity, an alternative strategy is to fit multiple models with different
values of K and select the most appropriate K based on a model selection criterion such as
the deviance information criterion [15,40]. From a nonparametric Bayesian modeling per-
spective, one may set K = ∞ to allow for flexibility. By further letting wk = vk ∏k−1

l=1 (1 − vl)
and vl ∼ Beta(1, ζ), G(θ) becomes a Dirichlet process mixture model [21,41].

2.5.2. Bayesian Model Averaging

When it is reasonable to assume that the treatment has the same (transformed) response
rate across multiple baskets, Bayesian model averaging can be utilized to facilitate informa-
tion borrowing [16,22]. Let Mℓ denote a partition of the J baskets into subsets. For example,
when J = 3 baskets, the possible partitions include M1 = {{1, 2, 3}}, M2 = {{1, 2}, {3}},
M3 = {{1, 3}, {2}}, M4 = {{2, 3}, {1}}, and M5 = {{1}, {2}, {3}}. Each partition con-
strains different subsets of the (transformed) basket-specific response rates to be equal.
For example, under partition M2, γ1 must be equal to γ2, but there is no constraint on
γ3. To perform Bayesian inference, one may specify a prior for the distinct values of the
(transformed) response rates conditional on the partition, as well as an additional prior for
the partition itself.

Conditional on a given partition, information is pooled among baskets belonging to
the same subset, while no information is borrowed between baskets in different subsets.
The (marginal) posterior distribution of γj is a weighted average of its posteriors under
different partitions,

p(γj | data) = ∑
ℓ

p(γj | Mℓ, data) · P(Mℓ | data),

which represents a compromise between complete pooling and stratified analysis. The
weights in this average correspond to the posterior probabilities of the partitions.
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2.6. Operating Characteristics

The likelihood (1) and prior (3) on πj (or a transformation of πj) allow one to compute
the posterior distribution of πj. In most cases, the posterior is not analytically available,
and Monte Carlo methods are used to approximate the posterior [42,43]. For the hypothesis
test in Equation (2), a commonly used criterion to reject the null hypothesis H0j is when
the posterior probability Pr(πj > π0j | data) > qj, where qj is a prespecified threshold that
may differ across baskets.

It is common practice to evaluate the operating characteristics of a Bayesian procedure
under the frequentist paradigm, as it provides insights into the procedure’s long-run aver-
age behavior in repeated practical use [44]. In the context of basket trials, such evaluations
are useful for understanding the practical implications of different prior choices for πjs.
Often, a set of scenarios is considered in which the true response rates are specified for
the baskets, hypothetical response data are generated under each scenario, and relevant
operating characteristics are recorded over repeated simulations. Table 3 provides an
illustration of some possible response rate scenarios with four baskets and a reference rate
of 20% for every basket. The scenarios encompass different combinations of promising and
nonpromising baskets. The treatment response rates may also vary across the promising
(or nonpromising) baskets. In Table 3, Scenario 1 is a global null scenario in which the
treatment is inefficacious in all baskets, Scenario 2 is a global alternative scenario in which
the treatment is efficacious in all baskets, and Scenarios 3–6 are mixed scenarios in which
the treatment is efficacious in some but not all baskets.

Table 3. Examples of response rate scenarios used in simulations to evaluate methodologies for
analyzing basket trials.

Scenario
Response Rates Reference Rates

π1 π2 π3 π4 π01 π02 π03 π04

1 global null 20% 20% 20% 20% 20% 20% 20% 20%
2 global alternative 35% 35% 35% 35% 20% 20% 20% 20%
3 mixed 20% 35% 35% 35% 20% 20% 20% 20%
4 mixed 20% 20% 35% 35% 20% 20% 20% 20%
5 mixed 10% 20% 30% 40% 20% 20% 20% 20%
6 mixed 20% 20% 20% 35% 20% 20% 20% 20%

The values highlighted in bold represent the promising baskets.

The type I error rate and power are the most pertinent operating characteristics for
basket trials [45]. A type I error refers to the incorrect rejection of a true null hypothesis,
which, for basket trials, means to select a nonpromising basket for further investigation
in a large-scale phase III study. The basket-specific type I error rate refers to the probability
of committing a type I error in a specific basket, whereas the family wise type I error rate
(FWER) is the probability of committing a type I error in any of the baskets. Using computer
simulations, these error rates can be approximated by the relative frequencies of making
the corresponding errors in a large number of simulated trials. When the null hypothesis is
false, the correct action is to reject the null and select a truly promising basket for further
investigation. The basket-specific power refers to the probability of correctly selecting a
promising basket. The family wise power (FWP) is defined in a few different ways. For exam-
ple, the disjunctive power (FWP-D) is the probability of correctly selecting any promising
baskets, while the conjunctive power (FWP-C) is the probability of correctly selecting all
promising baskets [46]. For a quick summary of the statistical concepts pertaining to type I
error rate and power, refer to Table 4.

In exploratory basket trials, strict type I error rate control is not enforced by the
regulators and is often at the discretion of the sponsors. While a more lenient type I error
rate is linked to increased power, it implies a higher chance of selecting a nonpromising
basket for further development, increasing the cost associated with a drug development
program that will ultimately fail. On the other hand, a more stringent type I error rate
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is associated with reduced power, which leads to an increased chance of missing a truly
promising basket. Sponsors should carefully navigate the tradeoff between risk and benefit,
determining appropriate decision criteria under limited sample size that align with their
specific needs and objectives.

Table 4. Summary of concepts pertaining to type I error rate and power in basket trials.

Concept Description

Type I error rate
Basket-specific Probability that a specific nonpromising basket is falsely identified as promising
Family wise (FWER) Probability that any nonpromising basket is falsely identified as promising

Power
Basket-specific Probability that a specific promising basket is correctly identified as promising
Family wise & disjunctive (FWP-D) Probability that any promising basket is correctly identified as promising
Family wise & conjunctive (FWP-C) Probability that all promising baskets are correctly identified as promising

FWER control
Weak control FWER is controlled when all baskets are nonpromising
Strong control FWER is controlled regardless of which and how many baskets are nonpromising

We illustrate the impact of information borrowing on the type I error rate and power
through a simulation study based on the six scenarios in Table 3. Under each scenario,
1000 sets of hypothetical response data are generated with sample size of 20 patients for
every basket. Suppose that the borrowing occurs at the logit response rate level with an
adjustment for the reference rate, i.e., we let γj = logit(πj)− logit(π0j). Three prior choices
are considered for the γjs that lead to different degrees of borrowing:

(I): γj
iid∼ N(0, 1002);

(II): γj | µ, σ2 iid∼ N(µ, σ2), µ ∼ N(0, 1002), σ ∼ Half-N(3);

(III): γj | µ, σ2 iid∼ N(µ, σ2), µ ∼ N(0, 1002), σ ∼ Half-N(0.3).

Here, Half-N(A) represents a half-normal distribution with scale parameter A, which
belongs to the half-t prior family discussed by Gelman [36]. Priors I, II and III correspond
to no, moderate and strong borrowing, respectively.

Recall that the null hypothesis associated with basket j, H0j, is rejected when Pr(πj >
π0j | data) > qj. These posterior probability thresholds are typically chosen to achieve
certain desirable type I error rate. Since multiple hypotheses are tested simultaneously,
it may be desirable to incorporate a notion of FWER control, which limits the chance of
falsely selecting any nonpromising baskets for further investigation [46]. The first type of
FWER control, called weak control, requires that the FWER is controlled when all of the J
null hypotheses are simultaneously true. For the six scenarios considered in Table 3, weak
control of the FWER requires that the FWER is controlled under Scenario 1, the global null
scenario. Suppose for simplicity the same posterior probability threshold is used across all
baskets. To achieve a FWER of 5% under Scenario 1, the threshold values are 0.982, 0.946
and 0.964 under Priors I, II and III, respectively. The second type of FWER control, called
strong control, is more stringent. It requires the control of the FWER regardless of which
and how many null hypotheses are true. For the scenarios considered, strong control of
the FWER requires that the FWER is controlled under all six scenarios including the mixed
scenarios. Note that this does not guarantee FWER control beyond these six scenarios, but
we restrict our attention to the six scenarios for simplicity. To achieve a FWER of below
5% under all six scenarios, the required threshold values under Priors I, II and III are 0.982,
0.996 and 0.984, respectively.

Table 5 shows the simulation results with weak FWER control. From Table 5, in-
formation borrowing is beneficial when the treatment response rates are homogeneous
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across baskets. For example, in Scenario 2, borrowing leads to substantially increased
basket-specific and family wise power. In this case, the stronger the borrowing, the larger
the increase in power. When the response rates are heterogeneous, the performance of
borrowing does not always compare favorably with that of no borrowing. For example, in
Scenario 3, borrowing results in inflated type I error rate. In Scenario 6, strong borrowing
results in lower power compared to no borrowing.

Table 5. Operating characteristics under the six simulation scenarios with different degrees of
borrowing. The posterior probability thresholds are calibrated to achieve weak control of the FWER
under the global null scenario.

Scenario Borrowing % Reject FWER FWP-D FWP-C

1 0.2 0.2 0.2 0.2
No 1.2 1.3 1.3 1.3 5.0 0.0 0.0
Moderate 1.5 1.5 1.3 1.4 5.0 0.0 0.0
Strong 2.2 2.3 2.3 2.2 5.0 0.0 0.0

2 0.35 0.35 0.35 0.35
No 25.6 25.4 25.6 26.0 0.0 69.6 0.2
Moderate 54.0 52.9 54.7 55.5 0.0 87.0 18.9
Strong 79.9 78.1 78.8 79.8 0.0 90.3 63.6

3 0.2 0.35 0.35 0.35
No 1.1 25.2 25.2 27.0 1.1 59.2 1.7
Moderate 8.7 43.1 44.1 45.5 8.7 73.5 15.6
Strong 33.9 61.6 62.7 62.1 33.9 74.9 47.7

4 0.2 0.2 0.35 0.35
No 1.2 1.6 25.3 26.4 2.8 45.6 6.1
Moderate 5.5 4.9 34.6 37.0 8.8 54.1 17.5
Strong 18.6 18.1 43.7 44.1 25.3 53.1 34.7

5 0.1 0.2 0.3 0.4
No 0.0 1.5 12.2 44.9 1.5 51.9 5.2
Moderate 0.0 2.4 17.8 46.6 2.4 52.6 11.8
Strong 1.9 8.7 21.5 38.4 8.8 41.7 18.2

6 0.2 0.2 0.2 0.35
No 1.0 1.5 1.2 27.0 3.7 27.0 27.0
Moderate 3.2 2.8 2.4 27.0 7.1 27.0 27.0
Strong 8.2 7.9 7.6 24.7 14.0 24.7 24.7

The values highlighted in bold represent the promising baskets.

Table 6 reports the simulation results with strong FWER control. The issue of inflated
type I error rate due to borrowing is mitigated by increasing the posterior probability
thresholds. In the global alternative scenario, although less substantial, borrowing still
leads to increased power. In the mixed scenarios, however, borrowing (especially strong
borrowing) usually results in lower power compared to no borrowing.

In summary, in terms of operating characteristics, borrowing is beneficial when the
response rates are homogeneous but may be unfavorable when the response rates are hetero-
geneous. For this reason, there has been some controversy about the usefulness of information
borrowing in basket trials [47]. Our opinion is that borrowing is still useful. First, in the
Bayesian framework, a prior serves as an expression of belief regarding which parameter
values are deemed more plausible. When the prior is designed to encourage information
borrowing, it implies a belief that the response rates are more likely to be homogeneous
across baskets. Consequently, the performance in scenarios with homogeneous response rates
should be given greater weight compared to that in scenarios with heterogeneous response
rates. Second, Table 5 shows that under weak FWER control, moderate borrowing leads to
considerable gain in power in the global alternative scenario without compromising much
of the type I error rate and power in the mixed scenarios. In fact, with more sophisticated
Bayesian modeling and judicious information borrowing, many recent methods achieve even
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more improvements in power while maintaining type I error rates at reasonable levels, even in
the mixed scenarios [12,14,21]. To this end, we recommend setting up the statistical analysis to
borrow information across baskets where the treatment is expected to exhibit similar behavior
based on the drug mechanism. If there is uncertainty about the homogeneity of the true
response rates, it is recommended to borrow information in a judicious manner.

Table 6. Operating characteristics under the six simulation scenarios with different degrees of
borrowing. The posterior probability thresholds are calibrated to achieve strong control of the FWER
under all six scenarios.

Scenario Borrowing % Reject FWER FWP-D FWP-C

1 0.2 0.2 0.2 0.2
No 1.2 1.3 1.3 1.3 5.0 0.0 0.0
Moderate 0.6 0.5 0.7 0.5 2.0 0.0 0.0
Strong 0.1 0.1 0.1 0.1 0.3 0.0 0.0

2 0.35 0.35 0.35 0.35
No 25.6 25.4 25.6 26.0 0.0 69.6 0.2
Moderate 40.0 39.4 40.4 42.1 0.0 75.8 9.3
Strong 35.4 34.9 36.5 37.5 0.0 60.4 12.8

3 0.2 0.35 0.35 0.35
No 1.1 25.2 25.2 27.0 1.1 59.2 1.7
Moderate 5.0 30.2 30.1 32.0 5.0 58.6 7.2
Strong 5.0 21.3 20.5 21.7 5.0 37.5 7.4

4 0.2 0.2 0.35 0.35
No 1.2 1.6 25.3 26.4 2.8 45.6 6.1
Moderate 2.7 2.0 23.3 23.4 4.5 38.6 8.1
Strong 2.2 1.3 10.1 10.6 3.0 16.0 4.7

5 0.1 0.2 0.3 0.4
No 0.0 1.5 12.2 44.9 1.5 51.9 5.2
Moderate 0.0 1.5 10.6 33.3 1.5 39.3 4.6
Strong 0.0 0.4 3.0 9.9 0.4 11.5 1.4

6 0.2 0.2 0.2 0.35
No 1.0 1.5 1.2 27.0 3.7 27.0 27.0
Moderate 1.4 1.1 1.1 16.9 3.3 16.9 16.9
Strong 0.5 0.4 0.4 4.0 1.2 4.0 4.0

The values highlighted in bold represent the promising baskets.

2.7. Interim Analysis

Patient enrollment in clinical trials typically occurs sequentially. Therefore, when
designing a clinical trial, it may be desirable to incorporate provisions for interim analyses
of accumulating data, allowing for the possibility of early termination of the trial [48].
Oftentimes, basket trial designs include interim monitoring for futility [11,14,16]. At the
rth interim analysis, if

Pr(πj > π̃0j | data at rth interim) < cjr,

patient accrual in basket j is halted, as the treatment is deemed inefficacious in this basket.
Here, cjr is a prespecified threshold (e.g., 0.05), and π̃0j may be chosen based on both the
reference rate π0j and a prespecified target response rate π1j (e.g., π̃0j = (π0j + π1j)/2).
Alternatively, the futility stopping rule can be based on the posterior predictive probability
of success [48,49]. Early stopping rules have an impact on the operating characteristics
of a design. For example, futility stopping rules reduce the expected number of patients
enrolled and type I error rate, which can help avoid devoting too much resources to
nonpromising baskets. However, they also result in a decrease in the power of finding the
promising baskets.
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Interim analyses can also be used to serve the purpose of adjusting the extent of
information borrowing as the trial progresses. In Cunanan et al. [50], the authors proposed
to assess the homogeneity of treatment effects across baskets in an interim analysis via
Fisher’s exact test [51]. If homogeneity is not rejected, data across all baskets are pooled
into one group in the final analysis, whereas otherwise each basket is analyzed individually.
The critical value of the Fisher’s exact test statistic is a tuning parameter and is prespecified.
As another example, Liu et al. [13] proposed to evaluate response rate heterogeneity in
an interim analysis using Cochran’s Q test [52]. If homogeneity is not rejected, a Bayesian
hierarchical mixture model is used to borrow information across baskets in the final analysis.
Otherwise, each basket is investigated independently.

2.8. Non-Technical Summary

This section discusses several aspects of Bayesian methods for information borrowing
in phase II basket trials. Key statistical considerations include setting up appropriate
prior distributions for quantities that are deemed homogeneous across baskets, such as
response rates of the investigational drug or their increments over the reference rates.
We demonstrate the benefits of information borrowing through simple simulations and
advocate for the use of Bayesian methods that lead to increased statistical power despite
potential type I error rate inflation.

3. Basket in Phase I for Dose Optimization

Traditional cytotoxic oncology drugs (e.g., chemo-therapies) exert their efficacy through
mechanisms that directly induce cell death, cancerous or not. Therefore, a higher dose leads to
more cell death, which then leads to higher efficacy and toxicity. For this reason, the maximum
tolerated dose (MTD) is considered optimal for patient care since it produces the highest
efficacy among all the doses that can be tolerated. In a phase I oncology trial, simple statistical
designs like 3+3 [53] and i3+3 [54] are routinely used to identify a single dose as the MTD at
the end of the trial. However, this MTD-centric paradigam is now being challenged.

Due to the explosive advancement in biological and genomics research since the
human genome was sequenced in the early 2000s [55,56], oncology drugs have switched
from directly eradicating cancer cells based on cytotoxic means to precisely targeting
biological processes at the molecular level such as genetic and immune pathways. The vast
success in PD-1 inhibitors [57] highlights the paradigm shift in oncology drug development.
As a consequence, the design and conduct of phase I oncology trials are being transformed
with the launch of the U.S. FDA’s Project Optimus [25], which aims to adapt the approach
of clinical trials to the new realities of cancer treatment. Under this initiative, the FDA
encourages the development and application of novel trial designs and statistical methods
that attempt to identify the optimal dose of oncology drugs instead of the MTD. Several
publications [58–60] and an FDA draft guidance [24] have called for changes to early phase
clinical trial designs. See Figure 3 for a summary of the draft guidance.

Ji and Bi [61] proposed a new platform trial design for early phase dose optimization.
The design, called ADOPT, standing for Adaptive Dose Optimization Platform Trial, is
structured as a phase I trial consisting of three seamless sub-phases, Ia, Ib, and Ic. Two
versions of ADOPT are presented in Figure 4, denoted as ADOPT-V1 and ADOPT-V2.
In both versions, phase Ia represents an improved dose escalation study highlighted by
novel features like patient backfill and the use of PK/PD data. At the end of phase Ia,
doses 10 mg (the MTD) and 3 mg (the dose below MTD) are selected and sent to phases
Ib and Ic for testing of efficacy. ADOPT-V1 (Figure 4a) applies the multi-arm two-stage
(MATS) design [28] to phases Ib and Ic. Specifically, phase Ib expands the higher dose
10 mg in three indications, making it a basket-like study. At the end of phase Ib, an
interim analysis is performed for each indication to determine whether the higher dose
10 mg shows promising efficacy in that indication. If yes, the indication is selected for a
randomized comparison between 10mg and 3 mg in the subsequent phase Ic. Multiple
indications may be selected for phase Ic, making it another basket-like study that also



Cancers 2024, 16, 251 14 of 19

involves multiple doses. In other words, phases Ib/Ic constitute a double-basket trial.
ADOPT-V2 (Figure 4b) reverses the order of dose expansion and randomized comparison.
The two versions of ADOPT may be suitable for different drug development programs and
mechanisms of action. For example, if it is strongly believed that the higher dose is more
efficacious than the lower dose, ADOPT-V1 might be a better design since it only tests the
lower dose (in phase Ic) when the higher dose demonstrates promising efficacy. Otherwise,
ADOPT-V2 might be preferred, which allows randomized comparison between the two
doses immediately after dose escalation in phase Ia.

Collection and Interpretation of 
Clinical Pharmacokinetic, 
Pharmacodynamic, and 
Pharmacogenomic Data 

Integrate PK/PD/PG data with 
clinical data (safety and efficacy)

Investigate effects in multiple 
populations when possible

Trial Designs to Compare Multiple 
Dosages 

Backfill patients on multiple 
doses before dose comparison

Randomized dose comparison (no 
need to power the study for 
superiority or non-inferiority)

Safety and Tolerability -- 
Endpoints 

DLT and low grade toxicity should 
be considered – Toxicity burden

PRO

Subsequent Indications and 
Usages 

Different doses for different 
diseases should be considered

Figure 3. Summary of the FDA draft guidance on dose optimization.

The double-basket phases Ib and Ic in ADOPT offer opportunities for employing
statistical methods that facilitate information borrowing across indications. Take ADOPT-
V1 as an example, which utilizes the MATS design [28] for the double-basket phases. Let
i = 1 and 2 denote the higher and lower doses, 10 mg and 3 mg, respectively. Furthermore,
let k = 1 and 2 denote the two stages corresponding to phases Ib and Ic. Finally, let
j = 1, . . . , J denote the indications. In Figure 4a, J = 3 corresponding to NSCLC, SCLC
and other. The tuple (i, j, k) uniquely identifies an “arm” in the trial. For each arm (i, j, k),
denote by nijk the number of patients treated and yijk the number of responders. Then,
assume the following sampling model,

Stage 1: y1j1 | n1j1, π1j ∼ Bin(n1j1, π1j),

Stage 2: yij2 | nij2, πij, Dj1 = 1 ∼ Bin(nij2 · Dj1, πij),

where πij represents the true but unknown response rate of dose i in indication j, and
Dj1 = 1 (or 0) represents that indication j is selected (or not selected) for further testing in
stage 2. The goal of the double-basket phases is twofold: comparing πij to an indication-
specific reference rate π0j for both doses (proof of concept), and comparing π1j to π2j
between the two dose levels (dose optimization). The MATS design utilizes the following
Bayesian hierarchical model to borrow information across indications,

Transformation: γ1j = logit(π1j)− logit(π0j);

γ2j = logit(π1j)− logit(π2j);

Prior for γ1j : γ1j | µ1, σ2
1

iid∼ N(µ1, σ2
1 );

Prior for γ2j : γ2j | µ2, σ2
2

iid∼ LogNormal(µ2, σ2
2 );

Hyperpriors: µ1 ∼ Normal, σ2
1 ∼ Inv-Gamma;

µ2 ∼ Normal, σ2
2 ∼ Inv-Gamma.
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Here, γ1j represents the response rate increment (on the logit scale) of the high dose
over the reference rate in indication j. Modeling the γ1js as a random sample from a
common normal distribution allows information borrowing of the response rate increments
across indications. This is analogous to the idea illustrated in Equation (3) and Figure 1.
Similarly, γ2j represents the response rate difference (on the logit scale) between the high
and low doses in indication j. Again, the common log-normal prior for the γ2js facilitates
information borrowing of the response rate differences. It is assumed that the response rate
is increasing with the dose level, and thus the γ2js are restricted to be positive. However,
when the assumption is unlikely to hold, a more neutral prior, such as a normal distribution
allowing γ2js to be negative, may be considered.
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(a) ADOPT-V1
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(b) ADOPT-V2
Figure 4. A stylized illustration of the Adaptive Dose Optimization Platform Trial (ADOPT). It
consists of three seamless phases, Ia, Ib, and Ic. Phase Ia is for dose escalation. Phases Ib and Ic are
basket trials for expansion and randomized dose comparison. IA stands for interim analysis. Novel
features like backfill and integration of PK/PD data can be considered in phase Ia. The order of
phases Ib and Ic may change depending on specific settings in practice, shown as the two versions V1
in (a) and V2 in (b). In the end, different indications may have different optimal doses. For example,
3mg for NSCLC and 10mg for SCLC are selected as the optimal doses.
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Non-Technical Summary

This section discusses the application of Bayesian methods for information borrowing
in phase I dose optimization trials. Through reviewing the MATS design, we demonstrate
how information borrowing can be incorporated in trials that involve multiple doses,
indications, and stages.

4. Discussion and Future Directions

We have provided an overview of Bayesian methods for information borrowing in
basket trials and have summarized the general components of these methods. For other
aspects of basket trials, we refer interested readers to [62–66]. For example, Park et al. [62]
performed a systematic literature search to identify clinical trials that had been proposed
and conducted with a basket design. Kaizer et al. [63] offered more insights into the
statistical considerations, in particular those related to the type I error rate. Pohl et al. [64]
covered both Bayesian and frequentist methods with more emphasis on the variety of
statistical models.

Statistical software that implements Bayesian methods for basket trials is scarce. Table 7
lists a few notable ones with the most comprehensive software being commercial.

Table 7. Selected software packages that implement Bayesian methods for basket trials.

Software Name Type Description

R Package: basket (Ver. 0.10.11) Open source
Implements the multi-source exchange-
ability model in Hobbs and Landin [16]
and Kaizer et al. [67]

R Package: bmabasket (Ver. 0.1.2) Open source Implements the Bayesian model averag-
ing approach in Psioda et al. [22]

R Package: bhmbasket (Ver. 0.9.5) Open source
Implements the Bayesian hierarchical
modeling approaches in Berry et al. [11]
and Neuenschwander et al. [12]

Website: https://trialdesign.org/
(accessed on 22 December 2023) Free Implements the calibrated Bayesian hier-

archical model in Chu and Yuan [14]

East Bayes
(https://www.cytel.com/
software/east-bayes/
(accessed on 22 December 2023))

Commercial software carried by Cytel, Inc.
(Cambridge, MA, USA)

Compares up to four different basket trial
designs

To date, we have discussed the applications of basket designs in exploratory phase I
and phase II trials. Confirmatory basket trials, on the other hand, require additional
statistical considerations. For example, whether it is still appropriate to borrow information
across baskets, and whether it is necessary to impose stringent control of the FWER [68,69].
Recent novel basket trial designs [70–72] shed some lights on the potential efficiency gain of
confirmatory basket trials by adding a “pruning” step using external data and interim trial
data to weed out unpromising indications and by performing a post-individual check after
the final pooled analysis of data from all indications. In He et al. [72], the authors showed
that such a design could improve the efficiency of the trial while still controlling the FWER.
While the proposed design was not based on Bayesian models, the authors suggested
that Bayesian techniques devised for exploratory basket trials may further improve the
performance of their design.

None of the methods reviewed in this article consider borrowing on the basis of
similarities between patients. In other words, if patient populations across two baskets
are “similar”, it is more likely they will respond to the treatment similarly. The similarity
of patients can be measured by the distance of their covariate distributions, which sets
up a model framework for dependent distributions of covariates. This might be a future
direction of statistical research for basket trials.

https://trialdesign.org/
https://www.cytel.com/software/east-bayes/
https://www.cytel.com/software/east-bayes/
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5. Conclusions

Basket trials allow simultaneous evaluation of an investigational drug in multiple
patient subpopulations within a single study. Since patients across baskets receive the
same treatment, it is sensible to borrow information across them to improve estimation of
treatment effects in different baskets. Bayesian methods provide a natural choice to achieve
information borrowing and are the focus of our review. An overarching theme across the
reviewed methods is to assume the (transformed) response rates for different baskets arise
from a common population distribution. This provides opportunities for Bayesian statisti-
cians to set up priors for the transformed response rates that are essentially exchangeable
and therefore enable information sharing in the estimation procedure. Simulation studies
can be used to calibrate the decision criteria for efficacy evaluation to achieve desirable
operating characteristics under information borrowing.
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