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Simple Summary: Breast cancer is one of the leading causes of cancer-related death in women.
The early detection of breast cancer with screening mammograms plays a pivotal role in reducing
mortality rates. Although population-based double-reading screening mammograms have reduced
mortality by over 31% in women with breast cancer in Europe, continuing this program is difficult due
to the shortage of radiologists. Artificial intelligence (AI) is an emerging technology that has provided
promising results in medical imaging for disease detection. This study investigates the performance
of AI models on an Australian mammographic database, demonstrating how transfer learning from
a USA mammographic database to an Australian one, contrast enhancement on mammographic
images and the quality of training data according to radiologists’ concordance can improve breast
cancer diagnosis. Our proposed methodology offers a more efficacious approach for AI to contribute
to radiologists’ decision making when interpreting mammography images.

Abstract: This paper investigates the adaptability of four state-of-the-art artificial intelligence (AI)
models to the Australian mammographic context through transfer learning, explores the impact of
image enhancement on model performance and analyses the relationship between AI outputs and
histopathological features for clinical relevance and accuracy assessment. A total of 1712 screening
mammograms (n = 856 cancer cases and n = 856 matched normal cases) were used in this study. The
856 cases with cancer lesions were annotated by two expert radiologists and the level of concordance
between their annotations was used to establish two sets: a ‘high-concordances subset’ with 99%
agreement of cancer location and an ‘entire dataset’ with all cases included. The area under the
receiver operating characteristic curve (AUC) was used to evaluate the performance of Globally aware
Multiple Instance Classifier (GMIC), Global-Local Activation Maps (GLAM), I&H and End2End
AI models, both in the pretrained and transfer learning modes, with and without applying the
Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. The four AI models with
and without transfer learning in the high-concordance subset outperformed those in the entire dataset.
Applying the CLAHE algorithm to mammograms improved the performance of the AI models. In
the high-concordance subset with the transfer learning and CLAHE algorithm applied, the AUC
of the GMIC model was highest (0.912), followed by the GLAM model (0.909), I&H (0.893) and
End2End (0.875). There were significant differences (p < 0.05) in the performances of the four AI
models between the high-concordance subset and the entire dataset. The AI models demonstrated
significant differences in malignancy probability concerning different tumour size categories in
mammograms. The performance of AI models was affected by several factors such as concordance
classification, image enhancement and transfer learning. Mammograms with a strong concordance
with radiologists’ annotations, applying image enhancement and transfer learning could enhance the
accuracy of AI models.
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1. Introduction

Breast cancer had the highest incidence among all types of solid cancers among women
worldwide in 2020, leading to the highest mortality [1]. To reduce mortality, mammography
was introduced for breast screening in many countries in the early 2000s. Mammography
remains the most common imaging technique for breast cancer diagnosis in most countries,
and a standard screening mammogram consists of X-ray imaging with two views on each
breast in the mediolateral oblique (MLO) and craniocaudal (CC) projection. Mammographic
images in these two views are interpreted by radiologists and other readers to determine
whether the screening case is negative for breast cancer or the woman needs to be recalled
for further imaging and/or testing. The mortality for women with breast cancer in European
populations has reduced by over 31% as attributed to population-based programs using
mammography [2]. Women diagnosed with abnormal mammograms are recommended for
further testing, which can include additional images or biopsy. Over 60% of these biopsies
are diagnosed as cancer-free [3].

Although the sensitivity (>86%) and specificity (>96%) [4] of screening mammography
to detect breast cancer for women with almost entirely fatty breasts is relatively high, a major
challenge in mammography screening involves women with dense breasts, as breast cancer
can be masked by glandular tissue. Tissue superposition occurs in mammography when
there are overlapping layers of breast tissue that can obscure small or subtle abnormalities,
making it difficult for radiologists to accurately interpret the images [5]. This issue has
been partially mitigated by digital breast tomosynthesis (DBT), which is an advanced
mammographic technology that captures three-dimensional images of the breast, allowing
for a more detailed and layered view of breast tissue. However, the larger volume of images
generated by DBT necessitates more time for both image acquisition and interpretation [6].

Over the past decade, artificial intelligence (AI) has garnered extensive attention in
medical imaging for its promising advancements in the diagnostic accuracy of interpretative
tasks related to various organs like the brain, liver, breast and lung [7–19]. Particularly,
deep learning methods applied to diagnose breast cancer through mammographic images
have captivated extensive interest [10,12,16,17]. The effective training of AI models for
clinical application demands a vast amount of data containing precise lesion locations.
However, the acquisition of these extensive sets of images with lesion locations significantly
increases the workload for radiologists and physicians. To mitigate some of these workload
challenges, transfer learning [20], involving the use of pretrained AI models in different
settings, has emerged as a potential solution.

Breast screening with AI models can assist radiologists in interpreting mammograms,
especially in distinguishing between normal and abnormal cases [21]. The Globally-aware
Multiple Instance Classifier (GMIC) [16] AI model was designed to classify mammographic
cases as benign or malignant. Furthermore, the Global-Local Activation Maps (GLAM) [17]
AI model extended GMIC to classify mammographic cases as benign or malignant by
generating multiple-scale saliency maps. The I&H AI model [10] used deep neural networks
to assist radiologists in interpreting screening mammograms. The End2End AI model [12]
demonstrated a method of breast screening on mammograms using deep neural networks.
All these four AI models used residual networks (ResNet) architecture [22] in the training
and testing processes. For completeness of the paper, a detailed review of these methods is
given in the methods section.

This paper investigates the performance of these four publicly available, state-of-the-
art AI models, GMIC, GLAM, I&H and End2End, on a screening mammographic database
of Australian women. This study’s primary goals include
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(1) Comparing the performance of these models on an Australian dataset, which differs
from their original training data (both in terms of population characteristics and
the types of mammography machines (vendors) used), highlighting the influence of
dataset variations on predictions.

(2) Investigating the potential improvement of model performance through transfer learning
and, hence, the value of tailoring the AI models for other nationalities’ contexts.

(3) Examining the impact of image enhancement techniques on model predictions to
assess their potential to enhance diagnostic accuracy.

(4) Exploring the association between the AI models’ malignancy probability outputs
and histopathological features, offering insights into the models’ predictive accuracy
and potential clinical relevance, aiding further treatment/triaging decision making.

2. Materials and Methods

Four state-of-the-art AI models involving deep neural networks were used to test an
Australian mammographic database. Transfer learning of the four pretrained AI models
was conducted on the database to update these AI models. Since the images in our dataset
were obtained from different vendors, they exhibited significantly different histograms
and dynamic ranges. Figure 1 shows the comparison of two histograms from mammo-
graphic images from Hologic (Figure 1a) and Fuji Film (Figure 1b). The bin number of the
histograms was set as 25. These two histograms (Figure 1c) are statistically significantly
different (p-value < 0.001).
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Therefore, we applied the Contrast Limited Adaptive Histogram Equalization (CLAHE)
algorithm [23] to enhance the contrast of mammographic cases and evaluated its impact
on the performance of AI models. The receiver operating characteristic curve (ROC) and
the area under the ROC curve (AUC) metrics were used to evaluate the performance of the
four AI models in different scenarios. Histopathological features were analysed with the
malignancy probabilities of mammographic cases to provide the best AI model in terms of
AUC values. Our method consisted of several steps, as illustrated in Figure 2.
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2.1. Data Acquisition

After ethics approval from the University of Sydney, we used screening mammograms
collected from the Australian mammographic database Lifepool to assess the performance
of the four AI models. The Lifepool database consists of 1712 mammographic cases
(856 normal cases and 856 malignant cases). Each malignant case was confirmed by the
reports of follow-up biopsies. Each case had four mammographic views: right MLO, left
MLO, right CC and left CC views. Mammograms were acquired from mammography
machines manufactured by five different vendors, including Fuji Film (32% of cases), Konica
(4% of cases), Siemens (34% of cases), Hologic (19%) and Sectra (11% of cases). Each case was
annotated by two radiologists and recorded as box regions on the mammographic images.
Figure 3 shows an example of the annotations of two radiologists on a mammographic
case, with red boxes from Radiologist A and green boxes from Radiologist B. Concordance
levels were constructed by analysing Lin’s concordance correlation coefficient (CCC) [24]
between the annotations of two radiologists on mammograms according to McBride’s
interpretation guide [25]. Lin’s CCC was computed based on the corners of two overlapped
boxes of annotations on the same mammographic image. The Intersection over Union [26]
metric was used to determine whether two boxes overlapped or not, with a value greater
than 0 indicating the overlapping of two boxes. Mammographic images were classified as
four concordance levels: ‘almost perfect’ at >0.99 (238 cases), ‘substantial’ at <0.95 to 0.95
(222 cases), ‘moderate’ at 0.95 to 0.90 (202 cases) and ‘poor’ at <0.90 (194 cases). Figure 4
shows the histograms of annotations from the two radiologists in four concordance levels.
A correlation metric [27] was used to compare the two histograms. The correlation metric
is in the range [0, 1]. A larger correlation value indicates more overlap between the two
histograms. For the almost perfect, substantial, moderate and poor levels in Figure 4a–d,
the correlation value was 0.996, 0.962, 0.811 and 0.480, respectively. A larger correlation
value with the higher concordance level indicated that the thresholds were suitable for
different concordance levels.
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The training and testing mammographic cases of our database had an equal represen-
tation of breast density. Two image sets were developed: the first subset included cases
rated with ‘almost perfect’ agreement between radiologists (termed ‘high-concordance
subset’ in this paper), and the second dataset included all cases that have been marked with
cancers with ‘no concordance threshold’ applied (termed ‘entire dataset’ in this paper).

2.2. AI Models

The GLAM, GMIC, I&H and End2End models were evaluated in this study. These
four models were selected as each model provided promising results in diagnosing cancers
on mammographic images with high AUC values. The GMIC model combined the global
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and local context in the decision-making process [16]. To obtain additional details of the
local context, the GLAM incorporated zoom functionality for the local context, similar to
the approach taken by radiologists interpreting mammographic images [17]. To mimic ra-
diologists interpreting mammographic images from different views, I&H fused each model
trained on each view for the decision-making process [10], as sometimes a mammographic
image from a single view is not enough to determine whether the mammographic image
shows cancer. Instead of searching cancer signs in a direction from the global to the local on
a mammographic image like GMIC and GLAM, End2End trained a local classifier and then
expanded to a global classifier to determine whether the mammographic images showed
signs of cancer. Although the AUC values reported previously for GMIC, GLAM, I&H and
End2End using their original mammography databases were 0.909, 0.882, 0.895 and 0.88,
respectively, these AI models have reportedly provided relatively low AUC values on other
mammographic databases from different ethnicities and manufacturers [28].

2.2.1. Globally-Aware Multiple Instance Classifier (GMIC)

The GMIC first learned the global feature map of a mammographic image using a
ResNet-22 network [25]. The global feature map was convolved with a 1 × 1 filter and
Sigmoid operation to generate a malignant map. The value of each pixel in the global
feature map was [0, 1], which indicated the presence of malignancy. The feature map was
then scanned to obtain non-overlapping K patches with the largest total intensity inside
the patches. As suggested in the original paper, K was set as 3. Local features of patches
were extracted using a ResNet-34 network and then combined with a gated attention
network for computing the weights of features. The final step combined the malignant map
and local feature with the weighted representation of all patches to predict malignancy
probability. All the mammographic images for GMIC models were resized to a resolution
of 1920 × 2944 pixels using bilinear interpolation [29]. For the GMIC model, the source
codes are publicly available on GitHub at https://github.com/nyukat/GMIC.git (accessed
on 2 November 2022).

2.2.2. Global-Local Activation Maps (GLAM)

The GLAM learned the global saliency map of a mammographic image using a
convolutional neural network (CNN). To capture different sizes of malignancy, the global
saliency map was generated at different scales. The second stage generated a set of
patches from the feature map based on the local maximum of average intensity. In the
last stage, each image patch was applied to a ResNet-34 network [22] to extract the local
feature map, which was then assigned to the corresponding mammographic image. All
feature maps of local patches were combined with the global feature map to predict
the probability of malignancy on a mammographic image using the binary cross-entropy
function. All the mammographic images for GLAM models were also resized to a resolution
of 1920 × 2944 pixels. For the GLAM model, the source codes are publicly available on
GitHub at https://github.com/nyukat/GLAM.git (accessed on 2 November 2022).

2.2.3. I&H

I&H trained AI models based on MLO and CC views on each breast and concatenated
representations from four views to predict the probability of malignancy in each mam-
mographic image. ResNet-22 was used for model training in a mammographic image of
each view. The mammographic images in CC view for the I&H model were resized to
2677 × 1942 and 2974 × 1748 in MLO view. For this model, we used the source codes pub-
lished by the authors on GitHub at https://github.com/nyukat/breast_cancer_classifier.git
(accessed on 2 November 2022).

2.2.4. End2End

End2End converted a patch classifier to a whole mammographic image classifier
by adding heatmaps and convolutional layers on the top of the neural network. These

https://github.com/nyukat/GMIC.git
https://github.com/nyukat/GLAM.git
https://github.com/nyukat/breast_cancer_classifier.git
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convolutions used two visual geometry group (VGG) [30] blocks with 3 × 3 convolutions
and batch normalization. All the mammographic images for End2End were resized to a
resolution of 1152 × 896 pixels. For this model, we used the source codes published by
the authors on GitHub at https://github.com/lishen/end2end-all-conv.git (accessed on
2 November 2022).

2.3. Image Enhancement

Image enhancement techniques can be helpful to optimize the contrast of mammo-
graphic images and one example is from Min et al. [31], where the study presented pseudo-
colour mammogram generation to enhance mass-like features in mammographic images.
In this study, we used the CLAHE [23] algorithm to enhance mammographic images be-
cause it is fast and produces promising contrast enhancement. The CLAHE algorithm first
divided an image into un-overlapped tiles. In the second stage, it conducted histogram
equalization for each tile. The histogram equalization used a predefined clip limit to redis-
tribute the bins and then map to an improved tile. The last stage combined each improved
tile to generate an enhanced image using bilinear interpolation. We have conducted prelim-
inary experiments on the mammographic database to empirically determine the values of
parameters of the CLAHE algorithm. Figure 5 depicts the AUC of the GMIC on Lifepool
versus the two parameters. In Figure 5a, the tile grid size was fixed to (8, 8); in Figure 5b,
the clip limit was fixed to 12. In both the plots, we can see that AUC increased with the
clip limit up to 12 and tile grid size (8, 8) and then decreased afterward. Therefore, the clip
limit was set to 12 and the tile grid size was set to (8, 8) in all the experiments reported in
this paper.
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2.4. Transfer Learning

Transfer learning of the four AI models was conducted on the Lifepool database,
including 856 cancer cases and 856 normal cases. The resolutions of most original images
from Lifepool DICOM data are 4728 × 5928, but the images for training AI models are in
PNG format with much smaller resolutions (e.g., GMIC and GLAM with 1920 × 2944). All
DICOM images were downsampled to match the resolution of the input images for the
models and converted to PNG format to reduce the computational time of the training
process. We conducted a four-fold cross-validation to train and test the four AI models
on the database with transfer learning. The training set was further split into training
and validation sets to refine the stopping criteria. This step involved an iterative process,
assessing the AI models’ accuracy in the current epoch against the previous one. The
training concluded when the validation process callback showed no improvement in model
accuracy, typically after a patience threshold of 3 epochs had been reached.

https://github.com/lishen/end2end-all-conv.git
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The transfer learning of each AI model was optimized using the Adam algorithm [32].
The loss function used the binary cross-entropy. As suggested in the original studies, the
learning rates for the GMIC, GLAM and I&H were set as 10−5 and End2End was set as
10−4, respectively. For an equitable comparison of performance between transfer learning
models and pretrained models, the transfer learning approach employed the ResNet-22
network for the global module and the ResNet-34 network for the local module. These are
the same networks utilized by the pretrained GMIC and GLAM models. Additionally, I&H
utilized the ResNet-22 network as its pretrained model, while End2End employed the VGG
network as its pretrained model.

2.5. Evaluation Metrics

The performance of four AI models in the classification of malignancy on mammo-
graphic images was evaluated using sensitivity, specificity and the area under the receiver
operating characteristic curve (AUC). An ANOVA test was conducted for each AI model
between the two image sets, with the corresponding p-values as shown in the Results
section. The DeLong test [33] was also used to compare AUC values from the four AI
models between the original and transfer learning modes on the high-concordances subset
and entire dataset. The Youden index [34] was used to assess objectively the ROC curves
of the four AI models, both in original and transfer learning modes and with and without
contrast enhancement. A threshold of statistical significance was set as 0.05. Bonferroni
correction was used to adjust for multiple comparisons.

2.6. Association between the Malignancy Probability from the AI and Histopathological Features

We also employed the Kruskal–Wallis U-test to investigate potential differences in
malignancy probability as predicted by the top-performing AI model across distinct cate-
gories based on pathology reports. We considered pathological factors including estrogen
receptor (ER), progesterone receptor (PR), breast cancer grade, human epidermal growth
factor receptor 2 (Her2) and the differentiation between ductal carcinoma in situ (DCIS)
and invasive cancer. Additionally, an analysis was conducted based on the size of the
cancers, with tumours classified into four groups (mm): (0.999, 10.0], (10.0, 15.0], (15.0, 25.0]
and (25.0, 150.0] intervals. The Kruskal–Wallis U-test was utilized to assess the statistical
significance of differences among these groups.

3. Results
3.1. The Performances of Four AI Models

In the pretrained stage, GMIC obtained a significantly higher AUC score in both the
high-concordance subset and the entire dataset in original (0.865 and 0.824) and contrast-
enhanced (0.870 and 0.836) modes, followed by the GLAM, I&H and then End2End models
(Table 1). There were significant differences (p < 0.05) (Table 1) in the performances of these
models between the two datasets. The AUC values of the four AI models were higher when
the CLAHE image enhancement algorithm was applied, in comparison with the original
mammograms (Table 1) (e.g., 0.870 for GMIC + CLAHE vs. 0.865 for GMIC only in the
high-concordance subset, and 0.836 for GMIC + CLAHE vs. 0.824 for GMIC only in the
entire dataset).

In the transfer learning stage, the highest AUC score was found with the GMIC for
both the high-concordance subset and the entire dataset (0.910 and 0.883) and again with
the contrast-enhanced (0.912 and 0.889) mode compared with the values generated by
the GLAM, I&H and then End2End’s models without contrast enhancement (Table 1).
Significantly higher AUC scores were also reported in the subset than in the entire dataset
across four models with and without contrast enhancement (p < 0.05) (Table 1). There was
an improvement in the AUC values of the four transfer learning AI models on the contrast-
enhanced mammograms compared with the original mammograms in both datasets, as
shown in this table (e.g., 0.912 for GMIC + CLAHE vs. 0.910 for GMIC only in the high-
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concordance subset, and 0.889 for GMIC + CLAHE vs. 0.883 for GMIC only in the en-
tire dataset).

Table 1. Performance comparison of four AI models with and without CLAHE image enhancement
algorithm on both entire dataset (AUCEntire) and the high-concordance data subset (AUCHigh).
Two different scenarios were considered: using the original models and using the models recalibrated
for our dataset using transfer learning.

Original Transfer Learning

AUCEntire AUCHigh p-Values AUCEntire AUCHigh p-Values

GMIC 0.824 0.865 0.0283 0.883 0.91 0.0416
GLAM 0.817 0.858 0.0305 0.877 0.906 0.0359
I&H 0.806 0.842 0.0454 0.852 0.891 0.0257
End2End 0.784 0.819 0.0368 0.824 0.874 0.0162
GMIC + CLAHE 0.836 0.870 0.0137 0.889 0.912 0.0348
GLAM + CLAHE 0.825 0.864 0.0181 0.886 0.909 0.0310
I&H + CLAHE 0.812 0.845 0.0339 0.855 0.893 0.0185
End2End + CLAHE 0.793 0.821 0.0286 0.828 0.875 0.0124

Table 2 shows the p-values of the DeLong test for the comparison of AUC values from
four AI models between the original and transfer learning modes with and without the
CLAHE image enhancement algorithm on both the entire dataset and the high-concordance
data subset. From this table, we can see that the improvement in the AUC values of
all four AI models between the original and transfer learning modes was statistically
significant on both datasets.

Table 2. DeLong test for the AUC values of four AI models between the original and transfer learning
modes with and without CLAHE image enhancement algorithm on both entire dataset (AUCEntire)
and the high-concordance data subset (AUCHigh).

AUCEntire AUCHigh

GMIC <0.001 0.0034
GLAM <0.001 0.0041
I&H <0.001 0.0002
End2End 0.0093 0.0008
GMIC + CLAHE <0.001 0.004
GLAM + CLAHE <0.001 0.0121
I&H + CLAHE <0.001 0.0032
End2End + CLAHE 0.0219 0.001

Figures 6 and 7 show the comparison of ROC curves of the four AI models with and
without transfer learning on the high-concordance subset and entire dataset, respectively.
The ROC curves in these figures show a clear improvement in performance among the
four AI models with transfer learning (see Figures 6 and 7a,c) and CLAHE contrast en-
hancement (see Figures 6 and 7b,d). Confidence intervals for the four AI models on the
high-concordance subset are shown in the legend of each subfigure.

Figures 6 and 7 also illustrate that the receiver operating characteristic (ROC) curves of
the four AI models, both with and without transfer learning and with and without contrast
enhancement, exhibited superior performance in terms of the Youden index (e.g., 0.650
for GMIC + CLAHE vs. 0.641 for GMIC only in Figure 6a without transfer learning, 0.770
for GMIC + CLAHE vs. 0.761 for GMIC only in Figure 6d with transfer learning) in the
high-concordance subset compared to the entire dataset (e.g., 0.548 for GMIC + CLAHE vs.
0.520 for GMIC only in Figure 7a without transfer learning, 0.698 for GMIC + CLAHE vs.
0.678 for GMIC only in Figure 7d with transfer learning). The ROC curves of the four AI
transfer learning models showed more improvement on two datasets than those of the four
pretrained AI models (e.g., Figures 6a and 7a vs. Figures 6c and 7c).
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Figure 7. The receiver operating characteristic curves (ROC) of the four AI models on entire dataset.
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AI models on enhanced mammographic images; (c) the ROC curves of the AI transfer learning
models on original mammographic images; (d) the ROC curves of the AI transfer learning models on
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3.2. Pairwise Comparisons of Four AI Models

We conducted pair-wise comparisons among the models in various scenarios to explore
if the differences in the performances were significant. In each scenario, six comparisons
were made and the p-values were adjusted using Bonferroni correction. As shown in
Table 3, the differences were more significant when models were recalibrated using transfer
learning. This highlights the need for transfer learning to leverage the maximum added
benefit of the model. The GMIC and GLAM models were not significantly different in the
entire dataset because both models have a similar architecture of networks and GLAM was
an extended work of GMIC.

Table 3. The p-values for pair-wise comparison of the models’ output in different scenarios (significant
level of 0.0083 was considered after applying Bonferroni adjustment). The p-values were adjusted
using Bonferroni correction.

Model Images Without Transferred
Learning, Original

Without Transferred
Learning, CLAHE

With Transferred
Learning, Original

With Transferred
Learning, CLAHE

Dataset Entire High Entire High Entire High Entire High

GMIC vs. GLAM 0.0362 0.0624 0.0331 0.0566 0.0193 0.0233 0.0141 0.0215
GMIC vs. I&H 0.0175 0.0387 0.0108 0.0369 0.0076 0.0135 0.0058 0.0121

GMIC vs. End2End 0.0062 0.0078 0.0049 0.0062 0.0027 0.0041 0.0015 0.0030
GLAM vs. I&H 0.0236 0.0294 0.0217 0.0279 0.0061 0.0093 0.0020 0.0075

GLAM vs. End2End 0.0064 0.0186 0.0059 0.017 0.0073 0.0142 0.0057 0.0128
I&H vs. End2End 0.0081 0.0351 0.0025 0.0344 0.0220 0.0327 0.0106 0.0310

The I&H and GMIC or GLAM models were not significantly different when using the
original or contrast-enhanced images in the entire dataset, but significant differences were
observed when transfer learning models were used. The GMIC and End2End models were
significantly different in both the high-concordance subset and the entire dataset due to the
different deep neural network architectures of the two models (one with ResNet and the
other with VGG).

3.3. Comparison of Salience Maps on Original and Locally Enhanced Mammographic Images

Figure 8 shows the comparison of saliency maps generated from GLAM and GMIC
on both an original mammographic image and with the applied CLAHE algorithm. The
annotations of two radiologists on the same mammographic case are shown in the left
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CC view in Figure 3. From Figure 8, we can see that the saliency maps of GLAM (see
Figure 8c) and GMIC (see Figure 8e) from original mammographic images deviated from
the centroid of the radiologists’ annotations and occupied a smaller area of the annotations.
However, the saliency maps of the two AI models from the contrast-enhanced image (see
Figure 8d,f) aligned with the centroid of radiologists’ annotations and occupied a larger
area of the annotations.
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Figure 8. Comparison of saliency map from GLAM and GMIC on an original mammographic
image with and without applying Contrast Limited Adaptive Histogram Equalization (CLAHE) algo-
rithm. (a) Original mammogram in CC view; (b) enhanced mammogram using CLAHE algorithm;
(c) saliency maps on the original mammogram using GLAM; (d) saliency maps on the enhanced
mammogram using GLAM; (e) saliency maps on the original mammogram using GMIC; (f) saliency
maps on the enhanced mammogram using GMIC.

3.4. Association between the Malignancy Probability from the AI and Histopathological Features

The outcomes of the Kruskal–Wallis tests, assessing the significance of differences
in malignancy probability predicted by the highest-performing AI model (GMIC) across
various pathological factors, revealed nonsignificant findings. The comparison based on ER,
PR and Her2 status yielded p-values of 0.342, 0.414 and 0.179, respectively. The examination
of breast cancer grade resulted in a p-value of 0.169. Additionally, the differentiation
between DCIS (503 cases) and invasive cancer (312 cases) exhibited a nonsignificant p-value
of 0.152.

However, when investigating the impact of tumour size categories on malignancy
probability, the results were statistically significant. There were 337 cases with tumour size
in (0, 10.0 mm], 174 cases in (10.0, 15.0 mm], 179 cases in (15.0, 25.0 mm] and 166 cases
above 25 mm. The analysis yielded a p-value of 0.0002, indicating that the distinct size
groups indeed manifested significant differences in malignancy probability provided by
the AI model. As shown in Figure 9, the most prominent difference was observed between
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the first size category (i.e., lesions with a size of 10 mm or less) with the lowest malignancy
probability scores compared with the other size intervals.
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4. Discussion

In previous studies, the mammograms for training and testing the GLAM, GMIC and
I&H were conducted with the New York University Breast Cancer screening database [35],
which included examinations from two manufacturers: Siemens and Hologic. The training
and testing data for End2End were film-screen (FS) mammographic images from the
Digital Database for Screening Mammography (DDSM) [36]. Our dataset included digital
mammographic images collected from a wider range of vendors such as Sectra, Fuji,
Siemens, Hologic, GE Healthcare and Philips Healthcare. The mammographic images from
the NYU and DDSM databases were obtained in the USA, whilst our dataset was obtained
in Australia and could represent different populations, with the majority ethnicity group
of our database unlikely to be matched with the USA databases. Previous research has
shown an 8% difference in the AUC of an AI model on US screening mammograms and
UK screening mammograms [11].

Our results showed that transfer learning improved the performance of the four AI
models in detecting cancer lesions on digital screening mammograms. As shown in Table 1,
the AUC of the transfer learning GMIC model increased from 0.865 for the pretrained model
to 0.910 in the high-concordance subset and from 0.824 to 0.883 in the entire dataset. Similar
results were also found for GLAM, I&H and End2End. This indicates that transfer learning
of the four models was influenced by the quality of the concordance levels, indicating that
high-quality data together with undertaking transfer learning were both important factors
for training an effective AI model.

Applying image enhancement via the CLAHE algorithm to our image set improved
the performance of the AI models in detecting cancer lesions on screening mammograms.
The AUC values of the four AI models were greater than those without enhanced mam-
mographic images. Other image enhancements such as pseudo-colour mammogram
generation and the local histogram equalization algorithm [37] may also improve the AUC
performance of AI models, and this could be a direction for future work.

We also explored the prediction of malignancy probability by the GMIC as the highest-
performing model across various pathological factors. Despite nonsignificant differences
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observed in the context of ER status, PR status, breast cancer grade, Her2 status and the
distinction between DCIS and invasive cancer, our investigation showed an association
between tumour sizes and AI’s output. The exploration of tumour size categories revealed
a highly significant variance in malignancy probability, with the most notable contrast
emerging between the initial size category (tumours measuring 10 mm or less) and the
subsequent size intervals. This finding highlighted the AI’s potential limitation in con-
fidently annotating malignancy in cases of small tumours and that radiologists should
be mindful of the association between lower AI-assigned probability scores and smaller
tumour sizes. This insight reinforced the need for a nuanced understanding of AI results
and their contexts in clinical practice.

To evaluate the four models, we investigated the performance of the AI models from
the point of view of malignancy detection or reporting as a normal case. We did not include
any cases with benign lesions in our Australian database, so the results cannot comment on
the models’ ability to identify cases with benign features, and this may include cases that
were benign but more challenging to AI and human readers. With transfer learning and
contrast enhancement application, the AUC of GMIC with CLAHE in the high-concordance
subset was 0.912, which is also the best model of the four AI models in this study. It is
imperative to engage in transfer learning when mammograms are gathered from distinct
populations or various vendors as the performance of AI models can be influenced by the
specific vendor or population, necessitating adaptation for optimal results.

5. Conclusions

In this paper, we presented the performance of four publicly available AI models for
breast cancer detection in different situations such as concordance classification of annota-
tions in the input data, the incorporation of contrast enhancement and the application of
transfer learning. The results showed that when tested on the high-concordance subset,
these four AI models outperformed their performance on the entire dataset. Improvements
in the performance of AI models were observed through the application of contrast enhance-
ment to mammograms and the utilization of transfer learning. In addition, the AI models’
malignancy probability scores were notably influenced by the sizes of the tumours visible
in the mammograms. Applying concordance classifications, transfer learning and contrast
enhancement of mammograms to AI models is likely to provide an effective method for AI
assisting decision making when radiologists interpret mammographic images.
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