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Simple Summary: Extra-prostatic extension (EPE) is a well-known poor prognostic factor of prostate
cancer. As such, accurate radiological diagnosis of EPE is important for urology surgeons due to its
surgical implications prior to radical prostatectomy. T2-weighted imaging (T2WI) is a key sequence in
prostate MRI for evaluating EPE. Recent technical advancements have allowed for the acquisition of
thin-slice T2WI with resultant increased image noise. Deep learning reconstruction (DLR) techniques
have been used to decrease the image noise in MRI; however, previous studies have focused mainly
on image quality or acquisition times, and the efficacy of DLR regarding the diagnostic performance
for EPE has not yet been reported. Our observations reveal that conventional 3 mm T2WI was
better than 2 mm thin-slice T2WI with DLR with respect to diagnostic performance for EPE and
image quality, thus supporting the minimal technical requirements described in the prostate imaging
quality guidelines.

Abstract: The aim of this study was to compare diagnostic performance for extra-prostatic extension
(EPE) and image quality among three image datasets: conventional T2-weighted images (T2WIconv,
slice thickness, 3 mm) and high-resolution thin-slice T2WI (T2WIHR, 2 mm), with and without deep
learning reconstruction (DLR) in patients with prostatic cancer (PCa). A total of 88 consecutive
patients (28 EPE-positive and 60 negative) diagnosed with PCa via radical prostatectomy who had
undergone 3T-MRI were included. Two independent reviewers performed a crossover review in three
sessions, in which each reviewer recorded five-point confidence scores for the presence of EPE and
image quality using a five-point Likert scale. Pathologic topographic maps served as the reference
standard. For both reviewers, T2WIconv showed better diagnostic performance than T2WIHR with
and without DLR (AUCs, in order, for reviewer 1, 0.883, 0.806, and 0.772, p = 0.0006; for reviewer
2, 0.803, 0.762, and 0.745, p = 0.022). The image quality was also the best in T2WIconv, followed by
T2WIHR with DLR and T2WIHR without DLR for both reviewers (median, in order, 3, 4, and 5, p < 0.0001).
In conclusion, T2WIconv was optimal in regard to image quality and diagnostic performance for the
evaluation of EPE in patients with PCa.

Keywords: magnetic resonance imaging (MRI); deep learning; image reconstruction; prostate cancer

1. Introduction

Multi-parametric MRI of the prostate gland is a cornerstone in the diagnosis and
evaluation of prostate cancer (PCa). Although technical requirements have been given
in the second version of Prostate Imaging-Reporting and Data System (PI-RADS v.2.1),
the prostate MRI parameters of acquisition and scan quality vary between different insti-
tutions [1–3]. However, as the detection of PCa is impaired by poor image quality and
artifacts in the acquired images, methods for image optimization have been studied [4,5].
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To facilitate the improvement in the image quality of prostate MRI, the Prostate Imaging
Quality (PI-QUAL) score has been introduced, including minimal technical requirements
described in the PI-RADS, as well as several criteria for visual assessment [3,6].

T2-weighted imaging (T2WI) is a key sequence in multi-parametric MRI, which is
important in the evaluation of the zonal anatomy of the prostate gland and neighboring
structures, extra-prostatic extension (EPE), seminal vesical and neurovascular bundle
invasion, as well as playing a role as the dominant sequence for the evaluation of transitional
zone (TZ) malignancies [7]. Of these, EPE is a well-known poor prognostic factor, and so
the accurate radiological diagnosis of EPE is important for urology surgeons due to its
surgical implications for surgical planning prior to radical prostatectomy [8,9].

The minimal technical requirements of PI-QUAL for T2WI are ≤0.4 mm in the
frequency-encoding direction, ≤0.7 mm in the phase-encoding direction for in-plane reso-
lution, and 3 mm for slice thickness (ST) [6]. Recent technical advancements in MRI have
allowed for the acquisition of three-dimensional (3D) T2WI with resultant thinner STs.
Previous studies have reported the comparable performance of 3D-T2WI to conventional
T2WI regarding the diagnosis and characterization of prostate cancer and evaluation of
EPE [10–12]. A potential drawback of thin-slice T2WI is a decrease in the signal-to-noise
ratio (SNR) and an increase in motion-related artifacts in images [7,13]. Deep learning
reconstruction (DLR) techniques have been used to decrease image artifacts and noise,
and previous studies have applied DLR to cardiac, musculoskeletal, and neuroimaging,
revealing promising results in terms of improved image quality [14–18]. Previous studies
on DLR in prostate MRI have mainly focused on its effect on image quality or acquisition
time, and comparable or improved image quality with DLR has been observed [19–21].
However, to the best of our knowledge, the effect of DLR on the diagnostic performance for
the evaluation of EPE in PCa has been scarcely reported [22]. Therefore, we aimed to com-
pare the diagnostic performance of three image datasets—conventional T2WI (T2WIconv)
and high-resolution thin-slice T2WI (T2WIHR) with and without DLR—in order to find the
optimal image set for the evaluation of EPE in patients with PCa.

2. Materials and Methods

The institutional review board approved this retrospective study, and the requirement
for informed consent was waived.

2.1. Patient Selection Criteria

A total of 220 patients who underwent prostate MRI between November 2021 and
March 2023 were initially considered eligible for this study. Among them, 88 patients
satisfying the following inclusion criteria were finally included in the study. The inclusion
criteria were as follows: (1) patients who had undergone radical prostatectomy; (2) patients
whose prostate MRI scans contained three image datasets; and (3) patients who had a
pathologic topographic map (whole-mount slide) and relevant information such as Gleason
scores. The patient enrollment process is summarized in Figure 1.

2.2. Magnetic Resonance Imaging

All MRI examinations were performed using a 3.0-T MR scanner (Signa Architect, GE
HealthCare, Chicago, IL, USA) with a body coil (AIRTM Anterior Array, GE HealthCare
Coils, Aurora, OH, USA). The scanning protocol consisted of the following sequences:
(1) axial, coronal, and sagittal T2WIconv; (2) axial T2WIHR; (3) axial diffusion-weighted
imaging (DWI) sequences (b-values of 0 and 1000 s/mm2); and (4) apparent diffusion
coefficient (ADC) maps generated from b-values of 0 and 1000 s/mm2. The voxel sizes of
T2WIconv and T2WIHR were 0.5 × 0.7 × 3 mm3 and 0.5 × 0.5 × 2 mm3, respectively. The
MRI parameters are detailed in Table 1. The DICOM images of all sequences were uploaded
and reviewed from a picture archiving and communication system (PACS) workstation
(M6; INFINITT Healthcare, Seoul, Republic of Korea).
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Table 1. MRI sequence parameters.

Parameter T2WIconv (Axial, Sagittal,
and Coronal) T2WIHR

DWI (b-values of 0 and
1000 s/mm2)

TR 4680–4930 3240–3270 5170–5240
TE 75–100 75–85 88–89

ETL 15 13 2
Slice thickness 3.0 mm 2.0 mm 3.0 mm

Slice gap 0.3 mm 0.0 mm 0.3 mm
Matrix size (axial) 400 × 320 320 × 320 120 × 120

NEX 1 1 b0, 2
b1000, 4

FOV (mm) 220 × 220 160 × 160 240 × 240
Acquisition time 1 min 28 s–1 min 51 s 4 min 28 s 2 min 32 s

Conventional T2-weighted images (T2WIconv); High-resolution thin-slice T2-weighted images (T2WIHR); Rep-
etition time (TR); Echo time (TE); Echo train length (ETL); Field of view (FOV); Number of excitations (NEX);
Diffusion-weighted imaging (DWI).

2.3. Deep Learning Reconstruction of T2WIHR

A commercially available DLR algorithm (AIRTM Recon DL, GE HealthCare) was
applied to T2WIHR to create T2WIHR with DLR. The DLR algorithm employed in this study
incorporates a deep convoluted neural network to produce images that are consistent with
the original image data while reducing Gibbs ringing artifacts, sharpness of object edges,
and image noise, thus improving the SNR ratio [18]. The level of de-noising achieved by
the DLR algorithm can be selected from three presets: low, medium, or high strength. A
medium strength was chosen for this study. The medium strength achieves a 50% reduction
in image noise, compared with the anticipated image noise, whereas the low strength yields
a 30% reduction and the high strength yields a 75% reduction [18].

2.4. Image Analysis

The three image sets (axial T2WIconv, T2WIHR with DLR, and T2WIHR without DLR) were
reviewed in three separate sessions with a cross-over review design. The images for
review in each session comprised approximately one-third of each image set, and the
order of images for review was randomized. The images were independently reviewed
by two radiologists (with 4 and 3 years of experience in interpreting prostate MRI, respec-
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tively). The three review sessions were separated by a 4-week interval, in order to reduce
recall bias. Coronal and sagittal T2WIconv, axial DWI, and corresponding ADC maps
(b2000) of each patient were also provided in each review session. Reviewers were blinded
to the clinical and pathologic data of the patients, except for the fact that all patients had
pathologically proven PCa. Reviewers identified the largest tumor (i.e., the index tumor) in
the prostate gland and manually drew the tumor in a schematic diagram of the prostate
gland with regard to the level and zonal anatomy. The reviewers then assessed the presence
of EPE in the index tumor and assigned a confidence score for EPE based on a 5-point
scale describing their confidence in the finding (1 = definitely absent, 2 = probably absent,
3 = equivocal, 4 = probably present, and 5 = definitely present). The window width and
level values could be adjusted by each reviewer.

2.5. Image Quality

Contemporaneously to confidence scoring for EPE, the two reviewers also subjectively
assessed the image quality of each image dataset. A subjective image quality score was
assigned to each image set based on a 5-point Likert scale, where the score represented
the number of the visual assessment criteria that the images satisfied. For example, if an
image set satisfied only four out of five criteria, a subjective image quality score of 4 would
be assigned. The visual assessment criteria were partially based on those described in
PI-QUAL [6] and were as follows: (a) prostatic capsule is clearly delineated; (b) seminal
vesicles are clearly delineated; (c) neurovascular bundles are clearly delineated; (d) absence
of noise; and (e) absence of artifacts such as motion artifacts.

For quantitative analysis of image quality, the SNR and contrast-to-noise ratio (CNR)
were assessed for the three image datasets by a third radiologist. The SNR for each image
dataset was defined as the mean signal intensity (SI) value of the non-cancerous prostate
parenchyma divided by the image noise, while the CNR for each image data set was defined
as the absolute SI value of the index tumor (defined as the difference between the mean SI
value of the index tumor and the mean SI value of the non-cancerous prostate parenchyma)
divided by the image noise. Image noise was defined as the standard deviation of the SI
value of the skeletal muscle of the pelvic wall.

2.6. Reference Standard

All patients underwent radical prostatectomy. The resected specimens were evaluated
with respect to EPE and the Gleason grading system [23] by a dedicated pathologist.
Whole-mount histopathology served as the reference standard for the ground truth of the
presence of EPE, as well as tumor location and extent. A senior radiologist with 14 years of
experience in interpreting prostate MRI determined whether the pathologic index tumor
coincided with the index tumor identified by the two reviewers in each review session.

2.7. Statistical Analysis

The MedCalc software for Windows (MedCalc Software version 19.6.1, Mariakerke,
Belgium) was used for the statistical analyses. Statistical significance was set at p < 0.05.
The detection rate (i.e., sensitivity) with regard to the index tumor was compared using
McNemar’s test. Receiver operating characteristic (ROC) curve analyses were performed for
the diagnostic performance of each reviewer for a specific dataset. The area under the ROC
curve (AUC) was calculated and compared pairwise to compare diagnostic performances
between any two image datasets. For each reviewer, the image quality of each dataset was
compared using the Wilcoxon signed-rank test. For the assessment of quantitative image
quality, SNR and CNR were compared through repeated measures ANOVA.

3. Results
3.1. Patient Demographics

The study population comprised 28 patients with EPE and 60 patients without EPE.
The mean interval from pre-operative prostate MRI to radical prostatectomy was 33.5 days
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(range: 1–88 days), and the mean prostate-specific antigen (PSA) level was 20.37 ng/dL
(range: 0.85–154 ng/dL). The number of patients with each Gleason score (GS) was as
follows: GS6 (n = 25), GS7 (3 + 4, n = 37; 4 + 3, n = 18), GS8 (n = 3), and GS9 (n = 5). The
number of patients with each pathologic T-stage was as follows: T2 (n = 60), T3a (n = 13),
and T3b (n = 15). The specific demographic data are presented in Table 2.

Table 2. Demographic data of the study population.

Parameter Study Population (n = 88)

Mean age, years (range) 70.86 (52–86)
Mean PSA, ng/mL (range) 20.37 (0.85–154)
Mean interval from MRI to radical
prostatectomy, days (range) 33.53 (1–88)

Presence of EPE, n (%) 28 (32%)
Pathologic T stage-n (%)

T2 60 (68)
T3a 13 (15)
T3b 15 (17)

Gleason score, n (%)
6 25 (28)
7 55 (63)

3 + 4 37
4 + 3 18

8 3 (3)
9 5 (6)

Tumor location, n (%)
Peripheral zone 53 (60)

Transitional zone 28 (32)
Anterior fibromuscular stroma 2 (2)

Prostate-specific antigen (PSA); Extra-prostatic extension (EPE).

3.2. Comparison of Detection Rates for the Index Tumor

For reviewer 1, the detection rate of the index tumor was 85% for all three image
datasets. For reviewer 2, the detection rate of the index tumor on T2WIconv, T2WIHR with DLR,
and T2WIHR without DLR was 87%, 86%, and 86%, respectively. The detection rates did not
present significant differences among the three image datasets for both reviewers (p > 0.05).

3.3. Comparison of Diagnostic Performance for EPE

For reviewer 1, T2WIconv (AUC, 0.883; 95% confidence interval (CI), 0.784–0.947)
showed a significantly better diagnostic performance compared to T2WIHR with DLR (AUC,
0.806; 95% CI, 0.694–0.891; p = 0.0057) and T2WIHR without DLR (AUC, 0.772; 95% CI,
0.656–0.864; p = 0.0006). For reviewer 2, T2WIconv (AUC, 0.803; 95% CI, 0.691–0.888)
also showed a significantly greater AUC compared to T2WIHR with DLR (AUC, 0.762; 95%
CI, 0.646–0.855; p = 0.0220) and T2WIHR without DLR (AUC, 0.745; 95% CI, 0.627–0.841;
p = 0.0277). For both reviewers, the diagnostic performance between T2WIHR with DLR
and T2WIHR without DLR did not present a significant difference (for reviewer 1, p = 0.1610;
for reviewer 2, p = 0.3175). Representative images are presented in Figure 2, and the
diagnostic performance is summarized in Table 3.
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Figure 2. A representative case of a 74-year-old man with a Gleason score of 9 in the right middle
peripheral zone demonstrating extra-prostatic extension through the right posterolateral capsule
(arrows) on (a) a 2 mm thin-slice T2WI without deep learning reconstruction (DLR), (b) the same
2 mm T2WI with DLR, and (c) conventional T2WI with 3 mm slice thickness. For both reviewers, the
confidence score for presence of extra-prostatic extension increased from 4 (probably present) on the
2 mm thin-slice T2WI with or without DLR to 5 (definitely present) on conventional T2WI.

Table 3. Comparison of diagnostic performance and predictive values of T2WIconv, T2WIHR with DLR,
and T2WIHR without DLR.

Image Sets
Reviewer 1 Reviewer 2

AUC Sensitivity Specificity PPV NPV Accuracy p Value AUC Sensitivity Specificity PPV NPV Accuracy p Value

T2WIconv 0.883 77 96 91 89 89 0.0057 * 0.803 63 96 89 82 84 0.0220 *
T2WIHR with DLR 0.806 62 86 70 81 77 0.0006 † 0.762 59 90 76 80 79 0.0277 †

T2WIHR without DLR 0.772 46 89 69 76 74 0.1610 ‡ 0.745 44 89 69 75 73 0.3175 ‡

* T2WIconv vs. T2WIHR with DLR. † T2WIconv vs. T2WIHR without DLR. ‡ T2WIHR with DLR vs. T2WIHR without DLR.
Conventional T2-weighted images (T2WIconv); High-resolution thin-slice T2-weighted images with deep learning
reconstruction (T2WIHR with DLR); High-resolution thin-slice T2-weighted images without deep learning recon-
struction (T2WIHR without DLR); Area under the receiver operating characteristic curve (AUC); Positive predictive
value (PPV); Negative predictive value (NPV).

3.4. Comparison of Image Quality
3.4.1. Qualitative Analysis

For reviewer 1, the subjective image quality score of T2WIconv (median, 5; interquartile
range, 5–5) was greater than T2WIHR with DLR (median, 4; interquartile range, 3–5; p < 0.0001)
and T2WIHR without DLR (median, 3; interquartile range, 3–4; p < 0.0001). For reviewer 2,
the subjective image quality score of T2WIconv (median, 5; interquartile range, 4–5) was
also greater than T2WIHR with DLR (median, 4; interquartile range, 3–4; p < 0.0001) and
T2WIHR without DLR (median, 3; interquartile range, 3–4; p < 0.0001). For both reviewers,
T2WIHR with DLR had a significantly higher subjective image quality score compared to
T2WIHR without DLR (p < 0.0001). Representative images are presented in Figure 3.

3.4.2. Quantitative Analysis

The SNR of T2WIconv (mean ± SD, 22.17 ± 7.02) was the highest, followed by
T2WIHR with DLR (15.81 ± 4.80) and T2WIHR without DLR (8.71 ± 2.24) (p < 0.001). Simi-
larly, the CNR of T2WIconv (6.05 ± 4.16) was the highest, followed by T2WIHR with DLR
(4.41 ± 3.16) and T2WIHR without DLR (2.33 ± 1.57) (p < 0.001). The measurement results are
summarized in Table 4.
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Figure 3. A representative case of a 67-year-old man with a Gleason score of 6 demonstrating
the image quality of each image dataset on (a) a 2 mm thin-slice T2WI without deep learning
reconstruction (DLR), (b) the same T2WI with DLR, and (c) conventional T2WI with 3 mm slice
thickness. The subjective image quality score was the best on conventional T2WI, followed by the
thin-slice T2WI with DLR and the same T2WI without DLR. Specifically, the scores were 5, 4, and 3,
respectively, for reviewer 1 and 4, 3, and 2, respectively, for reviewer 2.

Table 4. Quantitative image quality analysis of T2WIconv, T2WIHR with DLR, and T2WIHR without DLR.

Image Set Signal-to-Noise
Ratio p Value Contrast-to-Noise

Ratio p Value

T2WIconv 22.17 ± 7.02 <0.001 * 6.05 ± 4.16 <0.001 *
T2WIHR with DLR 15.81 ± 4.80 <0.001 † 4.41 ± 3.16 <0.001 †

T2WIHR without DLR 8.71 ± 2.24 <0.001 ‡ 2.33 ± 1.57 <0.001 ‡

Data are presented in mean ± standard deviations. * T2WIconv vs. T2WIHR with DLR. † T2WIHR with DLR vs.
T2WIHR without DLR. ‡ T2WIconv vs. T2WIHR without DLR. Conventional T2-weighted images (T2WIconv); High-
resolution thin-slice T2-weighted images with deep learning reconstruction (T2WIHR with DLR); High-resolution
thin-slice T2-weighted images without deep learning reconstruction (T2WIHR without DLR).

4. Discussion

The results of our study revealed that the diagnostic performance for EPE in PCa was
greater in T2WIconv compared to T2WIHR, while DLR did not significantly improve the
diagnostic performance in T2WIHR. In terms of image quality, T2WIconv demonstrated
a higher image quality than T2WIHR both subjectively and quantitatively, while DLR
significantly improved the image quality of T2WIHR.

As PI-RADS v.2.1 recommends the T2WI as the key sequence for the detection of TZ
cancer [1] and DWI for peripheral zone (PZ) cancer, we believe that the benefits of DLR in
T2WIHR could be expected in cases of TZ cancer. Our observation that DLR did not enhance
the diagnostic performance in evaluating EPE can be explained by several factors. First, the
proportion of EPE in TZ cancer should be considered. The proportion was approximately
20% (6/28), whereas that of PZ cancer was 32% (17/53). Second, the detection of TZ cancer
using T2WI alone is very challenging; thus, supplementary reading of DWI might affect
the diagnostic decision on EPE. The better performance of T2WIconv could be attributable
to the better SNR and CNR compared to T2WIHR combined (i.e., whether DLR or not).
Out of the 28 patients with EPE in this study, 17 patients had PZ cancer (60%) and the
EPE was predominant when the PZ cancer invaded the posterolateral capsule. Therefore,
this posterolateral area was the main site for the radiologists to confidently evaluate EPE
using the three image datasets. Consequently, in our opinion, T2WIconv benefited from the
better conspicuity in anatomical structures resulting from the improved SNR and CNR of
T2WIconv, compared to the other image datasets. Our observations support the PI-QUAL
requirement for image acquisition parameters. A 2 mm ST, even with the aid of DLR,
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did not outperform the conventional 3 mm on T2WI, which is the PI-QUAL guideline
requirement for image acquisition.

To the best of our knowledge, the effect of DLR on the detection of EPE has not
been previously reported with regard to enhanced spatial resolution. Beyond the spatial
resolution, Park et al. [22] compared conventional T2WI (ST, 3 mm) and T2WI with a shorter
acquisition time (i.e., fast T2WI) with and without DLR in terms of diagnostic performance
for the diagnosis of EPE in terms of enhanced temporal resolution. They achieved an
enhanced temporal resolution from 4 min to 2 min 30 s by adopting a reduced repetition
time (from 4000 to 2800 ms) and number of excitations (from 1.5 to 1.0), and they employed
the same commercially available DLR algorithm (AIRTM Recon DL). Their results revealed
that T2WIconv showed a comparable diagnostic performance to fast T2WI with DLR for
all three reviewers and a mixed response to applying DLR to fast T2WI. Specifically, an
improved performance was observed for two reviewers (AUCs, for reviewer 1, T2WIconv,
fast T2WI with DLR, fast T2WI without DLR in order, 0.85, 0.86, 0.75; for reviewer 2, 0.82, 0.82,
0.73, respectively), whereas stationary performance was revealed in one reviewer (AUCs,
0.79, 0.81, 0.74, respectively). Our results partially correspond with the above study, in
that T2WIconv presented the best performance and DLR did not improve the diagnostic
performance for diagnosis of EPE.

The effect of DLR on the image quality of prostate MRI has been more frequently
studied. Wang et al. [19] compared four image datasets—T2WI (ST, 3 mm) with the endo-
rectal coil signal turned on and off, both with and without DLR—in terms of image quality
and visualization of various anatomic structures and the tumor. They also employed the
same commercial DLR software (AIRTM Recon DL). The image quality of T2WI with DLR
when the endo-rectal coil signal was turned off was significantly higher than the other three
image sets (p < 0.01). This sequence was also most frequently chosen as the best one for the
visualization of major anatomical landmarks and the tumor. Park et al. [22] also reported a
significant improvement in the SNR (fast T2WI with DLR vs. fast T2WI without DLR, 14.7 vs.
8.8, p < 0.001), CNR (6.5 vs. 3.4, p < 0.001), and lesion delineation quality by subjective
assessment and subjective image quality scores (from 1 = non-diagnostic to 5 = excellent; all
readers, 4.0 vs. 3.0; all p < 0.001) when DLR was applied to fast MRI. Our study corresponds
well with the above studies, in that the subjective image quality as well as quantitative SNR
and CNR could be improved with DLR [19,22].

Beyond the two-dimensional (2D) acquisition of T2WI, the benefits of 3D-T2WI in
prostate MRI include reduced acquisition time and post-processing in multiple planes.
However, the effect on the diagnostic performance for evaluating EPE is a subject with more
conflicting data [13]. Choi et al. [10] reported no significant difference between conventional
T2WI (ST, 3 mm) and 3D-T2WI (0.6 mm) in terms of the sensitivity (for reader 1, 28% vs.
48%, p = 0.375; for reader 2, 64% vs. 60%, p = 1.000) and specificity (for reader 1, all 91%; for
reader 2, all 76%) for detecting EPE. Caglic et al. [24] found that 3D-T2WI (1 mm) had a
similar diagnostic performance to conventional 2D-T2WI (3 mm) (AUC, 0.877 vs. 0.835,
p = 0.17; sensitivity, 75% vs. 65%, p = 0.058; and specificity, 84% vs. 86%, p = 0.705) in the
detection of EPE. Rosenkrantz et al. [11] also compared 3D- (ST, 1 mm) and 2D-T2WI (ST,
3 mm) for the diagnosis of EPE and reported a similar accuracy (3D T2WI vs. 2D T2WI,
68% vs. 74%, p = 0.6250). At present, PI-RADS v.2.1 recommends an ST of 3 mm and, while
3D axial acquisitions may be used as a supplementary sequence, the altered tissue contrast
should be treated with caution, and the possibility that in-plane resolution may be lower
in 3D acquisitions also should be considered [1,3]. As the added value of 3D-T2WI in the
diagnosis of EPE is a subject of debate, we believe that the current guidelines are sufficient
for the diagnosis of EPE, and the acquisition of 3D-T2WI could be conducted in prudence
when more robust evidence suggests it concordantly.

Emphasizing the pros and cons of DLR is worthy of notice because DLR has been
increasingly applied to radiological imaging with the benefits of reducing acquisition times
while preserving image quality, as well as improving image quality while maintaining
acquisition times. In regard to shortening acquisition time, DLR has been applied to fast-
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spin echo imaging in prostate MRI, and in particular, a reduction in acquisition time of
up to 65% has been shown in T2-weighted fast-spin echo imaging [25]. DLR has also
been implemented for the purpose of improving image quality [19,22,26]. Although the
application of DLR itself may be harmless to patients, potential cons may include the
additional cost of DLR software and the observations that the improved image quality may
not always lead to improved diagnostic performance for specific diagnostic tasks like ours.
In our opinion, although diagnostic performance based on radiologists’ perceptions of
minute anatomical structures or lesions may benefit from the improved image quality after
the application of DLR to images with noise [27], diagnostic tasks based on the integration
of various image findings may not enhance radiologists’ diagnostic performance in spite of
improved image quality after applying DLR [22,28–30].

There were several limitations to our study. First, only patients who had undergone
radical prostatectomy were included in our study. As advanced, recurrent, or metastatic
PCa may undergo systemic therapy, rather than surgical therapy [31], a selection bias
against more advanced cases might have been introduced; therefore, it is possible that ad-
vanced metastatic cases with EPE were excluded. However, such a criterion was necessary
in order to obtain topographic maps with whole-mount pathology, thus providing a ground
truth for the MRI findings to be compared with. Second, acquisition parameters other than
the ST were slightly different for T2WIHR; thus, the in-plane resolution differed slightly
due to different field-of-view and matrix sizes. Further studies are needed to elucidate
the isolated effect of thinner STs in the evaluation of EPE. Third, DWI and ADC maps
were provided to the reviewers. As DWI and ADC maps are crucial sequences for the
detection of PCa, especially for PZ cancers [1,3], the detection rate may not represent the
isolated effect of T2WI sequences. However, DWI and ADC sequences are a mainstay in
multi-parametric MRI, with a well-established role in the diagnosis of PCa. Therefore,
our study adopted daily clinical practice, in that T2WI was reviewed alongside DWI and
ADC maps.

5. Conclusions

In conclusion, T2WIconv with a 3 mm ST was optimal with respect to diagnostic
performance as well as image quality for the evaluation of EPE in patients with PCa. Thin-
slice T2WI with a 2 mm ST did not outperform T2WIconv, even with the aid of DLR. Our
results support the minimal technical requirements described in the PI-QUAL guidelines,
which recommend an ST of 3 mm in the acquisition of axial T2WI.
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