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Simple Summary: Surgical candidacy in the treatment of pancreatic cancer is complex. There are
multiple factors influencing if a patient is a good candidate for surgery with or without preceding
treatment with chemotherapy. This review summarizes the importance of both anatomical (tumor
size and its relation to important blood vessels to the liver and bowel) and biological (aggressiveness
of the tumor) considerations.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) remains associated with poor outcomes with a
5-year survival of 12% across all stages of the disease. These poor outcomes are driven by a delay in
diagnosis and an early propensity for systemic dissemination of the disease. Recently, aggressive
surgical approaches involving complex vascular resections and reconstructions have become more
common, thus allowing more locally advanced tumors to be resected. Unfortunately, however, even
after the completion of surgery and systemic therapy, approximately 40% of patients experience early
recurrence of disease. To determine resectability, many institutions utilize anatomical staging systems
based on the presence and extent of vascular involvement of major abdominal vessels around the
pancreas. However, these classification systems are based on anatomical considerations only and
do not factor in the burden of systemic disease. By integrating the biological criteria, we possibly
could avoid futile resections often associated with significant morbidity. Especially patients with
anatomically resectable disease who have a heavy burden of radiologically undetected systemic
disease most likely do not derive a survival benefit from resection. On the contrary, we could offer
complex resections to those who have locally advanced or oligometastatic disease but have favorable
systemic biology and are most likely to benefit from resection. This review summarizes the current
literature on defining anatomical and biological resectability in patients with pancreatic cancer.

Keywords: pancreatic neoplasms; pancreatic ductal adenocarcinoma; tumor biology; biomarkers;
CA19-9; resectability; biological staging

1. Introduction

Pancreatic cancer is associated with a devastating five-year overall survival of 12%
across all stages of the disease [1,2]. It is the third leading cause of cancer-related death with
a rising incidence [2]. Due to the asymptomatic nature of the disease, only approximately
20% of patients are found to have resectable disease at the time of diagnosis [2,3]. Addition-
ally, poor outcomes are driven by an early propensity for the systemic spread of the disease.
This is evident by the fact that a significant proportion of patients undergoing resection
will experience systemic recurrence of the disease [4–6]. Effective systemic control of the
disease remains one of the strongest limitations to achieving cure and long-term survival.

Surgery remains the only curative therapy, with a modest survival benefit having been
reported with the adjunct of multiagent system therapies. Historically, resectability has
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been based on anatomical considerations. The National Comprehensive Cancer Network
(NCCN) guidelines define localized pancreatic cancer based on the anatomical relation be-
tween the tumor and surrounding vasculature into resectable, borderline resectable (BRPC),
and locally advanced pancreatic cancer (LAPC) [7]. Advances in surgical technique and
chemotherapy have increased surgical candidacy in patients with locally advanced disease,
which accounts for approximately 30–40% of PDAC [8–10]. At specialized centers, up to
35–60% of LAPC patients can now undergo resection [11,12]. While surgical resection can
provide cure and long-term survival in some patients, early recurrence with a progression
of the disease is routinely seen in clinical practice [4]. In the latter cases, undetected micro-
scopic residual disease and aggressive cancer biology may lead to early clinical recurrence
and death, rendering a morbid local resection futile. Thus, considering the tumor biology to
determine surgical candidacy is becoming increasingly important [13,14]. Institutions such
as the international consensus meetings and the MD Anderson Cancer Center have realized
the importance of tumor biology and come up with alternative criteria for resectability that
factor in both anatomic and biological parameters [15,16].

Despite these considerations, significant variability exists in adherence to these guide-
lines across centers. Some centers advocate upfront resection to avoid progression of the
disease and worsening of the patient’s condition during the neoadjuvant window while
others prefer a neoadjuvant approach. The latter has the benefit of early treatment of
undetected micrometastatic disease and the selection of surgical candidates by avoiding
futile surgery in those who progress on systemic therapy and ensures that all patients
receive systemic therapy. The variability in outcomes of patients regardless of their local
stage suggests a role for tumor heterogeneity and tumor biology in driving these outcomes.
Therefore, a precision approach is warranted where it is not only the anatomical staging
of the disease but also a biological assessment that should determine resectability in these
patients. In doing so, we would perform resections in patients who would derive survival
benefit while avoiding potentially morbid operations in those with a heavy burden of sys-
temic disease. This review aims to summarize and discuss the evidence on the anatomical
and biological considerations of resectability for the management of pancreatic cancer.

2. Diagnostic Workup for Pancreatic Cancer

When assessing resectability, an adequate diagnostic workup is pivotal. The gold
standard for pancreatic cancer diagnosis is a pancreas protocol computed tomography
(PPCT) [7,17], which can help in assessing both the locoregional extent and the metastatic
spread of disease to the liver, peritoneum, and lungs [18]. It is also highly sensitive and
specific for vascular involvement with venous contact or infiltration presenting with ob-
struction or thrombosis of the vein, stenosis or irregularity of the vessel caliber, or a teardrop
sign [19]. Similarly, arterial involvement of the superior mesenteric artery (SMA), celiac
trunk (CA), or the common hepatic artery (CHA) can be appreciated on PPCT and is
relevant to resectability and prognosis [19]. Furthermore, PPCT can help to assess the
aberrant anatomy of hepatic arteries and stenosis of the celiac trunk, which are important
for surgical planning. Even after neoadjuvant treatment, the CT scan can reliably distin-
guish between vascular infiltration and vascular contact through the “Halo” and “String”
signs [20]. The “Halo” sign describes tumor infiltration of the lymphatic and neural tissue
surrounding the SMA and, therefore, arterial encasement but without true infiltration [20].
This allows for the surgical planning of periadventitial divestment, thus skeletonizing the
involved artery [21]. The “String” sign on the other hand suggests true arterial invasion,
and therefore, surgical planning mandatorily should involve strategies for arterial resection
and reconstruction [20]. The artery-first approach allows further exploration and identifi-
cation of SMA involvement before the point of no return is reached [21–23]. Depending
on the site of predicted involvement, different approaches can be chosen [24]. However,
poor performance of the CT is reported for the detection of small metastases and nodal
involvement with a diagnostic accuracy of 38–77% and a sensitivity of 14–24% [19]. Both
CT and magnet resonance imaging (MRI) have similar sensitivity and specificity. Due to
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wider availability and the greater consistency of images within CT scans, MRI is typically
used in patients with contraindications for CT [25]. Currently, FDG or FAPI PET/CT is
not routinely used for pancreatic cancer workup [19]. An additional value is proposed for
detecting lymph node involvement and metastatic disease [25]. Additionally, cinematic
rendering has shown promise in the vascular mapping and identification of occult metas-
tases in pancreatic cancer [26]. Following an image-based diagnosis of the disease, an
endoscopic ultrasound (EUS) with a fine-needle aspiration (FNA) or brush cytology is used
for histopathological confirmation of the disease, which is important for the initiation of
neoadjuvant/induction therapy [19,27].

Recent studies have evaluated the role of laparoscopic staging before neoadjuvant
treatment in LAPC for better assessment of occult metastases or before surgical exploration
to assess resectability [28]. When performed in the pretreatment setting, occult metastases
are detected in around 10–20% of patients with resectable or borderline resectable and up
to 30% in locally advanced PDACs [29,30]. Additionally, intraoperative ultrasound can be
used to assess the tumor location and vascular involvement during exploration [31]. The
NCCN guidelines recommend a staging laparoscopy directly before a planned resection
through laparotomy in all patients with a high suspicion of peritoneal or hepatic metas-
tases or questionable resectability [7]. Thus, a staging laparoscopy should be considered
in patients with CA19-9 > 150 U/mL, low-volume ascites, borderline resectable tumor,
size > 3 cm, or suspicious lymphadenopathy.

3. Anatomical Assessment of Resectability and Implications for Treatment

Once the diagnosis of PDAC is established, tumor staging is performed using the
American Joint Committee on Cancer (AJCC) TNM classification [32]. For localized PDACs,
TNM staging has limited value for the assessment of resectability [32]. Therefore, the
AHPBA [33], Alliance [34], NCCN [7], and the MD Anderson Cancer Center [35] have
developed anatomical criteria that are primarily based on the extent of involvement of the
surrounding major vessels (Table 1). Radiographically localized disease is divided into
resectable, borderline resectable, and locally advanced disease. In brief, resectable tumors
are those that can be resected without any additional resections and reconstructions of the
vessels. Borderline resectable tumors often require additional resection and reconstruction
of adjacent vessels or en bloc resection of infiltrated organs and are at a higher risk of
margin-positive resections [13]. In locally advanced tumors, upfront resection is extremely
challenging due to the extent of vascular involvement [36]. Major differences within
the classifications are that the AHPBA classification defines tumors with contact to the
SMV/portal vein as borderline resectable whereas, for all other relevant classifications,
encasement contact <180◦ is considered the resectable stage. These anatomical criteria have
a prognostic value and have implications on the treatment sequence [4,36].

For resectable tumors, upfront resection with adjuvant chemotherapy, is currently
preferred [36]. However, it has been shown that approximately 40% of patients do not
receive adjuvant therapy due to postoperative complications or early progression of the
disease [37]. Due to a substantial number of patients being diagnosed with recurrence
despite successful resection, there is an increasing belief that pancreatic cancer is a systemic
disease even when diagnosed at an early stage [5]. Therefore, there may be a theoretical
benefit for patients receiving neoadjuvant therapy in order to control disseminated disease
early on [38]. On the contrary, others argue that there is a risk of progression of the disease
during the neoadjuvant window that would render these patients unresectable or lead
to a worsening of their physical condition during chemotherapy, preventing the patient
from undergoing a possibly curative resection [36]. To date, there is no survival benefit
shown within subgroup analyses for resectable PDAC in randomized trials comparing
neoadjuvant treatment versus upfront surgery such as the PREOPANC1 trial (HR 0.79,
95%CI: 0.54–1.16, p = 0.23) [39]. The PRODIGE48/PANACHE-01 and NEONAX phase
II trials showed the feasibility of perioperative cytotoxic treatment with FOLFIRINOX or
gemcitabine plus nab-paclitaxel, respectively [40,41], but the preliminary results of the



Cancers 2024, 16, 489 4 of 17

NORPANC trial showed opposite trends with worse survival rates despite an improvement
in R0 resection rates after neoadjuvant treatment [42]. Further ongoing studies including the
ALLIANCE (NCT 04340141) and PREOPANC-3 (NL75539.078.20) will add to the growing
evidence for the treatment sequence in resectable PDACs.

Table 1. Different definitions of borderline resectable pancreatic cancer.

Borderline
Resectable NCCN AHBPA Alliance IAP MD Anderson

Superior
mesenteric

Vein/Portal Vein

Reconstructable
involvement
(distortion,
narrowing,
occlusion,

thrombosis)

Reconstructable
abutment,

encasement or
occlusion

Solid
contact >180◦ or
reconstructable

occlusion

SMV/PV: tumor
contact 180◦ or

greater or bilateral
narrow-

ing/occlusion, not
exceeding the

inferior border of
the duodenum

Short-segment
occlusion with

suitable vessel for
reconstruction

Superior
mesenteric artery

Solid tumor
contact ≤180◦ Abutment

Interface between
tumor and vessel
measuring < 180◦

Tumor contact of
less than 180◦

without showing
defor-

mity/stenosis

Abutment ≤ 180◦

Common hepatic
artery

Solid tumor
contact without
extension to the
coeliac artery or
hepatic artery

bifurcation

Abutment or
short-segment

encasement

Reconstructable,
short-segment

interface between
tumor and vessel

of any degree

Tumor contact
without showing
tumor contact of
the PHA and/or

CA

Short-segment
encase-

ment/abutment

Celiac trunk Solid tumor
contact <180◦

No abutment or
encasement

Interface between
tumor and vessel
measuring <180◦

Tumor contact of
less than 180◦

without showing
defor-

mity/stenosis

Abutment ≤ 180◦

Biological -

Suspicion for
distant metastasis,

including
CA19-9 > 500 U/mL,
or regional lymph
node metastasis

diagnosed by
biopsy or PET-CT

CT findings
suspicious of

metastatic disease;
nodal-positive

disease.

Conditional -
ECOG

performance status
of 2 or more

Performance
status ≥ 3 or

severe preexisting
medical

comorbidity

Legend: Anatomic resectability as defined by tumor contact to abdominal vessels by the National Comprehensive
Cancer Network (NCCN), Americas Hepato-Pancreato-Biliary Association (AHBPA), Alliance, International
Association of Pancreatology (IAP), and MD Anderson Cancer Center. Abbreviations: SMV, superior mesenteric
vein; PV, portal vein; PHA, proper hepatic artery; CA, common hepatic artery; ECOG, Eastern Cooperative
Oncology Group.

For borderline resectable pancreatic cancers, there is a higher risk of a margin-
positive resection when using a surgery-first approach [39]. It is reported that, of
all patients started on neoadjuvant therapy, only approximately 65% will undergo
resection, with a majority of the rest having progression of the disease [13]. Overall, the
ESPAC-5 and PREOPANC trials showed a survival benefit with neoadjuvant treatment
in borderline resectable patients [39,43]. In the PREOPANC-I study, a median survival
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benefit of 4.4 months (17.6 months versus 13.2 months, HR 0.62, 95%CI: 0.40–0.95) and
an improved R0 resection rate (72% vs. 43%, p < 0.001) were observed in the intention-
to-treat analysis comparing gemcitabine plus radiotherapy versus upfront surgery [39].
The survival benefit was present despite a lower resection rate, which was 61% in the
neoadjuvant group and 72% in the upfront surgery group. Similar findings were seen
within the ESPAC-5 trial, with chemotherapy outperforming chemoradiotherapy in most
outcomes except R0 resection rates [43].

In locally advanced pancreatic cancers, induction therapy can potentially result in
a downstaging of the disease and allowing resection in approximately 35–45% of the
patients [44,45]. With 8–12 cycles of mFOLFIRINOX treatment at high-volume centers with
experience in vascular resections, the resection rates can be up to 60% [11]. As shown by
Hackert et al., resection leads to a significant improvement in survival (15.3 months after
resection vs. 8.5 months after exploration alone, p < 0.001) [11]. Arguably, resection may
have been performed more in patients with better response to therapy or smaller tumors;
however, this indicates that, with appropriate patient selection, improved survival can be
achieved. Favorable survival outcomes were also concluded in a multicenter study with
propensity score matching (3-year OS of 31% in the resected group versus 11% in the non-
resected group) [46] and in a study investigating patients with a favorable tumor biology
(>40 months versus 21.4 months, p < 0.001) [47]. Further trials are awaited to determine
the optimal length of induction treatment and to investigate the role of vascular surgery.
The value of radiotherapy in pancreatic cancer is highly disputed; no evidence supports a
survival benefit while it is anecdotally associated with more challenging resections due to
postradiation tissue changes [36].

With an improvement in systemic control via the introduction of multiagent systemic
therapies, a growing interest in resecting patients with oligometastatic disease (limited
metastatic disease confined to a single distant organ) has been observed. Resection of
oligometastatic cancer may be beneficial in a highly selected group of patients after in-
duction therapy [48]. Multiple retrospective studies have reported a survival benefit
after surgical resection versus no resection [49,50]. Nagai et al. from the Johns Hopkins
University showed the feasibility of resection for oligometastatic PDAC to the liver with
38.1 months median survival after induction chemotherapy [49]. Furthermore, the series
from the Heidelberg University Hospital showed a 5-year survival of 8.1% [50]. This sug-
gests that a small cohort of patients with oligometastatic disease can achieve long-term
survival and, hence, are optimal surgical candidates. As of now, the single-arm prospec-
tive HOLIPANC study is enrolling patients with oligometastatic liver PDAC to receive
induction therapy followed by surgical exploration and resection when feasible [51]. Ad-
ditionally, the randomized trial METAPANC (AIO-PAK-0219) is currently in the phase of
patients acquisition for resection after induction therapy with a minimum of eight cycles of
FOLFIRINOX versus continued FOLFIRINOX treatment.

Many of the aforementioned studies focus on the liver as the metastatic site; however,
isolated lung oligometastatic pancreatic cancer is associated with a better prognosis than
that with liver or peritoneal involvement [4,52,53]. The limited evidence that is available
shows improved outcomes for primary surgery and for metastasectomy in lung-only
synchronous or metachronous pancreatic cancer [52,53]. Stuart et al. reported a survival
after recurrence of 30.8 months in the subgroup undergoing pulmonary metastasectomy
versus 18.6 months in patients who were managed non-surgically [54]. Furthermore, an
impressive median overall survival of 68.9 months after surgical treatment for lung-only
recurrence was observed by Groot et al. [55]. Further studies are required to dissect the
tumor biology in this cohort to identify biologically distinct subtypes. In doing so, in
the future, we will be able to define cohorts that are most likely to benefit from surgical
resection even in the setting of oligometastatic disease.
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4. Biological Assessment of Resectability

The anatomical considerations described earlier are vital for surgical planning and
predicting local resectability. However, the systemically aggressive nature of PDAC poses
a biological challenge, and multiple considerations need to be made (Figure 1). Despite
substantial improvements in surgical technique and perioperative care, patient selection,
therefore, should consider the tumor biology and conditional factors [56,57]. Therefore,
the IAP, the MD Anderson Cancer Center and JSHBPS have published several statements
regarding biological considerations for resectability [15,16,58]. In the IAP international
consensus statement, the ECOG score as a surrogate conditional factor for poor tolerance to
therapy was integrated as well as evidence of lymph node metastases and a cutoff value for
CA19-9 (500 µ/mL) as variables for upstaging anatomical resectable disease to borderline
resectable pancreatic cancer [15]. The evidence for these considerations as well as future
perspectives will be discussed subsequently.
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Figure 1. Determination of anatomical and biological resectability. Considerations for anatomical
and biological resectability of disease. Assessment of disease is a dynamic process that involves the
evaluation of anatomical and biological characteristics for each patient. For anatomical resectability,
the disease can vary from resectable to oligometastatic disease, while biological resectability can
be determined using biomarkers. Currently CA19-9 is used clinically, and in the future, additional
biomarkers such as ctDNA, CTCs, and circulating proteins can be incorporated into this approach. At
diagnosis, a patient can be categorized into one of the four quadrants on the figure, and management
decisions be made accordingly. However, tumor biology is dynamic, and a serial assessment of
tumor biology can lead to changes in the therapeutic approach as indicated by the arrows. For
example, a patient with locally advanced pancreatic cancer and favorable tumor biology at the time of
diagnosis (left upper quadrant) could progress to biologically unresectable disease during induction
chemotherapy (right upper quadrant) and should, therefore, not be an appropriate surgical candidate.
On the other hand, if the same patient were to remain biological resectable after induction therapy,
surgical resection could be warranted even with anatomically challenging disease. Contrastingly, a
patient with anatomically resectable disease that is biologically unresectable at diagnosis (right lower
quadrant) could be offered neoadjuvant therapy as opposed to upfront surgery.
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Lymph node involvement does not alter local resectability in common guidelines but
is represented in the biological considerations of the IAP international consensus state-
ment [15,16,58]. In pathological evaluations, only approximately one out of three patients
have no lymph node involvement [59]. A lymph node ratio > 0.2 is a strong predictor of
systemic recurrence and, therefore, represents an unfavorable tumor biology [5,59]. Further-
more, there is a strong correlation to beneficial survival effects for adjuvant chemotherapy
in node-positive PDAC patients [60]. Van Roessel et al. also showed that, after neoadju-
vant therapy, only patients with pathologically node-positive disease benefit from further
adjuvant treatment [61]. Therefore, lymph node positivity is a strong surrogate marker for
systemic disease and unfavorable tumor biology. However, given that this information
becomes available after resection, it has limited utility in determining resectability. As
imaging modalities improve and the preoperative prediction of nodal disease becomes
accurate, this could be integrated into the biological assessment of resectability.

Carbohydrate antigen 19-9 (CA19-9) is the most frequently used biomarker for the
assessment of disease in pancreatic cancer. Its sensitivity is, however, limited by approxi-
mately 15–20% of the patients being non-producers due to having a Lewis antigen Alpha
and Beta negative blood group [62]. Furthermore, often, coexistent biliary obstruction can
elevate levels [28]. Nevertheless, elevated CA19-9 levels can be used as a surrogate marker
for tumor burden and activity [62]. Obtaining a baseline CA19-9 can be used to predict
long-term survival and correlates with R0 resections [62]. However, the most important
function of CA19-9 is as a biomarker for monitoring treatment response and recurrence.

A baseline CA19-9 cutoff of 500 µ/mL was suggested by the IAP for upstaging re-
sectable to borderline resectable PDAC [15,16]. A retrospective study of upfront-treated
patients conducted by Kato et al. showed a worse prognosis for the borderline resectable
stage due to biological criteria compared to resectable stages [63]. However, the prognosis
was still significantly better than that for non-biological borderline tumors (NCCN border-
line or resectable with ECOG > 2) [63]. The CA19-9 cutoff of 500 was not significant as a
prognostic factor, but >1000 µ/mL was (OR 2.03, 95%CI: 1.45–2.84) [63]. In the PREOPANC
study, there was no difference in treatment effect for patients below or above 500 µ/mL [39].
Again, validated in a combined study of two RCTs, patients with a CA19-9 > 500 µ/mL did
not benefit, but patients with a CA19-9 below that threshold did actually have significant
benefit from neoadjuvant treatment [64]. Since CA19-9 is a surrogate marker for tumor
activity, high CA19-9 is expected in those with systemic disease [62]. However, a recent
meta-analysis of recurrence patterns after neoadjuvant therapy suggests that the main
benefit of neoadjuvant therapy is local control and, therefore, fewer local recurrences [65].
According to that analysis, there was no reduction in recurrences at distant sites, thus
questioning the role of neoadjuvant therapy in systemic control [65]. As many studies
are currently being conducted on neoadjuvant chemotherapy in resectable PDAC, further
evidence on the value of CA19-9 in resectable stages is expected.

While the optimal cutoff value for upstaging resectable to borderline resectable and,
thus, for having an expected benefit from neoadjuvant treatment, has still to be defined,
pretreatment CA19-9 levels do not predict resectability in borderline resectable and locally
advanced PDAC [66,67]. However, in a retrospective study conducted by Heger et al.,
a low ratio of pretreatment/posttreatment as well as lower posttreatment CA19-9 levels
predicted resectability in borderline and locally advanced PDAC [67]. A posttreatment level
of <91.8 U/mL predicted resectability with a 75% sensitivity and 77% specificity. A cutoff of
0.4 from posttreatment divided by pretreatment CA19-9 levels yielded a positive predictive
value for resectability of 83% in patients treated with FOLFIRINOX [67]. R0 resections were
achieved in 36.4% of the resected cohort, which also included oligo-metastasized staged
patients. Interestingly, patients above the cutoffs did not benefit from resection versus
exploration in terms of overall survival [67]. Hartlab et al. showed similar results in the
NEOLAP trial; however, they stated an optimal cutoff at posttreatment level below 50 U/mL
for predicting survival and <61 U/mL for R0 resection rate [66]. These results were further
validated in a study from the Massachusetts General Hospital with the normalization
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of CA19-9 being associated with resectability [68]. Furthermore, a prospective study
conducted by van Veldhuisen et al. showed a relevant benefit for adding >30% CA19-9
response to the RECIST criteria [69].

In summary, for a patient with a resectable PDAC, the value of pretreatment CA19-9
and its implications on treatment sequence have yet to be defined. In patients with bor-
derline resectable, locally advanced, and oligometastatic cancer, the pretreatment level of
CA19-9 does not predict resectability, but posttreatment level and changes between pre-and
posttreatment values do. Therefore, the phase of neoadjuvant treatment provides a window
of opportunity to assess tumor biology and allows the tumor to declare its aggressiveness.
If a poor response is observed, the chemotherapy agents can be switched [70]. However,
after exhausting all available therapies and if a poor response with a high propensity of
systemic disease is observed, it could potentially indicate a biologically aggressive tumor,
questioning the benefit from further cytotoxic or surgical treatments (Figure 2). Further
studies are needed to define optimal cutoffs for CA19-9, such that they are standardized
and broadly applicable in clinical practice.
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Figure 2. Serial Assessment of Tumor Biology: Serial assessment of anatomical and biological
resectability can aid in the appropriate treatment for pancreatic cancer patients. (1) Determining the
need for neoadjuvant therapy (anatomically resectable) and the mode of neoadjuvant/induction
therapy (all anatomic stages). (2) Serial assessment of tumor response to determine surgical candidacy
and the timing of resection. Local progression of disease can indicate the need for a change of regimen
while systemic progression indicates the need for non-surgical management with investigational
therapies or best supportive care. (3) Determining the need and mode of adjuvant treatment. Figure
designed with Bio Render.

Carcinoembryonic antigen (CEA) is another biomarker that is used as an adjunct to
CA19-9 in the clinical setting. An elevated CEA shows associations with advanced tumor
stages and poor prognosis [71]. However, for the assessment of resectability, CEA shows
poor performance [72]. CEA is furthermore not elevated in approximately 50–60% of PDAC
patients [73,74]. Therefore, its current value for the assessment of PDAC is limited, and
the need for an alternative biomarker is urgent [73]. Other potential candidate biomarkers
that could help assess the tumor biology and systemic burden of the disease have been
identified and are being studied. The most reported biomarkers include TIMP-1, DUPAN-2,
serum-MUC5AC, CA125, and CA242 [75,76]. While CA19-9 still outperforms the novel
biomarkers, biomarker panels including or excluding CA19-9 have shown improvements in
diagnostic accuracy [76]. Elevated levels of DUPAN-2 (>200 U/mL) have also shown to be
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of prognostic value in CA19-9 non-producers [76]. DUPAN-2 is a precursor of CA19-9 and is
not further metabolized in Lewis negative blood groups and, therefore, serves as a potential
substitute in CA19-9 non-producers [77]. Furthermore, CEA and CA125 are associated with
tumor burden and therapeutic response in CA19-9 non-producers, making them potential
monitoring biomarkers [78,79]. Inflammation, as a surrogate for tumor dynamics and
immunologic antitumor response, has been studied. High neutrophil/lymphocyte ratio
(NLR), platelet/lymphocyte ratio (PLR), and elevated c-reactive protein (CRP) have been
found to be poor prognostic factors [80,81]. Interestingly, pre-operative NLR and PLR was
inversely correlated with R0 resections in a retrospective study by Recio-Boiles et al. [82].
However, these predictive values and their correlations with resectability have to be in-
terpreted with caution. First, there is no accepted cutoff, and there is a high variability
within published studies [83]. Second, there is a high possibility of publication bias as many
negative results are not published [83]. In summary, the literature in predicting resectability
and prognosis with alternative serum protein biomarkers or cell ratios is sparse or not
convincing to date.

Through tumor biopsies, additional information can be drawn about the primary
tumor, and tumor grading and molecular assessment can be performed. For example,
liver recurrence is associated with poor tumor differentiation and often occurs early after
surgery [18]. However, even with the recently improved understanding of the mutational
landscape, convincing targetable mutations have not yet been identified. PDACs usually
arises from pancreatic intraepithelial neoplasia (PanIN) precursor lesions, while some arise
from intraductal papillary mucinous neoplasms (IPMNs). In PanIN-derived pancreatic
cancer, usually KRAS mutation (87%) is present with later mutations involving TP53
(62%), CDKN2A (16%), and SMAD4 (16%) [84,85]. SMAD4 mutations, loss of function
of the CDKN2A tumor suppressor gene, and FGFR2 gene fusions are associated with
a poor outcome after standard chemotherapeutic treatment in PDACs [86,87]. Bailey
et al. described four different subtypes that differ in their evolution and aggressivity [88].
According to their mutational and expression profiles, PDACs can be subclassified into
squamous, ADEX, pancreatic progenitor, and immunogenic subtypes [88]. One stand
out for the prognosis is the epithelial subtype, which has considerable overlap with the
quasi-mesenchymal subtype described by Collissons et al. [89] The squamous subtype
is characterized by gene networks that are involved in inflammation, hypoxia response,
metabolic reprogramming, TGF-B signaling, MYC pathway activation, autophagy, and
upregulated expression of TP63 [88]. Many of those pathways are involved in epithelial–
mesenchymal transition and tumor dormancy [90]. This leads to more adaptive tumor
cells and results in more treatment failure and poorer outcomes compared to the classical
subtypes [91]. Therefore, in future, subtyping may aid in treatment decisions concerning
biological resectability.

Liquid biopsy has emerged as a promising technology that allows the non-invasive
sampling of tumor fragments within the blood circulation including circulating tumor DNA
(ctDNA), microRNA, tumor-derived exosomes, and circulating tumor cells (CTCs) [62]. The
analysis of liquid biopsies can inform treatment decisions as it harbors specific information
about the tumor biology such as specific mutations and epigenetic changes from the primary
tumor or metastatic sites [62]. In the future, it can possibly overcome the drawback of tumor
biopsies with limited identification of tumor heterogeneity as it represents the features
of the systemic involvement of disease [92]. As a reliable marker for systemic disease, it
most possibly fails to detect local-only disease, limiting its diagnostic value. Therefore, in
a current meta-analysis, pooled sensitivity for ctDNA and CTC is low with 64% and 74%
with a higher specificity of 92% and 83%, respectively [93].

Circulating tumor DNA is defined as the tumor-derived portion of cell free DNA
within the circulation. Through apoptosis and necrosis within the tumor, ctDNA is released
into the circulation [94]. The ctDNA-fragments are isolated, amplified, and analyzed
with PCR or sequencing [92]. With an approximate mutation rate of 90%, KRAS (most
polymorphisms G12D, G12V, and G12R) is the most important ctDNA marker, but panels
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of different mutations can also be used [92,94]. Low concentrations and mutations in
premalignant lesions hamper its value as a diagnostic biomarker. However, ctDNA has
shown valuable results as a diagnostic, monitoring, and prognostic biomarker in many
cancer types [95–97]. When detected at baseline, it predicts worse progression-free and
overall survival [98]. Longitudinal multigene ctDNA measurements furthermore predicted
progression through increasing levels in 70% of patients with advanced PDAC in the study
of Lapin et al. [98]. The lead time to radiologically determined progression was 19 days
compared to 6 days in CA19-9 increase [98]. Therefore, it could possibly be used as a
monitoring biomarker also in neoadjuvant treatment as ctDNA persistence was associated
with treatment failure to cytotoxic agents [98].

In terms of predicting resectability, ctDNA, to date, has not been implemented in
clinical decision making. Higher ctDNA levels are associated with vascular involvement
and advanced local tumor size [99]. Furthermore, ctDNA was correlated with positive
resection margins within the study of McDuff et al. [100]. In LAPC, ctDNA-positive patients
had 44% R0 resections compared to 88% with ctDNA-negative findings (n = 29) [100].
In summary, since preoperative ctDNA positivity has shown to be a predictor of early
recurrence and worse survival outcomes in resectable PDAC, its positivity could aid
the selection of resectable PDAC patients who will benefit from neoadjuvant treatment
compared to upfront resection [100,101].

Circulating tumor cells are tumor cells that have detached from the primary tumor
or metastatic site and can be found within the blood stream. Epithelial–mesenchymal
transition (EMT) can lead to cell migration, intravasation, and consequently, the presence
of CTCs, which are key players in the early dissemination and metastatic seeding of
pancreatic cancer cells [102,103]. The detection and isolation of CTCs can be performed by
biomarker-mediated platforms such as microfluidic chips, magnetic beads, or size-sensitive
microfiltration [104]. Analysis can then be performed, applying a wide range of methods
including flow cytometry, immunofluorescence staining, and single-cell RNA sequencing
(scRNAseq) [104]. As with ctDNA, the presence of CTCs with mesenchymal properties
predicts recurrence after pancreatectomy [105,106]. This wide arrange of analytical method
and the CTCs representing systemic disease of a heterogenous tumor may allow precision
oncology in future. Anatomical resectable PDACs with positive transitional CTCs may
benefit from neoadjuvant systemic treatment compared to upfront surgery.

5. Current Limitations of Assessment of Anatomical and Biological Resectability

To date, there are certain limitations to the assessment of biological resectability
that urgently need to be addressed. First, the radiographic assessment of lymph node
involvement is unreliable. The enlargement of lymph nodes beyond the cutoff of 1 cm
is deemed as suspicious for lymph node involvement in cancer. Since the enlargement
of lymph nodes can also be due to peritumoral inflammation and, on the other hand,
metastatic lymph nodes can measure below the cutoff value of 10 mm, the poor performance
of CT scans in terms of diagnostic accuracy (38–77%) and sensitivity (14–24%) is seen in
clinical practice [19]. In the future, more adequate lymph node examinations, for example,
through biopsies or PET-CT may fill the gap between the reliability of radiological to
pathological assessment for the decision on neoadjuvant treatment in resectable PDACs [19].

Second, the assessment of treatment response is challenging. Radiological response
assessment is performed through a CT scan using the Response Evaluation Criteria in Solid
Tumors (RECIST) [107]. Progression according to the RECIST criteria encompasses a tumor
growth of at least 20% in diameter or newly detected lesions; stable disease is defined by
the absence of progression or regression; and regression is defined as a shrinkage of at
least 30% in three directions [107]. The percentages of patients with progression, stable
disease, partial, and complete response after induction treatment with mFOLFIRINOX
were 16%, 59%, 16%, and <1%, respectively [19,28]. However, radiological assessment after
neoadjuvant treatment underestimates resectability [108,109]. In the interpretation of radio-
logical findings, the assessment of regression is challenging due to fibrotic and edematous
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posttreatment reactions that are hard to distinguish from viable tumors, especially at the
tumor borders [19]. Therefore, the radiologic and pathologic evaluations of tumor response
only show moderate agreement [110]. In a case series by Ferrone et al., 92% of patients
with LAPC had an R0 resection even though imaging suggested non-resectability [109].
Furthermore, there are no reliable predictors of resectability after neoadjuvant or induction
treatment for LAPC and borderline resectable PDAC [111]. Therefore, surgical exploration
should be performed in all fit patients without progression or secondary metastatic disease
after induction therapy at a high-volume center with experience in arterial divestment and
resection [28,36].

Third, in current clinical practice, the biological treatment response is mainly de-
termined by measurement of the CA19-9 levels [112]. Since alternative serum protein
biomarkers have failed to compensate for the drawbacks of CA19-9, this represents an
unsatisfactory state. Efforts are currently being undertaken, especially with liquid biopsies,
to compensate for those shortcomings. For example, Meijer et al. have shown that the
downregulation of microRNA-181a-5p can be used to monitor the response to FOLFIRI-
NOX [113]. Further data on liquid biopsies, especially in the setting of neoadjuvant therapy,
are much awaited. Molecular analyses have yet shown very few targetable lesions or
implications about different treatments. Possibly, there is an advantage in immunotherapy
for the immunogenic subtype that has more immune-cell infiltration compared to the other
types being immunogenic cold tumors [88]. Other efforts toward personalized treatment,
for example, better treatment response to platinum-based chemotherapy, are currently
under investigation [114]. In the future, multianalyte panels encompassing a range of
variables have the potential to mitigate the limitations associated with solitary biomarkers.

6. Conclusions

Assessment of local resectability based on presence and extent of vascular involvement
of major abdominal vessels has prognostic value. However, due to advancements in surgical
technique including vascular resections, biological considerations are becoming even more
important for treatment decision making in patients with pancreatic cancer. Patients
who present with anatomically resectable disease and unfavorable tumor biology may
experience early recurrence and therefore potentially morbid resection might have limited
values in these cases. Conversely, patients with anatomically advanced tumors exhibiting
favorable tumor biology have the potential to attain cure and long-term survival through
surgical intervention. Therefore, if treatment decisions are solely guided by anatomic
criteria, a risk of surgically overtreating biologically aggressive diseases and undertreating
those with biologically favorable profiles exists.

The assessment of tumor biology can be performed through surrogate markers indica-
tive of advanced disease and systemic involvement such as CA19-9, ctDNA, and CTCs,
but, to date, a majority of these biomarkers have performed insufficiently for predicting
treatment benefit when analyzed alone. However, a combination of the aforementioned
biomarkers could possibly define candidates who will benefit from resection compared
to those who probably will develop early systemic recurrence and have dismal progno-
sis despite surgical treatment. Developing multianalyte composite tests based on these
biomarkers is essential for defining optimal personalized treatment. Future guidelines
combining anatomic and biologic features in the determination of resectability could opti-
mize surgical candidacy such that patients undergoing resection derive maximum benefit
from these operations. If a patient progresses anatomically or biological unresectability
persists, this patient might not be an appropriate candidate for surgical resection. However,
if a patient with LAPC with favorable tumor biology does not progress during induction
chemotherapy, resection could be offered at specialized centers.
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