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Simple Summary: The prognosis for patients with glioblastoma (GBM) remains dismal despite
advances in tumor detection and treatment. The aim of our retrospective study was to develop
a multiparametric model incorporating baseline MRI imaging, histopathological biomarkers, and
demographic data to predict prognosis in patients with GBM. A training model was developed with
116 patients and validated with an external cohort of 40 patients. Three significant variables were
identified as independent predictors of survival ≥ 18 months: radiomics, age, and MGMT status.

Abstract: Background: Clinical, histopathological, and imaging variables have been associated
with prognosis in patients with glioblastoma (GBM). We aimed to develop a multiparametric ra-
diogenomic model incorporating MRI texture features, demographic data, and histopathological
tumor biomarkers to predict prognosis in patients with GBM. Methods: In this retrospective study,
patients were included if they had confirmed diagnosis of GBM with histopathological biomarkers
and pre-operative MRI. Tumor segmentation was performed, and texture features were extracted to
develop a predictive radiomic model of survival (<18 months vs. ≥18 months) using multivariate
analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regularization to reduce
the risk of overfitting. This radiomic model in combination with clinical and histopathological data
was inserted into a backward stepwise logistic regression model to assess survival. The diagnostic
performance of this model was reported for the training and external validation sets. Results: A total
of 116 patients were included for model development and 40 patients for external testing validation.
The diagnostic performance (AUC/sensitivity/specificity) of the radiomic model generated from
seven texture features in determination of ≥18 months survival was 0.71/69.0/70.3. Three variables
remained as independent predictors of survival, including radiomics (p = 0.004), age (p = 0.039), and
MGMT status (p = 0.025). This model yielded diagnostic performance (AUC/sensitivity/specificity)
of 0.77/81.0/66.0 (training) and 0.89/100/78.6 (testing) in determination of survival ≥ 18 months.
Conclusions: Results show that our radiogenomic model generated from radiomic features at baseline
MRI, age, and MGMT status can predict survival ≥ 18 months in patients with GBM.

Keywords: multiparametric; radiogenomics; texture analysis; glioma; tumor segmentation; MRI; MGMT

1. Introduction

Gliomas are the most common primary brain tumor in adults [1,2]. IDH-wildtype
Glioblastoma (GBM), a World Health Organization (WHO) grade 4 brain tumor, accounts
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for approximately one half of all gliomas [3]. The standard of care treatment for GBM
includes maximal resection and combination of radiation and chemotherapy, followed by
chemotherapy [4]. Despite advances in detection and treatment, the prognosis of patients
with GBM remains dismal, with a median survival of just 14 months [5,6], a 1-year survival
of approximately 43%, and a 5-year survival of approximately 5% [3]. Unfortunately,
even with early intervention, complete remission of GBM is uncommon as recurrence
is inevitable.

A growing number of clinical, imaging, and histopathological biomarkers have been
identified that carry diagnostic and prognostic significance in patients with GBM [7,8].
Amongst various clinical parameters, one of the most consistently recognized prognostic
factors is younger age [8–11]. A prospective, multi-institution study by Weller et al. found
that age < 60 is significantly (p < 0.001) associated with survival in patients with treated
GBM [10]. Similarly, in a more recent retrospective study of newly diagnosed GBM, Stark
et al. reported that age < 61 years was significantly (p < 0.001) associated with survival [8].

Several histopathological biomarkers have also been shown as strong predictors of
survival. IDH1 mutation has been established as an independent positive prognostic
biomarker associated with significantly longer survival compared to IDH1 wildtype [11].
This in fact has revolutionized GBM prognostication and ultimately led to the WHO
incorporating biomarker status into its tumor classification system for the first time in 2016
with the introduction of IDH status [12]. In 2021, the WHO classification of central nervous
system tumors was further modified to define GBM as IDH-wildtype, WHO grade 4,
whereas WHO grade 4 tumors with IDH mutation were reclassified as astrocytomas [13].
Other favorable histopathological biomarkers associated with longer survival in patients
with GBM include ATRX mutation [14,15], methylation of MGMT gene [16,17], and absence
of EGFR signal amplification [18,19].

The heterogeneous histology of GBM increases the risk of non-representative tumor
sampling for the purposes of histological assessment [20]. Furthermore, GBM has been
shown to be prone to histological error on biopsy [21–24]. For example, in one retrospective
study of 33 patients with primary brain lesion undergoing stereotactic biopsy followed
by open resection, there was a 33% rate of discordance (either: identical cell type but
different grading, different cell type but identical grading, or different cell type and different
grading) [24].

For these reasons, there has been a recent impetus to further assess multimodal data
available from clinical factors, histopathology, and imaging to improve prognostication in
patients with GBM. The field of radiomics has emerged for the quantitative assessment
of rich imaging datasets that can be used alone or in conjunction with variable genetic
datapoints to predict survival in patients with GBM with some success [25–27]. Despite
the promising results of numerous radiogenomic models in the prediction of survival in
patients with GBM, a large number of these studies lack robust analysis and validation
against external testing cohorts which limits their application for broad clinical use [25,26].

In this study, we aimed to assess the diagnostic performance of baseline MRI features
in addition to clinical, demographic, and histopathological data for the prediction of sur-
vival of patients with GBM. Specifically, in a cohort of IDH-wildtype GBM patients per the
WHO 2021 classification, we (1) constructed a radiomic model from preoperative MRI and
evaluated its diagnostic performance in prediction of ≥18 month survival, (2) constructed a
combined radiogenomics model to predict ≥ 18 month survival and assessed its added di-
agnostic value to radiomics, and (3) validated the diagnostic performance of this combined
model in an external cohort from an outside institution.

2. Methods

This retrospective study was approved by an institutional review board with a waiver
of informed consent. A total of 226 patients were reviewed with initial diagnosis of GBM
between January 2015 and May 2020. Patients were included if they had (1) confirmed
diagnosis of IDH-wildtype GBM by surgical resection and completed standardized treat-
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ment including radiation therapy and temozolomide chemotherapy; (2) preoperative MRI
including T1 post contrast, FLAIR, and diffusion sequences; (3) available histopathological
biomarkers including IDH-1, EGFR, MGMT, and ATRX; and (4) had survival data includ-
ing time from diagnosis to death or time to 1st recurrence following standard treatment,
whichever was first.

Patients were excluded if they did not have pre-treatment MRI (prior surgery or
treatment, n = 27), insufficient MR image quality (n = 2), absence of MRI FLAIR or DWI
sequences necessary for texture analysis (n = 48), or incomplete histological data (n = 33).
Demographic data including sex, age, histopathological biomarkers, and survival time
were documented for each patient. Survival data were obtained from the electronic medical
record and dichotomized (<18 months, ≥18 months).

An external validation cohort (n = 40) was also included from an outside institution
under an approved institutional review board for the purpose of increasing study validity
and generalizability. This external cohort has identical inclusion and exclusion criteria.

2.1. Histopathological Data

Tumor tissue samples were obtained through routine standard of care practices from
patients undergoing targeted tissue biopsy or tumor resection. Immunohistochemistry
was used to determine IDH status (specifically IDH1R132H immunoreactivity) and ATRX
nuclear staining on formalin-fixed paraffin embedded (FFPE) 6-micron tissue slices. Next-
generation sequencing (NGS) was performed to confirm mutational status and, in rare
cases, identified alternative IDH mutations that were not picked up by IHC. Both IDH and
ATRX results were classified as wildtype vs. mutated, and only IDH-wildtype tumors were
included for analysis. Signal amplification of EGFR was detected with chromogenic in situ
hybridization on 6-micron FFPE tumor tissue slice. The results were classified as amplified
vs. non-amplified. Pyrosequencing assays of bisulfite-treated genomic DNA were used
to assess for MGMT methylation status, and the results were classified as methylated
vs. unmethylated.

2.2. Image Analysis

Image acquisition was performed using a standardized preoperative brain tumor
MRI protocol in accordance with consensus recommendations for a standardized brain
tumor imaging protocol in clinical trials [28]. A combination of 1.5T and 3T MR scanners
was used.

Image analysis was performed using a commercially available FDA-approved software
(Olea Sphere software version SP23.0, Olea Medical S.A.S., La Ciotat, France). FLAIR, T1
post contrast, and diffusion images (ADC/b1000) were coregistered for each patient’s pre-
treatment MRI using a 6-df transformation and mutual information cost function. Tumors
were manually segmented by a trained radiologist under the supervision of a board-
certified neuroradiologist using FLAIR images on every slice in which tumor was visible.
Subsequently, a volume of interest (VOI) was generated encompassing the entire region of
FLAIR hyperintensity and overlaid onto coregistered T1 post contrast and diffusion datasets
for radiomic texture analysis (Figure 1). Automatic preprocessing was standardized by the
software for each case involving intensity normalization, resampling, and discretization to
mitigate image signal variability and improve generalizability.

A total of 92 radiomic features were extracted from each MR sequence, including
19 first-order metrics (e.g., mean, standard deviation, skewness, and kurtosis). Additionally,
numerous second-order metrics were extracted including 23 gray-level run-length matrices
(GLCM), 16 gray-level run-length matrices (GLRLM), 15 gray-level size-zone matrices
(GLSZM), 5 neighboring gray tone difference matrices (NGTDM), and 14 gray-level de-
pendence matrices (GLDM). Details of the definitions and calculations of these features
have been reported in the literature [29,30]. These radiomic features extracted from each
patient’s pre-treatment FLAIR, T1 post contrast, and ADC/b1000 MRI sequences yielded a
total of 368 features for each brain tumor.
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Figure 1. Manual segmentation of GBM in a representative patient. Top row: multisequence images
(left to right: FLAIR, T1 post contrast, b1000, and ADC) through a single slice show GBM in the right
temporal lobe. Bottom row: the tumor and surrounding T2 prolongation was manually segmented
(shown in blue) on FLAIR images and overlaid onto other coregistered sequences.

2.3. Statistical Analysis

One-way analysis of variance was performed for each radiomic parameter (n = 368)
with survival (<18 months, ≥18 months) as the independent variable. Least Absolute
Shrinkage and Selection Operator (LASSO) regularization [31] was used for the statistically
significant texture feature means (p < 0.05) to reduce the risk of overfitting and increase
interpretation. The significant contributing variables were then entered into a stepdown
logistic regression analysis. A stepwise method was used to avoid collinearity since
redundant variables were omitted. From the independent significant radiomic variables, a
final combined model was generated and validated by a 10-fold cross-validation scheme,
where the data were randomly assigned into the training cohort (90%) or used for validation
(10%). This final imaging model was then evaluated in conjunction with other variables
including age, sex, and histopathological biomarkers in a multivariate logistic regression
analysis to identify the independent predictors of survival.

Receiver-operating characteristic (ROC) curves were generated and area under the
curve (AUC) was estimated for independent variables that survived logistic regression
analysis. A comparative analysis between ROCs was performed using the Delong test [32].
Optimal thresholds were determined to maximize sensitivity and specificity for each
biomarker utilizing the Youden index. Once the final model was constructed, it was applied
to a testing dataset to determine its accuracy in predicting patient survival. Statistical
analysis was performed using Matlab R2019b, Statistics and Machine Learning Toolbox
(The MathWorks, Inc., Natick, MA, USA), and SAS 9.4M6 (TS1M6) 2020 (SAS Institute Inc.,
Cary, NC, USA).
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3. Results
3.1. Clinical Characteristics of Patient Population

A total of 116 patients were included in our training dataset for model development.
The survival length was 12 (5–23) [median, IQR] months. A total of 42 patients had survival
of ≥18 months, whereas 74 had < 18 months survival. Patients with longer survival were
significantly (p = 0.030) younger at the time of diagnosis. Among the histopathological
biomarkers evaluated, methylated MGMT status was significantly associated with longer
survival (p = 0.035). The breakdown of patients’ demographic and histopathological
biomarkers are detailed in Table 1.

Table 1. Demographic data and histopathological biomarkers in training cohorts.

Total Survival ≥ 18 Months
(n = 42)

Survival < 18 Months
(n = 74) p Value

Age (mean ± SD) 59.6 ± 13.9 55.8 ± 14.6 61.7 ± 13.1 0.030

Sex (M/F) 62/54 21/21 41/33 0.575

Tumor side (right/left) 65/51 22/20 43/31 0.552

Tumor location (n/%)

0.266

Frontal lobe 45/39% 16/14% 29/25%
Parietal lobe 10/9% 3/3% 7/6%

Temporal lobe 48/41% 16/14% 32/27%
Occipital lobe 5/4% 4/3% 1/1%
Cerebellum 1/1% 1/1% 0/0%

Basal ganglia 7/6% 2/2% 5/4%

MGMT
(methylated/non-methylated) 53/63 25/17 29/45 0.035

* ATRX (wildtype/mutated) 85/18 29/9 56/9 0.221

** EGFR
(amplified/non-amplified) 74/41 25/17 49/24 0.414

* ATRX available in 103 patients; ** EGFR available in 115 patients.

3.2. Training Model

Following LASSO regularization and logistic regression analysis, a total of 7 MRI
texture features of the initial 368 remained as significant contributors in prediction of sur-
vival. The AUC attributed to each individual texture feature ranged between 0.60 and 0.63
(Supplementary Table S1). A final radiomic model was constructed from the combination
of these seven features with a diagnostic performance (AUC/sensitivity/specificity) of
0.71/69.0/70.3 (p < 0.001). ROC curves for individual radiomic features and the final
combined radiomic model are shown in Figure 2.

Following logistic regression analysis, the final radiomic model remained an inde-
pendent and significant (p = 0.004) contributor in prediction of survival ≥ 18 months in
conjunction with patient’s age (p = 0.039) and MGMT status (p = 0.025). The combined
radiogenomic model constructed from age, MGMT status, and radiomic model showed
diagnostic performances (AUC/sensitivity/specificity) of 0.77/81.0/66.0 (p < 0.001) in
prediction of survival ≥ 18 months.

Comparative ROC analysis between the radiogenomic model vs. individual contribu-
tors showed significantly higher diagnostic performance against the individual components
using Delong test; p = 0.036 vs. age, p = 0.004 vs. MGMT status, and p = 0.044 vs. ra-
diomic model. ROC curves for age, MGMT status, radiomic model, and the combined
radiogenomic model in the prediction of survival ≥ 18 months are shown in Figure 3. The
diagnostic accuracies of each contributing variable are listed in Table 2.
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Figure 2. ROC curves for texture features that were identified as significant contributors for survival
prediction individually and final combined radiomic model constructed from the combination of
these 7 texture features.

Table 2. Diagnostic performances of independent classifiers and final radiogenomic model in predic-
tion of survival in training and external validation datasets.

Training Set (n = 116) External Validation Set (n = 40)

AUC/Sensitivity/Specificity AUC/Sensitivity/Specificity

Age 0.64/61.9/67.6 0.70/91.7/42.9

MGMT status 0.60/59.5/60.8 0.80/75.0/85.7

Radiomic model (combined 7 textures) 0.71/69.0/70.3 0.76/91.7/60.7

* Radiogenomic model 0.77/81.0/66.0 0.89/100/78.6

* Radiogenomic model was constructed by combining age, MGMT status, and radiomic model.
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3.3. External Validation

External validation was performed in a cohort of 40 patients from an outside institution.
In this cohort, patients had an average age of 57.2 ± 13.6 (mean ± SD) years, and 18 patients
were male. The MGMT status was methylated in 13 patients and non-methylated in 27.
A total of 12 patients had survival of ≥18 months, whereas 28 patients had < 18 months
survival. The final radiogenomic model used in the training dataset showed a diagnostic
performance (AUC/sensitivity/specificity) of 0.89/100/78.6 in the external validation
set. ROC curves and diagnostic accuracies for age, MGMT status, radiomic model, and
combined radiogenomic model in prediction of survival ≥ 18 months are shown for the
external validation set in Figure 3 and Table 2, respectively.

4. Discussion

Results show that our multiparametric radiogenomic model incorporating patient’s
age, texture features from baseline MRI, and MGMT methylation status can predict longer
survival (≥18 months) in patients with IDH-wildtype, WHO grade 4 GBM at the time
of diagnosis with an accuracy of 73.5% in the training cohort and 89.3% in the external
validation cohort.

Younger patients’ age has been established as an important and independent prog-
nostic factor in prediction of long-term survival [8–11]. Similarly, our results showed that
younger age was significantly and independently associated with survival > 18 months.
Using ROC analysis, an age cutoff of 59 years or younger was significantly associated with
longer overall survival. We also showed the synergistic effect of age and MGMT methy-
lation status in our final model with added predictive performance. Similarly, Hartmann
et al. reported that a combination of age < 50-years-old and MGMT methylation can predict
GBM survival > 36 months [33].

Radiomic models have shown promise in prognostication and determination of sur-
vival in patients with GBM [34–39]. In a retrospective study of 32 patients with GBM,
regional MRI habitat variations were found within each tumor (e.g., high vs. low contrast
enhancement; high, intermediate, and low interstitial edema) that were statistically sig-
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nificant in predicting patient survival with an accuracy of approximately 81% [34]. In a
separate retrospective study of 82 patients with GBM, five sets of texture features were
used to reliably predict 12-month survival and GBM molecular subtype with AUC of up to
0.82 [40]; some of these subtypes were more reliably predicted on FLAIR images, whereas
for others, T1 post contrast sequences were more reliable. Interestingly, they found that
different image planes (e.g., coronal vs. axial) had varying levels of predictive performance;
however, the generalizability of these findings is limited as an independent testing cohort
was not utilized. In another retrospective study of 59 patients with GBM, Drabycz et al.
used both qualitative and quantitative analyses to determine whether MGMT promoter
methylation could be predicted with various MRI sequences [41]; they found that qualita-
tive MRI analysis showed an association between unmethylated MGMT status and ring
enhancement, however there was no statistically significant relationship on either FLAIR or
T1 post contrast images when a quantitative approach was tested. Significant quantitative
differences within tumor subsections were identified on T2 weighted images, but they did
not persist when the entire tumor volume was analyzed [41].

In our study, after comprehensive analysis of 368 MRI texture features obtained from
FLAIR, T1 post contrast, and diffusion images (ADC/b1000), a total of seven features
remained as statistically significant contributors in survival prediction (Supplementary
Table S1). Chaddad et al. previously reported the prognostic value of three GLCM texture
features after the analysis of 22 MRI texture features, of which one texture feature (GLCM
informational measure of correlation) was also supported in our dataset [36]. Their model’s
overall sensitivity using data from 40 patients with GBM was reported as 91.7%, which
was higher than our training model’s sensitivity but lower than our external cohort’s. The
prognostic value of GLSZM texture features is also in line with previous literature; for
example, Li et al. described a fully automatic radiomics model in which a four-feature ra-
diomics signature was identified and validated with an independent cohort to successfully
stratify patients with GBM into prognostically high- and low-risk groups [37]. Although
the seven features identified in our study individually predicted ≥ 18 month survival with
significance, the combination of these features further improved the predictive power of
our radiomic model (Figure 2).

In our study, among commonly evaluated histopathological biomarkers used in the
evaluation of GBM survival, only MGMT methylation was found to have prognostic sig-
nificance with a modest AUC (0.60). Additionally, MGMT methylation was significant
(p = 0.035) in predicting survival ≥ 18 months. This is consistent with prior reports identi-
fying MGMT methylation as a positive and independent predictor of improved survival
in patients with GBM [42,43]. GBM tumors with MGMT methylation have been shown
to have increased susceptibility to temozolomide, the standard of care chemotherapeu-
tic agent [44]. However, a meta-analysis of 10 eligible studies concluded that, although
MGMT methylation was associated with longer overall survival, its use as an indicator of
progression-free survival is less clear [43]. This could be due, in part, to the variable cut-off
value that is used at various institutions to determine one’s MGMT methylation status [45].

Our findings are similar to those by Tixier et al. who also studied the synergistic
value of adding radiomics to MGMT methylation status to predict survival [46]. In their
study, a total of 8 out of 286 texture features investigated were identified with significant
prognostic value in determination of survival. After combining radiomics and methylation
status of MGMT, they showed that patients who had both MGMT methylation and high
negative skewness of Gabor edge enhancement (from radiomic analysis) had a longer
median overall survival of 22.7 months vs. 12.2 months in patients without these features.

Although the prognostic value of non-amplified EGFR and mutated ATRX in the pre-
diction of longer survival in patients with GBM has been demonstrated previously [47,48],
our study failed to show such an association. The exact reason for this discrepancy is
not clear, however, it is plausible that small sample size and absence of data (e.g., ATRX)
in a subset of patients (only available in 103/116, 89%) could have contributed to lack
of significance.
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Importantly, our study was validated with an external cohort consisting of patients
from a different institution than the training cohort. In fact, the sensitivity of the model
increased from 80.1% in the training cohort to 100% in the external cohort. Although a few
other groups have shown the reproducibility of their radiogenomic findings in an external
dataset [26,27], additional studies are needed to further improve the generalizability of
radiomics for prognostic applications.

Our study has several limitations. The retrospective nature introduces biases such
as selection bias and patient recruitment through convenience sampling. A prospective
approach can help to mitigate some of these limitations and allow for more even distribution
of patients by demographic and histopathological variables. We only included treatment-
naïve patients with GBM and, therefore, the results cannot be applied to patients with
recurrent GBMs or to those who underwent treatment at other institutions. We only studied
patients diagnosed with the most recent WHO classification of GBM: IDH-wildtype grade 4
astrocytoma. The results of our study and described predictive model cannot be applied to
patients with IDH-mutant WHO grade 4 astrocytoma without further validation. Although
our sample size is relatively small and data training was performed on imaging data
from a single institution, the inclusion of an external validation cohort from a different
institution increased the validity and generalizability of our predictive model. Furthermore,
tumor heterogenicity may result in different biomarker results had an adjacent region of
tumor been sampled instead for pathological analysis. A similar phenomenon has been
documented using radiogenomic analysis, with MRI-defined radiologic habitats varying
significantly among different patient survival groups [34]. Our study can also be limited by
the variable reproducibility and reliability of radiomics [49]. A recent secondary analysis of
two prospective studies of 48 total patients with GBM undergoing subsequent brain MRIs
with no interval treatment demonstrated low repeatability of intensity and texture features,
both of which depend on voxel intensity [49]. However, after data normalization, there was
significant improvement in inter-scan repeatability [49]. Of note, even with normalization,
Hoebel et al. found more repeatability for normalized FLAIR images than for normalized
T1 post contrast images, likely due to the added variability of image acquisition timing after
contrast injection. In our image analysis, we applied preprocessing image normalization to
mitigate this limitation and maximize reproducibility.

5. Conclusions

In summary, we trained a multimodal radiogenomic model by combining age, MGMT
status, and seven MRI texture features to predict longer (≥18 months) survival of patients
with IDH-wildtype, WHO grade 4 GBM. Overall, testing this model with an external vali-
dation cohort yielded 89.3% accuracy with a sensitivity of 100%. If its potential is realized
in a larger prospective study, this model can provide valuable prognostic information that
can help guide management and support treatment decision making when consoling newly
diagnosed patients and their families.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16030589/s1, Table S1: List of contributing MRI texture
features following LASSO regularization and logistic regression analysis.
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