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Simple Summary: Immunotherapy with checkpoint inhibitors is a promising treatment for lung
cancer patients. However, not all patients respond well to immunotherapy, and researchers are
seeking new predictive biomarkers for immunotherapy. Radiomics and its derivative, delta ra-
diomics, are potential candidates for use as predictive biomarkers for use in immunotherapy.
In this meta-analysis, we performed qualitative and quantitative assessments and confirmed the
effectiveness of delta radiomics in predicting the treatment responses and clinical outcomes of im-
munotherapy. Further studies are warranted to compare the performance of traditional radiomics
and deep-learning radiomics.

Abstract: Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell
lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are
exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this
regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching
PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics
in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies,
10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled
analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76–0.86, p < 0.001)
for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70–8.43, p < 0.001) for progression-free
survival, and 2.15 (95% CI 1.73–2.66, p < 0.001) for overall survival at 6 months. Radiomics emerges as
a potential prognostic predictor for lung cancer, but further research is needed to compare traditional
radiomics and deep-learning radiomics.

Keywords: non-small cell lung cancer; radiomics; immunotherapy; immune checkpoint inhibitor;
treatment outcome; computed tomography

1. Introduction
1.1. Overview of Lung Cancer and Its Global Burden

Lung cancer, a complex and heterogeneous disease, has long been recognized as a
major global health issue owing to its high incidence and mortality rate [1]. Lung cancer is
the leading cause of cancer-related deaths and is responsible for over 1.8 million fatalities
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annually, accounting for 18% of all cancer-related deaths worldwide [2]. The disease is
primarily classified into two histological subtypes: non-small cell lung cancer (NSCLC),
which represents approximately 85% of all cases, and small cell lung cancer (SCLC), which
constitutes the remaining 15% [3]. The primary risk factors for lung cancer are tobacco
smoking, exposure to environmental carcinogens such as radon gas and asbestos, air pollu-
tion, and genetic predispositions [4,5]. Although recent advancements in early detection
and therapeutic interventions have led to improved clinical outcomes for some patients,
the overall five-year survival rate for lung cancer remains low, at approximately 18% [6,7].
This highlights the urgent need for innovative diagnostic and prognostic tools to opti-
mize treatment outcomes and tailor personalized therapy strategies for patients receiving
advanced treatments, such as immunotherapy [8,9].

1.2. Role of Immunotherapy in Lung Cancer Treatment

The advent of immunotherapy has revolutionized the landscape of lung cancer treat-
ment, offering new therapeutic options for patients and significantly affecting clinical
outcomes [10]. Immunotherapy primarily focuses on recovering the power of the immune
system to recognize and eliminate cancer cells, thereby providing a targeted and person-
alized approach to treatment [11]. Recently, immune checkpoint inhibitors (ICIs), which
modulate the immune system by targeting immune checkpoints, such as programmed cell
death protein 1 (PD-1) [12,13], programmed cell death ligand 1 (PD-L1) [14], and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) [15], have been enrolled in the standard of
care for both NSCLC and SCLC [14,16]. These novel agents have demonstrated improved
response rates, prolonged progression-free survival (PFS), and enhanced overall survival
(OS) compared with conventional chemotherapy in several clinical trials [17,18]. Despite
these promising results, not all patients respond to immunotherapy, and some may experi-
ence immune-related adverse events (irAEs) [19]. Consequently, ongoing research seeks to
identify predictive biomarkers and develop combinatorial strategies to maximize treatment
efficacy while minimizing adverse effects [20].

1.3. Importance of Delta Radiomics in Predicting Treatment Outcomes

In recent years, radiomics has emerged as a promising tool for predicting treatment
outcomes in cancer patients, including those with lung cancer [21]. Radiomics is a quantita-
tive image analysis approach that extracts high-dimensional, mineable data from medical
images, such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and
positron emission tomography (PET) scans [22]. Delta radiomics, a subtype of radiomics,
specifically focuses on changes in radiomics features over time, capturing the temporal
evolution of the tumor phenotype and treatment response [23]. By providing a noninvasive
and comprehensive analysis of tumor heterogeneity and progression, delta radiomics has
the potential to significantly impact clinical decision making in personalized medicine,
particularly in the era of immunotherapy [8,24]. Furthermore, delta radiomics may aid in
identifying patients who are likely to respond to specific treatments, monitoring treatment
efficacy, and predicting the risk of disease recurrence and metastasis [25]. Ongoing research
aims to optimize the clinical application of delta radiomics by validating its predictive
accuracy and addressing the methodological challenges related to reproducibility and
standardization proposed by the image biomarker standardization initiative (IBSI) [26].

1.4. Objectives and Hypothesis of the Meta-Analysis

In recent years, there has been a significant surge in research aimed at elucidating
the clinical implications of delta radiomic features obtained from computed tomography
(CT) images in patients with NSCLC. These studies highlight the association between delta
radiomic features and treatment response or clinical outcomes following immunotherapy.
The primary objective of this investigation was to conduct an exhaustive systematic review
of the existing body of delta radiomic research, particularly focusing on its potential to pre-
dict treatment response or outcomes in patients with NSCLC undergoing immunotherapy.
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This review entailed an assessment of the methodological quality of delta radiomic studies,
utilizing the Quality in Prognosis Studies (QUIPS [27]) tool for image-mining research and
the radiomics quality scoring (RQS [28]) tool as reference standards. Moreover, quantitative
analysis was performed to determine the effectiveness of delta radiomics in predicting
treatment response and clinical outcomes of immunotherapy in this cohort of patients.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.1.1. Databases and Search Terms

This systematic review and meta-analysis were conducted according to the PRISMA
guidelines [29]. The study has not been registered. To ensure meticulous adherence to these
guidelines, checklists corresponding to PRISMA were utilized and are presented in Supple-
mentary Table S1. A comprehensive literature search was performed using the following
electronic databases: PubMed, Embase, Web of Science, and the Cochrane Library. Articles
from 2017 January 1st to 2023 April 4th were searched. The search strategy comprised a
combination of MeSH terms and keywords pertinent to lung cancer, immunotherapy, and
delta radiomics. Example search terms include “lung cancer”, “non-small cell lung cancer”,
“NSCLC”, “immunotherapy”, “PD-1”, “PD-L1”, “nivolumab”, “pembrolizumab”, “im-
munomodulating agent”, “radiomics”, “radiomic features”, “radiomic signature”, “texture
analysis”, “delta radiomics”, “follow-up CT”, “serial imaging”, “early response”, “treat-
ment monitoring”, “longitudinal monitoring”, “machine learning”, “deep learning”, “PFS”,
“progression-free survival”, “survival”, “overall survival”, “OS”, “treatment outcome”,
“response”, and “prediction”. A tailored search strategy was devised for each database to
ensure an exhaustive and systematic review of the available literature.

2.1.2. Inclusion and Exclusion Criteria

Studies were considered for inclusion if they fulfill the following criteria: (1) original
research articles encompassing retrospective and prospective studies; (2) focus on patients
with lung cancer treated with immunotherapy; (3) evaluate the prognostic significance of
delta radiomics using CT scans to predict treatment outcomes; (4) report pertinent statistical
measures, such as hazard ratios or odds ratios, for survival or other clinical endpoints;
and (5) are published in English. The exclusion criteria comprise the following: (1) re-
view articles, conference abstracts, case reports, editorials, and supplementary materials;
(2) studies with insufficient data or ambiguous methodology; and (3) studies not centered
on the application of delta radiomics in patients with lung cancer undergoing immunother-
apy. Two independent reviewers (T.-W.W. and M.-S.H.) screened the titles. After reading
the abstracts, a full-text evaluation was carried out to determine the eligibility for inclusion.
Discrepancies between the reviewers were sent to a third reviewer (H.-Y.C.).

2.2. Data Extraction and Quality Assessment
2.2.1. Data Extraction Process

Two independent reviewers (T.-W.W. and M.-S.H.) extracted data from the included
studies using a standardized data extraction form (Supplementary Table S2), ensuring an
accurate and comprehensive collection of information. The extracted information includes
the following: (a) study characteristics such as authors, year of publication, study duration,
the country where the study was conducted, study design, and sample size; (b) patient
demographics, including age, sex, and stage of lung cancer; (c) delta radiomic features,
encompassing preprocessing, imaging modality, software, segmentations, feature extraction
methodologies, radiomic signature, and formula; (d) clinical and molecular data, including
smoking history, type of immunotherapy, biomarkers, and other relevant clinical factors;
and (e) outcome measures, namely area under the curve (AUC) of 6-month response, the
hazard ratio of PFS, and OS. Discrepancies between reviewers were resolved through
discussion or, if required, consultation with a third reviewer to ensure a consistent and
rigorous analysis.
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2.2.2. Quality Assessment

The methodological quality of the studies included in this review was meticulously
evaluated using two assessment tools: the QUIPS [27] tool and the RQS [28] tool.
The QUIPS tool, specifically designed for prognostic studies, examines the risk of bias
and applicability concerns across six domains: participant selection, study attrition, mea-
surement of prognostic factors, assessment of outcomes, control of confounding factors,
and statistical analysis, and reporting procedures [27]. Bias risk was assessed for all
six domains, while applicability concerns were addressed for the initial three domains.
In contrast, the RQS tool, developed to assess the validity and potential bias of radiomics
studies, consists of 16 components [8]. Each study was assigned a score for every RQS
component, and these scores were then aggregated to generate a total score. To ensure
consistency and accuracy in the quality assessment process, two independent reviewers
performed evaluations. If any discrepancies arose between the reviewers, they engaged in
discussion to reach a consensus or, if necessary, seek input from a third reviewer.

2.3. Definitions of 6-Month Progression-Free Survival and Overall Survival

The definitions of 6-month PFS and treatment response at the 6th month were in-
terchangeable among studies; thus, we collectively defined them as 6-month response:
whether the disease progressed within 6 months after treatment. The 6-month OS was
defined as whether the patient was alive within 6 months after treatment.

2.4. Meta-Analysis

We conducted 3 distinct meta-analyses using the studies we included. (1) The first
was a meta-analysis evaluating the predictive performance of delta radiomics models
for 6-month response to immunotherapy using a fixed-effects model. We used AUC
as the performance evaluation metric. The AUC, derived from the receiver operating
characteristic (ROC) curve, represents a graphical depiction of a model’s sensitivity against
its false-positive rate (1–specificity) at different threshold settings. When the AUC has a
value of 1, it indicates that the classification model performed perfectly, and a value of
0.5 indicates that the model is no better than random chance. When multiple AUC values
were reported in a single study, we chose the best-performing model incorporating delta
radiomics features for further inclusion in the meta-analysis. The AUC values were treated
as expected values for further analysis. Additional subgroup analyses were performed
according to traditional radiomics or deep-learning radiomics. (2) The other 2 meta-analyses
compared the PFS and OS of immunotherapy between high- and low-risk groups in the
validation datasets. We measured the performance by using the pooled hazard ratio (HR)
and a 95% confidence interval (CI) using a fixed-effects model. The hazard ratio was
transformed to a logarithmic scale. The 95% CI was used to back-calculate the standard
deviation (SD) with the corresponding T-score from a Student’s T-distribution with n−1
degrees of freedom. In instances where a single study did not provide a 95% CI or SD but
instead reported a standard error of the mean (SE), the SD was calculated by multiplying
the square root of the sample size by the SE.

2.5. Statistical Analysis

Heterogeneity assessment among studies was conducted using Cochran’s Q test,
and the I2 statistic was employed for quantification purposes. The I2 statistic gauges the
proportion of variability in effect estimates resulting from heterogeneity as opposed to
sampling error. I2 values of 25%, 50%, and 75% corresponded to low, moderate, and
high heterogeneity, respectively. A random-effects model (DerSimonian–Laird method)
was applied for the meta-analysis in the presence of significant heterogeneity (I2 > 50%).
In contrast, a fixed-effects model (the Mantel–Haenszel method) was adopted when no
significant heterogeneity was observed. Combined effects were calculated, and a two-sided
p value of 0.05 was considered indicative of statistical significance [30]. Publication bias
assessment was performed when more than 10 studies were included, as detecting funnel
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plot asymmetry requires a minimum of 10 studies [31]. All analyses were carried out using
Review Manager (RevMan) [a computer program], version 5.4, Cochrane Collaboration,
Paris, France, 2020.

3. Results
3.1. Study Selection and Characteristics
3.1.1. Flow Diagram of Study Selection

Figure 1 depicts the flow diagram that outlines the study selection process utilized
in this systematic review and meta-analysis. The initial search across PubMed (n = 48),
Embase (n = 108), and Web of Science (n = 67) generated a total of 223 studies. Follow-
ing the removal of duplicates, 176 studies remained for further evaluation. The titles
and abstracts of the mentioned articles underwent screening, leading to the exclusion
of 151 articles. Subsequently, 25 studies were evaluated for eligibility, resulting in the
exclusion of 15 articles. Seven of these articles were excluded due to their study designs
not being related to the research interest. Two articles were excluded as their outcomes
were not pertinent to the focus of this review. Additionally, one article was a conference
paper, one was a meeting abstract, and four articles were supplementary materials, all
of which were not considered for inclusion in this systematic review and meta-analysis.
In the end, 10 studies met the inclusion criteria and were incorporated into this systematic
review and meta-analysis [32–41].
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Figure 1. PRISMA flowchart of the included studies.

3.1.2. Characteristics of Included Studies

The detailed characteristics of the 10 eligible studies are summarized in Table 1.
The 10 studies enrolled a total of 1513 patients with advanced NSCLC treated with
immunotherapy [32–41]. The basic characteristics of the studies are summarized in
Tables 1 and 2. Two studies were conducted in Spain [32,37], one in Belgium [33],
four in China [33,35,36,38], one in the Netherlands [37] and two in the US [40,41]. All of
the 10 studies were retrospective. The size of the study cohort ranges from 88 to 224.
The median patient age ranged from 61 to 65 years, and the proportion of patients who
were female ranged from 9% to 67%. CT was performed before and after immunotherapy
treatment. The immunotherapy agent included anti-PD-1 and anti-PD-L1 as monotherapy
or combination therapy with the other regimen.
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Table 1. Basic characteristics of studies included in systematic review and the meta-analysis.

Author Dataset Study
Duration Country Study

Design Patients Age Sex
(Female) Smoker Stage Adeno Immunotherapy Agent Immunotherapy Regimen

Benito, F.
(2023) [32] D 2013–2021 Spain Retrospective 200 65 (58–70) 58 (29) 174 (87.9) IV 151 (75.5) Immunotherapy Monotherapy or combination

François, C.
(2022) [33]

D 2015–2020 Belgium Retrospective 121 65 (41– 85) 45 (37) 119 (98) III–IV 71 (59) Pembrolizumab, nivolumab,
atezolizumab Monotherapy

E 2015–2018 Belgium Retrospective 39 64 (44– 95) 19 (49) 32 (82) III–IV 29 (74) Pembrolizumab, nivolumab,
atezolizumab Monotherapy

Dong, X.
(2022) [34]

D 2016–2021 China Retrospective 68 NA 6 35 III–IV 23
Camrelizumab, sintilimab,
tislelizumab, nivolumab,

atezolizumab
Monotherapy or combination

V 2016–2021 China Retrospective 29 NA 3 15 III–IV 6
Camrelizumab, sintilimab,
tislelizumab, nivolumab,

atezolizumab
Monotherapy or combination

Jing, G.
(2022) [35]

D 2015–2018 China Retrospective 93 67 (31–85) 13 (14) 42 (45.2) III–IV 57 (61.3) Immunotherapy Monotherapy
E 2016–2020 China Retrospective 68 61 (27–76) 16 (23.5) 46 (67.6) III–IV 54 (79.4) Immunotherapy Monotherapy
E 2018–2020 China Retrospective 63 66 (29–86) 11 (17.5) 19 (30.2) III–IV 38 (60.3) Immunotherapy Monotherapy

Yi, Y.
(2021) [36] D 2016–2019 China Retrospective 200 NA 35 119 IIIB–IV 132 (66) Nivolumab, pembrolizumab,

atezolizumab Monotherapy

Stefano, T.
(2021) [37] D 2014–2016 NetherlandsRetrospective 152 64.4

(57.8–68.9) 64 x IV 92 (60.5) Anti-PD1 immunotherapy Monotherapy

Ying, L.
(2021) [38]

D 2018–2019 China Retrospective 112 NA 14 81 NA 61 Immunotherapy Monotherapy or combination
V 2018–2019 China Retrospective 49 NA 13 35 NA 23 Immunotherapy Monotherapy or combination

Benito, F.
(2021) [39] D 2013–2019 Spain Retrospective 88 NA NA NA NA NA Immunotherapy Monotherapy or combination

Mohammadhadi,
K. (2020) [40]

D 2012–2017 America Retrospective 112 65 (42–83) 54 (48) 96 (86) NA 80 (71) Nivolumab, pembrolizumab,
atezolizumab Monotherapy

E 2012–2017 America Retrospective 27 63 (42–83) 18 (67) 21 (78) NA 21 (78) Nivolumab, pembrolizumab,
atezolizumab Monotherapy

Laurent, D.
(2020) [41] D NA America Retrospective 92 NA NA NA III–IV 0 Nivolumab Monotherapy

D, development dataset; V, validation dataset; E, external validation dataset; NA, not applicable; Adeno, adenocarcinoma.

Table 2. Summary of details of radiomic and image analyses.

Author Segmentation VOI Clinical Feature Radiomics Formula Software Validation Classifier EndPoints

Benito, F.
(2023) [32] Manual primary

tumor

NLR, SII, Hb,
MLR, neutrophil,
liver metastasis,

histology, platelet,
smoking, PLR,

BMI, age

longitudinal
radiomics

concatenate
pretreat and

follow

NoduleX
(deep

learning)

Cross
validation

Random
forest PFS, OS

François, C.
(2022) [33] Manual primary

tumor

sex, clinical stage,
ANC, eosinophil,

and NLR
delta radiomics follow-pretreat

Radiomics
(Oncora-

diomics SA,
Belgium)

External
testing RF, CoxPH Response,

OS

Dong, X.
(2022) [34] Manual tumor

tumor anatomical
classification and
brain metastasis

delta radiomics follow-pretreat Pyradiomics Split
sample

LASSO-
Cox PFS

Jing, G.
(2022) [35] Manual primary

tumor NA delta radiomics follow-pretreat Pyradiomics External
testing SVM Response,

PFS, OS

Yi, Y.
(2021) [36] Manual primary

tumor
clinical + blood

test
longitudinal

radiomics SimTa module Pyradiomics Cross
validation SimTA Response,

PFS, OS

Stefano, T.
(2021) [37] NA whole

lung NA longitudinal
radiomics deep feature VGG-like

network
Split

sample RF PFS, OS

Ying, L.
(2021) [38] Manual primary

tumor distant metastasis delta radiomics (follow-
pretreat)/pretreat

Analysis Kit,
version 3.2.5,

GE
Healthcare

Split
sample

LASSO-
Cox Response

Benito, F.
(2021) [39] Manual primary

tumor NA delta radiomics follow-pretreat Pyradiomics External
testing

LASSO-
Cox OS

Mohammadhadi,
K. (2020) [40] Manual tumor NA delta radiomics follow-pretreat

In-house
developed

toolbox with
MATLAB

2018b

External
testing LDA Response,

OS

Laurent, D.
(2020) [41] Manual primary

tumor NA delta radiomics

size: (follow-
pretreat)/pretreat,

other:
follow-pretreat

In-house
developed

toolbox

Split
sample RF Response

ANC, absolute neutrophil count; BMI, body mass index; LASSO-Cox, least absolute shrinkage and selection operator–
Cox proportional hazards; LDA, linear discriminant analysis; MLR, monocyte to lymphocyte ratio; NA, not applicable;
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NLR, neutrophil to lymphocyte ratio; OS, overall survival; PFS, progression-free survival; PLR, platelet to
lymphocyte ratio; RF, random forest; SII, systemic inflammation index; SVM, support vector machine; VOI,
volume of interest.

3.1.3. Radiomics and Image Analysis

The details of the radiomics, type of classifier, and included clinical features are pre-
sented in Table 2. To obtain radiomics, tumor segmentation was performed manually in nine
studies [32–35,37–41]. One study calculated radiomics not from segmented tumors but from
a whole-lung image [37]. For the studies with segmented tumors, primary tumors alone
were segmented in seven studies [32,33,35,36,38,39,41], while the others defined regions
of interest [34,40]. The included radiomic parameters are listed in Supplementary Table S3.
Six studies disclosed the predictive radiomic parameters [33–35,38,40,41], while the other
four studies did not describe the details of the radiomic parameters [32,36,37,39]. Al-
though the names of the radiomic parameters and their biological interpretations dif-
fered in each study, both size-based radiomic features [33,38] and texture-based radiomic
features [33–35,38,40,41] are significant predictive parameters. Clinical features were in-
corporated into five studies [32–34,36,38]. A variety of formulas were used to calculate
the difference in radiomic features across studies, incorporating both follow-up and pre-
treatment information. The validation methods varied, with four studies using external
testing [28,30,34,35] and others employing cross-validation or split-sample techniques.
The classifier methods included random forest (RF) [32,33,36,40], LASSO-Cox [34,38,39],
SVM [35], and LDA [40]. The endpoints assessed in these studies were predominantly PFS,
OS, and treatment response [32–41].

3.2. Quality Assessment Results

The Quality in Prognosis Studies (QUIPS [27]) quality assessment of the 10 studies
is shown in Figure 2 [32–41]. The assessment of the individuals showed that there was
a low risk of bias and fair application concerns for most of the assessed criteria, except
for a higher risk of study participants in two studies and confounding measurement in
four studies (Figure 2a). A summary of the risk of bias for all studies is shown in Figure 2b.
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Table 3 presents the details of radiomic quality assessment in six domains.
The mean RQS [28] for the 10 studies was 13.5 (range: 10–26). A majority of the stud-
ies provided well-documented image acquisition protocols. Four studies fulfilled the
multiple segmentation criteria with different methods. Dong X. et al. segmented both the
tumor and region of interest [34]. Yi Y. et al. segmented the tumor with two readers [36].
Benito F. et al. segmented the tumor using an algorithm under the supervision of experi-
enced radiologists [39]. Laurent D. et al. segmented the tumor using an algorithm, and the
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results were checked by a trained chest radiologist [41]. A phantom study was not used
in all studies. Three studies acquired imaging at multiple time points [32–34]. All studies
used feature reduction methods and validation datasets. Eight of the ten studies integrated
non-radiomic features into the prediction models. Only Laurent D. et al. discussed the
biological correlates of phenotype difference in terms of radiomics [41]. A comparison to
the ‘gold standard’ was not performed in all studies. Most of the studies demonstrated
the potential clinical utility of radiomic models. Six out of ten studies performed cut-off
analysis. All studies reported discrimination statistics for further analyses. Only three stud-
ies reported calibration statistics for further resampling. Only Laurent et al. prospectively
collected the retrospective data with registration in a trial database [41]. Stefano T. et al.
performed a cost-effectiveness analysis and featured open science and data [37].

Table 3. Details of radiomics quality scores.
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Benito, F. (2023) [32] 1 0 0 1 3 3 1 0 0 1 0 2 0 0 0 0 12

François, C. (2022) [33] 1 0 0 1 3 3 1 0 0 1 0 2 0 0 0 0 12

Dong, X. (2022) [34] 1 1 0 1 3 2 1 0 0 1 1 2 1 0 0 0 14

Jing, G. (2022) [35] 0 0 0 0 3 3 0 0 0 1 1 2 0 0 0 0 10

Yi, Y. (2021) [42] 1 1 0 0 3 3 1 0 0 1 1 2 0 0 0 0 13

Stefano, T. (2021) [37] 1 0 0 0 3 3 1 0 0 1 0 2 0 0 1 1 12

Ying, L. (2021) [38] 1 0 0 0 3 3 1 0 0 1 0 2 1 0 0 0 12

Benito, F. (2021) [39] 1 1 0 0 3 3 0 0 0 0 1 2 0 0 0 0 11

Mohammadhadi, K. (2020) [40] 1 0 0 0 3 4 1 0 0 1 1 2 0 0 0 0 13

Laurent, D. (2020) [41] 1 1 0 0 3 2 1 1 0 2 1 2 2 7 0 0 26

3.3. Delta Radiomic Features and Prognostic Performance

The patients could be stratified into low- and high-risk groups through the use of
radiomic models. The first meta-analysis evaluates the predictive power of the prognosis
model at 6-month response with AUC, showing that the pooled AUC was 0.81 (95%
CI 0.76–0.86, p < 0.001) for 6-month response (six studies, Figure 3a). The I2 statistic implied
low heterogeneity among the studies (I2 = 15.1%, p = 0.58). The traditional radiomics
subgroup showed a higher pooled AUC of 0.84 (95% CI 0.77–0.92, p < 0.001) with lower
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heterogeneity among the studies (I2 = 0%); however, the deep-learning radiomics subgroup
showed a lower pooled AUC of 0.79 (95% CI 0.72–0.86, p < 0.001) with higher heterogeneity
among studies (I2 = 33%, p = 0.22).
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The second and third meta-analyses of comparisons of the immunotherapy outcomes
between the two groups showed that the pooled HR was 4.77 (95% CI 2.70–8.43, p < 0.001)
for PFS (four studies; Figure 3b) and 2.15 (95% CI 1.73–2.66, p < 0.001) for OS (five studies;
Figure 3c). The I2 statistic implied moderate and low heterogeneity among the studies
(I2 = 58%, p = 0.07; I2 = 48%, p = 0.10). Funnel plots of PFS AUC, PFS HR, and OS HR are
presented in Figure 4. The Egger’s tests for all endpoints showed a low risk of publication
bias (p = 0.1148 for PFS AUC, p = 0.1198 for PFS HR, p = 0.0885 for OS HR).
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4. Discussion
4.1. Summary of Key Findings

We conducted this meta-analysis to assess the prognostic ability of delta radiomics in
immunotherapy in NSCLCs. In this meta-analysis encompassing 10 studies, incorporated
into a qualitative synthesis, we integrated 6 studies to assess AI performance in predicting
the 6-month response to immunotherapy through serial imaging, 4 studies to forecast the
hazard ratio for PFS, and 5 studies for the hazard ratio for OS. All studies were retrospective
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in nature. Some studies showed a high risk of bias in study participation and study
confounding. The RQS was 13.5 (range: 10–26) out of 36, indicating a moderate level of
quality. The predictive parameters varied in terms of both radiomic formulas and the
inclusion of clinical features. Despite variations in materials and AI models among the
studies, all AI models effectively categorized patients undergoing immunotherapy into
low- and high-risk groups across all three aspects: 6-month response, PFS hazard ratio, and
OS hazard ratio.

4.2. Comparison with Previous Studies and Literature

To the best of our knowledge, this is the first meta-analysis evaluating the appli-
cation of delta radiomics in prognosis stratification in lung cancer treated with ICIs.
Two previous meta-analyses [43,44] have demonstrated the role of radiomics in predicting
lung cancer prognosis. Our meta-analysis further extends the landscape to delta radiomics
and multi-omic models. Compared to our previous meta-analysis about the application of
radiomics in prognosing lung cancer treated with epidermal growth factor receptor tyrosine
kinase inhibitors (EGFR-TKI) [45], the quality of the studies about immunotherapy was
better, except in the study-confounding domain. The mean RQS was 13.5 in studies about
immunotherapy and 11.67 in studies about EGFR-TKI, both indicating a moderate level
of quality. In another systemic review about tracking tumor biology with radiomics [28],
most of the studies (30 out of 41) included performed at less than 12 out of 36 (<30%) in
terms of RQS. The mean RQS was 10.66 (29.6%) in studies about predicting immunotherapy
response in NSCLC [43]. The RQS in all meta-analyses mentioned previously indicated
a moderate level of quality. Most studies missed the quality in “Phantom Study on All
Scanner”, “Detect and Discuss Biological Correlates”, “Comparison to ‘Gold Standard’”,
“Prospective Study Registered in a Trial Database”, “Cost-Effectiveness Analysis”, and
“Open Science and Data”. With the goal of discovering new biomarkers and developing
a prediction model, some RQS domains may not be applicable. However, it would be
important to discuss the biological correlates to make biomarkers interpretable. Open
science and data is another important domain, and by combining discrimination statistics
and calibration statistics, researchers could pile all the data together to train better models
and perform more analyses.

4.3. Comparison of Radiomic Features in the Enrolled Studies

While the 10 enrolled studies utilized radiomics/delta radiomics as predictive param-
eters, the radiomic features employed in the predictive models differ across these studies.
To better understand the biological interpretation of radiomic features, we categorized
radiomics into several groups based on IBSI [26]. Among the six studies that disclosed
their predictive radiomic features, a majority of these features are texture-related, such as
entropy [33,35,41], contrast [41], and grey-level uniformity [34]. The findings regarding the
importance of texture-based radiomics align with the heterogeneity observed in tumors, a
factor proven to be associated with prognosis in solid tumors [46,47]. Only in two studies
did size-based radiomic features, such as tumor volume [33] and axis length [38], enter the
final prediction model. These findings suggest that changes in texture may provide more
information than the traditional volume change proposed by the Response Evaluation Cri-
teria in Solid Tumors (RECIST) working group or its modified version for immunotherapy,
iRECIST [48]. Furthermore, radiomics that captured both size and heterogeneity were also
deemed significant. For instance, metrics such as large/small area and low/high grey-
level emphasis [34,35,38], which address both size and heterogeneity, were employed in
three studies included in our analysis.

4.4. Strength and Limitations

The most significant strength of this study is its status as the first meta-analysis
discussing the predictive power of delta radiomics. Both QUIPS and RQS assessments
were conducted in this study. However, several limitations were encountered. Firstly,
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out of the 223 studies/articles searched, only 10 studies could be included in the final
analysis, indicating that delta radiomics is a relatively novel predictive parameter. Secondly,
limited data hindered our ability to perform pooled sensitivity, pooled specificity, and
heterogeneity assessments as well as threshold effect assessment (HSROC). Therefore,
we present the funnel plots in Figure 4, which demonstrate a low risk of publication bias.
Thirdly, the varying definitions of radiomics and the inclusion of different radiomic features
in various publications made it challenging for us to conduct further analysis. Finally, the
immunotherapy agents varied across different studies, and detailed information could not
be obtained from some studies. This limitation prevents us from evaluating the individual
effects of immunotherapy.

4.5. Future Directions and Research Opportunities

To extend the application of radiomics and delta radiomics for predicting prognoses
of NSCLC patients receiving immunotherapy with checkpoint inhibitors, future studies
should focus on the subsections below.

4.5.1. External Validation

As shown in our PRISMA evaluation, nearly half of the studies are at high risk of bias
in study confounding. Using external validation and standardized protocols could ensure
the reliability and reproducibility of predicting models [49]. The validation of the model
with either data from other hospitals or temporal data is applicable [50].

4.5.2. Biomarker Interpretation

In our systemic review, a limited number of studies have interpreted the selected radiomic
parameters in prediction models, echoing similar findings in other meta-analyses [43–45] fo-
cusing on radiomics predicting lung cancer prognosis. Despite radiomics being derived
from images, understanding the significance of calculations is crucial. As the field pro-
gresses into deep-learning parameters, the challenge shifts to providing interpretative tools
like heat maps [51,52] for a comprehensive understanding.

4.5.3. Trial Registration and Quality Insurance

As the convenience of employing supercomputers for model development with ample
data increases, guarding against overfitting becomes pivotal. A registered study design
prior to analysis serves as a preventive measure against overfitting. Additionally, the
utilization of tools like the QUIPS tool [27], the QUADUS tool [53], and the RQS tool [28] is
indispensable, serving as reminders to authors about potential pitfalls and safeguarding
against the risk of bias.

4.5.4. Data Sharing

A notable limitation in our systematic review and meta-analysis is that,
although 10 studies entered the analysis phase, only 3 to 5 studies could be included
in each meta-analysis due to a lack of discrimination/calibration statistics or missing
study endpoints. This limitation could potentially be addressed with a standardized
data-sharing format. As more parameters and drugs are continually developed, lever-
aging previous knowledge becomes crucial for scientific progress. Encouragingly, both
geographic and temporal dimensions of data sharing are vital. We advocate for future
authors to engage in open databases such as The Cancer Imaging Archive [54], ensuring
compliance with institute review board standards and adherence to Findable–Accessible–
Interoperable–Reusable (FAIR) data principles. For model sharing, federated learning
emerges as a potential breakthrough in the future. Compliance to the institute review board
and Findable–Accessible–Interoperable–Reusable (FAIR) data principles [55] could be a
solution. For model sharing, federated learning could be a future breakpoint.
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5. Conclusions

Our systemic review and meta-analysis demonstrated the usefulness of delta radiomics
as a biomarker to predict the prognosis of NSCLC patients receiving immunotherapy with
checkpoint inhibitors. With models containing delta radiomics, the performance was 0.81
in terms of the AUC when predicting 6-month response, and the stratified hazard ratio
of the high-risk/low-risk groups was 4.77 for PFS and 2.15 for OS. To further optimize
the ability of the models in clinical settings, future authors could register the trial before
starting, focus on external validation and biomarker interpretation in study design, and
share the data in a standard format for further analysis.
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parameters of studies included in systematic review and the meta-analysis.
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