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Simple Summary: Sensitive and specific circulating biomarkers for the early detection of pancreatic
ductal adenocarcinoma (PDAC) are urgently needed to improve the survival outcomes of this
malignancy. Small extracellular vesicles (sEVs) from cancer cells carry biomolecules of cellular origin
that can be released into the circulation. Studies have shown that plasma sEV molecules, such as
proteins and microRNAs, are potential indicators of PDAC. However, post-translational modifications
of plasma sEV proteins, such as arginine methylation patterns, have never been examined as potential
circulating biomarkers for PDAC. Protein arginine methylation is considered a relatively stable post-
translational modification, and is a newly established molecular feature of PDAC. We thus speculated
that arginine methylation patterns in plasma sEVs are non-invasive biomarkers for pancreatic ductal
adenocarcinoma. In this report, we demonstrate that protein arginine methylation patterns are altered
in plasma sEVs derived from patients with early-stage PDAC, with these findings supporting the
development of these patterns as biomarkers for PDAC.

Abstract: Small extracellular vesicles (sEVs) contain lipids, proteins and nucleic acids, which often
resemble their cells of origin. Therefore, plasma sEVs are considered valuable resources for cancer
biomarker development. However, previous efforts have been largely focused on the level of proteins
and miRNAs in plasma sEVs, and the post-translational modifications of sEV proteins, such as
arginine methylation, have not been explored. Protein arginine methylation, a relatively stable
post-translational modification, is a newly described molecular feature of PDAC. The present study
examined arginine methylation patterns in plasma sEVs derived from patients with early-stage
PDAC (n = 23) and matched controls. By utilizing the arginine methylation-specific antibodies for
western blotting, we found that protein arginine methylation patterns in plasma sEVs are altered
in patients with early-stage PDAC. Specifically, we observed a reduction in the level of symmetric
dimethyl arginine (SDMA) in plasma sEV proteins derived from patients with early- and late-stage
PDAC. Importantly, immunoprecipitation followed by proteomics analysis identified a number of
arginine-methylated proteins exclusively present in plasma sEVs derived from patients with early-
stage PDAC. These results indicate that arginine methylation patterns in plasma sEVs are potential
indicators of PDAC, a new concept meriting further investigation.

Keywords: small extracellular vesicles; pancreatic ductal adenocarcinoma; arginine methylation;
biomarkers; symmetric dimethylarginine

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal neoplasm with a poor 5-year
overall survival rate of 11% [1]. According to the data from the National Cancer Institute’s
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Surveillance, Epidemiology, and End Results (SEER), approximately 52% of PDAC patients
are diagnosed when the cancer has already metastasized. The overall survival is much
improved for patients with localized tumors, indicating that early detection of PDAC is key
to improve its prognosis. Despite many attempts to identify biomarkers for PDAC [2–4],
there are no reliable circulating biomarkers currently available for early detection of the
disease. New strategies for PDAC biomarker development are desperately needed in order
to enable early detection and improve PDAC patient survival.

Recent advancements in cancer biology revealed that small extracellular vesicles (sEVs)
contain biomolecules of cellular origin, including lipids, proteins and nucleotides [5,6]. The
transfer of sEVs from primary tumors to the circulation has been documented in various
model systems [7,8]. We and others have demonstrated that the levels of plasma sEV
molecules, including proteins and microRNAs, are potentially indicative of early-stage
PDAC [9–15]. However, current efforts to investigate plasma sEV-based biomarkers are
focused on the level of proteins or microRNAs present in the sEVs [16,17], and the potential
of plasma sEVs for biomarker development remains to be further explored. Notably, post-
translational modifications of plasma sEV proteins, such as arginine methylation patterns,
have not previously been studied as circulating biomarkers for PDAC.

Protein arginine methylation refers to the transfer of a methyl group to the arginine
residues of proteins, which is catalyzed by protein arginine methyltransferases (PRMTs).
Type I PRMT enzymes catalyze the addition of two methyl groups to the same guanidine
nitrogen of arginine, yielding asymmetric dimethylarginine (ADMA). Type II PRMTs
mediate the addition of the second methyl group to another nitrogen of arginine, generating
symmetric dimethylarginine (SDMA). All PRMTs catalyze the transfer of one methyl
group to one of the guanidine nitrogens of arginine, producing mono-methylarginine
(MMA) [18,19]. Altered protein arginine methylation is involved in PDAC pathogenesis
and progression [19–21], and the expression level of most of the PRMTs is significantly
associated with PDAC patient survival rates [22], indicating a new molecular feature of
PDAC. Considering that cancer sEVs are released into the circulation and are detectable
using various assays [14,23], the protein arginine methylation patterns of PDAC are likely
detectable in the circulation, evoking the idea that arginine methylation patterns in plasma
sEVs possess the potential to be novel circulating biomarkers for this malignancy.

In the present study, we characterized arginine methylation patterns in plasma sEVs
using western blot and proteomics analysis. We found that arginine methylations of plasma
sEV proteins are altered in patients with early-stage PDAC compared with that in healthy
controls or patients with chronic pancreatitis, strongly supporting the development of
arginine methylation patterns in plasma sEVs as indicators of early-stage PDAC.

2. Materials and Methods
2.1. Cell Lines

Pancreatic cancer cell lines PANC-1 and MIA PaCa-2, and the pancreatic ductal cell
line hTERT-HPNE, were purchased from ATCC and cultured in the recommended cell
culture medium, supplemented with exosome-depleted FBS in a humidified environment
at 37 ◦C and 5% CO2.

2.2. Patient Plasma

Patient plasma samples were collected under an approved IRB protocol (IRB#: 5535).
Healthy plasma was provided by the Oklahoma Blood Institute. Plasma from colon cancer
patients was collected at the Stephenson Cancer Center. All other plasma samples were
obtained from the NCI-sponsored Cooperative Human Tissue Network (CHTN), which
collects patient plasma samples following standard protocols. The experiments were
performed using age- and gender-matched plasma samples among the groups, the majority
of which were also matched for their race (Supplemental Tables S1–S3).



Cancers 2024, 16, 654 3 of 16

2.3. Cellular and Plasma sEV Isolation

The isolation of cell line- and human plasma-derived sEVs was performed using
double filtration followed by total sEV isolation using a commercial kit, as we previously
described [24]. Cells were cultured in 20 mL exosome-depleted media and the media was
harvested upon 80% cell confluency. The media was centrifuged at 10,000× g, 4 ◦C to
remove cellular debris, followed by ultrafiltration using 100 kDa filters (Amico Ultra-15,
Merk Millipore Ltd., Burlington, MA, USA). The media was further subjected to filtration
using 0.22 µm and 0.1 µm PVDF filters (Ultrafree-CL, Merk Millipore Ltd., UFC40GV00
and UFC40VV00). The filtrate obtained was precipitated using the total exosome isolation
kit (Invitrogen, Carlsbad, CA, USA), overnight at 4 ◦C. The precipitate was centrifuged
at 10,000× g for 1 h at 4 ◦C and the pellet was lysed using RIPA buffer (Sigma-Aldrich,
Saint Louis, MO, USA) containing 1× protease inhibitor cocktail (Pierce protease inhibitor
A32953 and phosphatase inhibitor A32957). BCA was performed to analyze the protein
concentration for downstream analysis. For plasma sEV isolation, 100 µL of plasma was
precleared by centrifugation at 3000× g for 5 min at room temperature followed by fibrin
precipitation using 5 U/mL thrombin. The fibrin pellet was removed upon centrifugation
at 10,000× g for 5 min and the supernatant was diluted with 1× PBS in a 1:4 ratio and
subjected to filtration by 0.22 µm and 0.1 µm PVDF filters consecutively. The filtrate was
subjected to sEV precipitation using the total exosome isolation kit (Invitrogen, 4478359) as
described above.

2.4. Western Blot Analysis

A total of 50 ug of proteins per sample were loaded onto 10% SDS gel, and transferred
to the PVDF membrane at 100 V for 2 h. The membranes were blocked in 5% non-fat dry
milk in 1× TBST for 1 h at 4 ◦C and probed with primary antibodies at the dilution of
1:1000 for GAPDH (Cell signaling technology, Danvers, MA, USA, 2118S), SDMA (Cell
signaling technology, 13222S), MMA (Cell signaling, 8015S), ADMA (Cell signaling, 13522),
Complement C3 (Santa Cruz Biotechnology, Dallas, TX, USA, sc-28294) and Alpha-2-
macroglobulin (Santa Cruz Biotechnology, sc-390544) overnight, at 4 ◦C. The membranes
were imaged for 10 min (for sEV lysates) or 2 min (for cellular lysates) using the LiCOR
Odyssey Fc imaging system (Linclon, NE, USA). The protein bands detected were quantified
using Adobe Photoshop Elements 6.0 for the determination of relative band intensity.

2.5. Proteomics

Proteomic analysis was performed at the Proteomics core, University of Oklahoma
Health Sciences Center. For the identification of the proteins detected in bands I and II of
SDMA, the plasma sEV proteins were lysed using RIPA buffer containing protease inhibitor
cocktail. The lysates were separated on a 10% SDS gel and Coomassie staining of the gel
was performed. The gel was excised at the sizes corresponding to the SDMA bands I and II,
and analyzed at the Proteomics core using a Thermo Fusion Lumos Tribrid orbitrap coupled
to an ultra-performance nanoscale capillary liquid chromatography (LC/ESI/MS/MS) to
achieve unbiased qualitative and quantitative analyses. The proteomics data were further
analyzed using the tandem mass spectrometry data analysis program Sequest.

For proteomic profiling of the arginine methylated peptides in plasma sEVs, the iso-
lated plasma sEV lysates (200 µg) were added to the IP buffer (q.s. 200 uL), precleared
for 1 h at 4 ◦C with Dynabeads, incubated with the SDMA antibody (1:50 dilution, Cell
signaling, 13222S) overnight at 4 ◦C and loaded onto the Dynabeads Protein G (Invitrogen,
10004D) [25] and incubated for 20 min at room temperature. The beads were washed
5 times with IP buffer before elution of the proteins with 50 mM glycine, pH 2.8. The
eluted proteins were digested with trypsin, reduced with 10 mM dithiothreitol and alky-
lated with 10 mM iodoacetamide. The peptides were dried, resuspended and analyzed
using a Thermo Fusion Lumos Tribrid orbitrap coupled to an ultra-performance nanoscale
capillary liquid chromatography (LC/ESI/MS/MS). Raw MS data were processed by PLGS
(ProteinLynx Global Server, Waters Corp., Manchester, UK) for peptide and protein iden-
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tification. The MS/MS spectra were searched against the Uniprot Human database with
the carbamidomethylation of cysteine residues and methylation of arginine residues set as
fixed modifications.

2.6. Immunoprecipitation

A total of 200 ug of precleared protein lysates were immunoprecipitated using Dyn-
abeads Protein G (Invitrogen, 10004D) following the manufacturers’ instructions. An-
tibodies against SDMA, MMA and normal rabbit IgG (1:50 dilution) were used to im-
munoprecipitate plasma sEV proteins. The immunoprecipitated proteins were loaded
directly onto the 10% SDS gel and analyzed by western blot to detect Complement C3 and
Alpha-2-macroglobulin, or the immunoprecipitated proteins were submitted for proteomics
profiling as described above.

2.7. Bioinformatics

Arginine methylation site prediction for Complement C3 and Alpha-2-macroglobulin
was performed using the online tool PRmePRed (http://bioinfo.icgeb.res.in/PRmePRed/,
accessed on 12 May 2022). DAVID, a web-based bioinformatics tool [26], was utilized to
cluster the data obtained from proteomics.

2.8. Statistical Analysis

GraphPad Prism 10 was used to analyze the data obtained from the Western blot
quantification. One-way ANOVA, followed by Dunnett’s multiple comparisons, was
applied to determine the differences among experimental groups. p < 0.05 was considered
a significant difference.

3. Results
3.1. Detection of Protein Arginine Methylation in Cellular and sEV Lysates

For the initial part of the study, antibody validation was performed on cellular and
sEV lysates obtained from pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and the
pancreatic ductal cell line hTERT-HPNE (Figure 1A–D) using anti-SDMA and anti-MMA
antibodies. Multiple bands were detected in all of the lysates, indicating the diversity of
substrates of PRMTs in these cells. The degree of arginine methylation (both MMA and
SDMA) was lower in the lysates derived from the pancreatic ductal cell line HPNE. These
results indicate the possibility of detecting variations in the plasma sEV protein arginine
methylation between patients with PDAC and healthy controls.

3.2. SDMA Levels in Plasma sEVs Are Reduced in Patients with Early- and Late-Stage PDAC but
Remain Unchanged in Patients with Chronic Pancreatitis

We isolated plasma sEVs using double filtration followed by precipitation using a
total exosome isolation kit as previously described [24]. The isolated sEVs were examined
by western blotting to detect the exosome surface markers Flotillin-1, CD63 and CD9
and the negative marker Calnexin (Figure 1E). These results showed that the isolated
sEVs were predominately exosomes. The particle numbers and sizes of the isolated sEVs
were analyzed using nanoparticle tracking analysis (Figure 1F, Nanosight NS300 System,
Malvern Instruments, Malvern, UK).

Five groups of plasma were used in this study: plasma from patients with stage
I-II PDAC (Table 1), stage III–IV PDAC, stage I-III colon cancer, and chronic pancreatitis
(Supplemental Tables S1–S3), and gender- and age-matched healthy subjects (Table 2).
Western blot analysis was performed to assess the arginine methylation patterns of plasma
sEVs using the arginine methylation-specific antibodies MMA, SDMA, and ADMA. Three
bands (band I, II and III) were consistently detected across all samples for the three arginine
methylation-specific antibodies. (Figure 2A–C). Coomassie blue staining of the gel was
performed to serve as protein loading control.

http://bioinfo.icgeb.res.in/PRmePRed/
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derived sEV lysates. (E) Western blot detection of exosome markers (Flotillin-1, CD63 and CD9) and 
the negative marker, Calnexin, in human plasma sEVs. (F) Particle size determination of plasma 
sEVs using nanoparticle tracking analysis (NTA). 
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Figure 1. Validation of the arginine methylation antibodies and the sEVs isolated from human plasma.
(A,B) Western blot detection of SDMA and MMA in PANC-1, MIA PaCa-2 and HPNE cell lysates.
(C,D) Western blot detection of SDMA and MMA in PANC-1, MIA Paca-2 and HPNE cell derived
sEV lysates. (E) Western blot detection of exosome markers (Flotillin-1, CD63 and CD9) and the
negative marker, Calnexin, in human plasma sEVs. (F) Particle size determination of plasma sEVs
using nanoparticle tracking analysis (NTA).

Table 1. Clinicopathological features of early-stage PDAC patients included in this study (n = 23,
mean age: 60.69, median age: 60).

Plasma Sample Age Gender Race Tumor Stage a

P1 ¥,€ 74 Female CA 1A
P2 ¥,€ 43 Female CA 1B
P3 ¥,€ 50 Female CA 1B
P4 ¥,€ 39 Male CA 2A
P5 ¥,€ 55 Male CA 1B
P6 ¥,€ 59 Male CA 2A
P7 ¥,€ 36 Female CA 2A
P8 ¥,€ 76 Female CA 2A
P9 ¥,€ 67 Female CA 2A

P10 ¥,€ 55 Female CA 2A
P11 ¥,€ 80 Male CA 1A
P12 ¥,€ 69 Male CA 1A
P13 ¥,€ 52 Male CA 1B
P14 ¥,€ 50 Male CA 2A
P15 ¥,€ 69 Male CA 2A
P16 ¥,€ 60 Male CA 1B
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Table 1. Cont.

Plasma Sample Age Gender Race Tumor Stage a

P17 € 80 Female AA 1A
P18 € 60 Female AA 1B
P19 € 60 Female AA 1B
P20 € 79 Male CA 2B
P21 € 51 Male CA 1B
P22 € 63 Male CA 2B
P23 € 69 Male CA 1A

a Pathologic TNM tumor staging, (American Joint Committee on Cancer Care 8th Edition). CA, Caucasian, AA,
African American. ¥ Subjects used relating to heathy controls and colon cancer. € Subjects used relating to late
PDAC and chronic pancreatitis.

Table 2. Features of healthy subjects included in this study (n = 22, mean age: 59.22, median age: 60).

Plasma Sample Age Gender Race

H1 ¥,€ 73 Female CA
H2 ¥,€ 40 Female CA
H3 ¥,€ 50 Female CA
H4 ¥,€ 43 Male CA
H5 ¥,€ 55 Male CA
H6 ¥,€ 59 Male CA
H7 ¥,€ 60 Female CA
H8 ¥,€ 40 Female CA
H9 ¥,€ 73 Female CA

H10 ¥,€ 68 Female CA
H11¥,€ 48 Female CA
H12 ¥,€ 54 Female CA
H13 ¥,€ 80 Male CA
H14 ¥,€ 68 Male CA
H15 ¥,€ 52 Male CA
H16 ¥,€ 45 Male CA
H17 € 66 Male CA
H18 € 60 Male CA
H19 € 71 Female AA
H20 € 71 Male CA
H21 € 62 Male CA
H22 € 65 Male CA

CA, Caucasian, AA, African American, NA, not available. ¥ Subjects used relating to early PDAC and colon
cancer. € Subjects used relating to late PDAC and chronic pancreatitis.

Semi-quantification of the Western blot bands demonstrated that the intensities of
the top two bands in SDMA detection were reduced up to 40% in patients with early-
stage PDAC and colon cancer compared with that of matched healthy subjects (Figure 2E).
However, the intensities of the corresponding MMA and ADMA bands were only altered
in patients with colon cancer but not patients with early-stage PDAC (Figure 2D,F).

Similar experiments were performed using plasma samples from patients with early-
stage PDAC, late-stage PDAC and chronic pancreatitis. A significant reduction in SDMA
levels (band I and band II) in plasma sEVs was detected in patients with early-stage PDAC
and late stage PDAC compared with that of healthy subjects (Figure 3), whereas plasma sEV
SDMA levels remain unchanged in patients with chronic pancreatitis (Figure 4), indicating
different arginine methylation patterns in plasma sEVs among the groups of patients. No
significant reduction in plasma sEV MMA levels was detected in plasma sEVs from all
patient groups except those from late-stage PDAC (Figures 3 and 4).



Cancers 2024, 16, 654 7 of 16

Cancers 2024, 16, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Arginine methylation patterns in plasma sEVs derived from healthy subjects and patients 
with PDAC and colon cancer. Western blot analysis of individual plasma sEV lysates was performed 
using antibodies against MMA, SDMA and ADMA. Representative gels are shown. (A) MMA de-
tection: (left), Coomassie blue staining of the gel as loading control; (right), detection of MMA. (B) 
SDMA detection: (left), Coomassie blue staining of the gel as loading control; (right), detection of 
SDMA. (C) ADMA detection: (left), Coomassie blue staining of the gel as loading control; (right), 
detection of ADMA. (D) Quantification of the MMA band I and band II. (E) Quantification of SDMA 
band I and band II. (F) Quantification of the ADMA band I and band II. **** p < 0.0001, *** p < 0.001, 
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Table 1. Clinicopathological features of early-stage PDAC patients included in this study (n = 23, 
mean age: 60.69, median age: 60). 

Plasma Sample Age Gender Race Tumor Stage a 
P1 ¥,€ 74 Female CA 1A 
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P3 ¥,€ 50 Female CA 1B 
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Figure 2. Arginine methylation patterns in plasma sEVs derived from healthy subjects and patients
with PDAC and colon cancer. Western blot analysis of individual plasma sEV lysates was performed
using antibodies against MMA, SDMA and ADMA. Representative gels are shown. (A) MMA
detection: (left), Coomassie blue staining of the gel as loading control; (right), detection of MMA.
(B) SDMA detection: (left), Coomassie blue staining of the gel as loading control; (right), detection of
SDMA. (C) ADMA detection: (left), Coomassie blue staining of the gel as loading control; (right), de-
tection of ADMA. (D) Quantification of the MMA band I and band II. (E) Quantification of SDMA
band I and band II. (F) Quantification of the ADMA band I and band II. **** p < 0.0001, *** p < 0.001,
** p < 0.01, * p < 0.05, one-way ANOVA followed by Dunnett’s multiple comparisons (n = 16).
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Figure 3. Arginine methylation patterns in plasma sEVs derived from healthy subjects and patients
with early- and late-stage PDAC. Western blot of individual plasma sEV lysates was performed
using antibodies against MMA and SDMA. Representative gels are shown. (A) MMA and SDMA
detection in plasma sEVs derived from patients with early- and late-stage PDAC: (left), Coomassie
blue staining of the gel as loading control; (middle), detection of MMA; (right), detection of SDMA.
(B) Quantification of MMA bands I and II. (C) Quantification of SDMA bands I and II. **** p < 0.0001,
*** p < 0.001, ** p < 0.01, * p < 0.05, one-way ANOVA followed by Dunnett’s multiple comparisons
(n = 23 for early-stage PDAC and 22 for healthy subjects, n = 10 for late-stage PDAC).

3.3. Complement C3 and Alpha-2-Macroglobulin Are Major Proteins Identified in the Top Two
Bands of SDMA Detection

Since the intensities of the top two SDMA bands detected by western blot were
significantly reduced in plasma sEVs derived from patients with early-stage PDAC, we
opted to identify the proteins detected in these two SDMA bands. The two bands on the
G-250-stained gel were cut at around the molecular weight of 180 kDa for band I and
100–135 kDa for band II and submitted to proteomics analysis (Supplemental Figure S1).
A Thermo Fusion Lumos Tribrid orbitrap coupled to an ultra-performance nanoscale
capillary liquid chromatograph (LC/ESI/MS/MS) was used to achieve unbiased qualitative
and quantitative analyses. The proteomics data were further analyzed using the tandem
mass spectrometry data analysis program Sequest (Figure 5A,B). Many proteins were
detected for the two bands (Figure 5C). However, bioinformatics analysis using DAVID [26]
revealed that 70.88% of band I and 66.15% of band II were associated with sEVs (exosomes,
Supplemental Figure S1).
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Figure 4. Arginine methylation patterns in plasma sEVs derived from healthy subjects and patients
with early-stage PDAC and chronic pancreatitis (CP). Western blot of plasma sEV lysates was
performed using antibodies against MMA and SDMA. Representative gels are shown. (A) MMA
and SDMA detection: left, Coomassie blue staining of the gel as loading control; middle, detection
of MMA; right, detection of SDMA. (B) Quantification of MMA band I and II. (C) Quantification
of SDMA band I and II. * p < 0.05, ** p < 0.01, one-way ANOVA followed by Dunnett’s multiple
comparisons (n = 23 for early-stage PDAC and 22 for healthy subjects, and n = 8 for CP).

Out of the proteins identified from bands I and II, Complement C3 and Alpha-2-
macroglobulin were recognized with the highest abundance and Sequest score (Figure 5A,B).
These two proteins were abundantly present in the plasma and have been previously
detected in sEVs [27–29]. Interestingly, the expression of Complement C3 and Alpha-2-
macroglobulin was reported to be upregulated in PDAC tissues and patient plasma [30–32];
however, arginine methylation of the two proteins has never been previously described in
any tissue specimens and cell lines.

3.4. Complement C3 and Alpha-2-Macroglobulin Harbor Arginine Methylation Sites

We utilized the online tool PRmePRed (http://bioinfo.icgeb.res.in/PRmePRed/, ac-
cessed on 30 January 2024) to predict arginine methylation sites in Complement C3 and
Alpha-2-macroglobulin [33]. PRmePRed identified six possible arginine methylation sites
with a prediction score of >0.8 (Figure 6A,B) for both of the proteins, indicating the presence
of arginine methylation sites in Complement C3 and Alpha-2-macroglobulin. To experimen-
tally confirm this prediction, we immunoprecipitated plasma sEV proteins with antibodies
against SDMA or MMA and detected Complement C3 and Alpha-2-macroglobulin in the

http://bioinfo.icgeb.res.in/PRmePRed/
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immunoprecipitated fraction using western blot analysis, with the level of Complement
C3 and Alpha-2-macroglobulin being more pronounced in the SDMA precipitants (Fig-
ure 6C,D). The antibodies for Complement C3 and Alpha-2-macroglobulin detection were
validated using plasma sEVs (Supplemental Figure S2). These observations support the
presence of methylated arginine sites in these two proteins.
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Figure 5. Identification of plasma sEV proteins corresponding to SDMA band I and band II. (A) The
proteomics data obtained from digestion of gel portions corresponding to SDMA band I, and analyzed
using Sequest: (left), Sequest score of the detected proteins; (right), abundance of the proteins. (B) The
proteomics data obtained from the digestion of gel portions corresponding to SDMA band II, and
analyzed using Sequest: (left), Sequest score of the detected proteins; (right), abundance of the
proteins. (C) Proteins identified by Sequest analysis of the proteomics results.

3.5. An Unbiased Proteomic Analysis of Plasma sEV Arginine-Methylated Proteins Isolated from
Patients with Early-Stage PDAC and Matched Healthy Subjects

To further determine whether the arginine methylation patterns in plasma sEVs differ
between patients with early-stage PDAC and matched healthy subjects, we performed an
unbiased proteomic analysis of the isolated plasma sEVs. Arginine methylated proteins in
plasma sEVs were enriched by immunoprecipitation using an SDMA antibody conjugated
to magnetic beads. The immunoprecipitation with the SDMA antibody was validated using
PANC-1 cell lysates (Figure 7A) and plasma-derived sEV proteins (Figure 7B) by western
blot analysis, detecting multiple bands in the immunoprecipitated fractions. The SDMA
antibody pull-down fractions of plasma sEVs were subjected to LC/ESI/MS/MS profiling,
and arginine-methylated proteins were identified. There were 61 arginine-methylated pro-
teins detected in healthy plasma sEVs and 69 detected in PDAC plasma sEVs. Interestingly,
only 16 arginine-methylated proteins were shared by the two groups, and the rest were
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exclusively present in either healthy or PDAC plasma sEVs, indicating the strong potential
of these arginine-methylated proteins as biomarkers for the early detection of PDAC. Some
of the proteins exclusively detected in PDAC plasma sEVs are closely associated with
cancer progression (Figure 7C), thus representing the most interesting candidate proteins,
based on arginine methylation, for PDAC biomarker development.
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antibody followed by proteomics analysis. (A) Western blot validation of immunoprecipitation by
the SDMA antibody using PANC-1 cell lysates. (B) Venn-diagram showing numbers of arginine-
methylated proteins that are shared or exclusively present in plasma sEV lysates from patients with
early-stage PDAC (total 69 proteins) and healthy subjects (total 61 proteins). (C) Selected proteins
that are exclusively arginine-methylated and closely associated with human cancer.

4. Discussion

PDAC is the most lethal form of pancreatic cancer and has been predicted to become
the second leading cause of cancer related death soon [34]. Early detection is key to improv-
ing PDAC patient survival [1]. Plasma CA19-9 (carbohydrate antigen) has been frequently
used in the clinic to detect PDAC, but its sensitivity and specificity remains unsatisfac-
tory [35]. There is an urgent need for the development of robust circulating biomarkers for
PDAC. The results from the present study demonstrate that arginine methylation patterns
in plasma sEVs are altered in patients with early-stage PDAC, indicating for the first time
that some of the arginine-methylated proteins in the plasma sEVs are potential biomarkers
for the early detection of PDAC. Furthermore, while plasma sEVs have been explored
for biomarker development for human cancers [10,14,15,23,36], arginine methylation pat-
terns in plasma sEVs have never been previously characterized in any cancer types. Thus,
our findings may have general implications and open up a new avenue in biomarker
development for various malignancies.

Protein methylation is one of the most abundant post-translational modifications
observed experimentally [37]. It is considered a relatively stable post-translational modifi-
cation [18,38], and may serve as a tag of the protein, favoring its application for biomarker
development. Characterization of arginine methylation using proteomics was a challenge
in the past [39,40]. However, with the development of antibodies specific to protein argi-
nine methylation, the enrichment of arginine-methylated peptides and detection of protein
arginine methylation have become possible [39]. Biochemical methods for the detection of
arginine methylation are well established [41–45], including antibody-based and chemical-
based approaches to analyze arginine-methylated peptides in cells [43], tissues [46] and
human plasma [45]. In the present study, we utilized antibodies against SDMA, MMA or
ADMA to detect arginine methylation in plasma sEVs by western blot or to enrich arginine-
methylated peptides from plasma sEVs by immunoprecipitation for proteomic analysis.
Two key findings are presented: first, we demonstrate that the SDMA level, specifically
bands I and II, was significantly lower in plasma sEVs derived from patients with early-
stage PDAC compared with the SDMA level in plasma sEVs from matched healthy subjects
and patients with chronic pancreatitis. Although the plasma sEV SDMA level was also
lower in patients with colon cancer, the difference between patients with colon cancer and
those with PDAC was noted in their plasma sEV ADMA and MMA levels (Figure 2D,F),
suggesting a unique arginine methylation pattern in PDAC plasma sEVs. Second, using
an unbiased proteomic approach, we observed that a group of arginine-methylated pro-
teins are exclusively present in plasma sEVs derived from patients with early-stage PDAC
compared with those from matched healthy subjects. The exclusive presence of some of
the arginine methylated proteins in PDAC plasma sEVs strongly supports the notion that
arginine methylation patterns in plasma sEVs are indicators of early-stage PDAC. Among
the 54 proteins exclusively present in plasma sEVs from patients with early-stage PDAC,
8 proteins were noted for their close association with human cancer (Figure 7C), and this
list of proteins will be prioritized in our future efforts in developing circulating biomarkers
for the early detection of PDAC. Furthermore, by expanding our sample size, a model of
arginine methylation profiling in plasma sEVs could be established to predict the presence
of early-stage PDAC.

Another interesting observation from this study is that we identified Complement C3
and Alpha-2-macroglobulin to represent the major proteins detected in bands I and II of
SDMA in plasma sEVs. Both of the proteins are abundant in plasma and have been detected
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in sEVs derived from human cells [27–29]. Their levels in the circulation have been reported
to be potential diagnostic markers for PDAC [31,32,47]. However, the arginine methylation
status of these proteins has never been described. Using the PRmePRed online tool [33],
we were able to identify highly probable arginine methylation sites in Complement C3 and
Alpha-2-macroglobulin proteins. This was further confirmed by the immunoprecipitation
of plasma sEV lysates with an SDMA or MMA antibody and detection of Complement
C3 and Alpha-2-macroglobulin in the immunoprecipitated fractions. Our results indicate
that not only are the levels of these two proteins in the circulation potential biomarkers for
PDAC as previously reported [31,32,47], their arginine methylation status in plasma sEVs
is also likely indicative of early-stage PDAC, which merits further investigation.

The limitations of the present study include a relatively small sample size and its retro-
spective nature. We envision that large cohort studies, both retrospective and prospective,
are needed to verify our findings and establish arginine methylation patterns in plasma
sEVs as biomarkers for early detection of PDAC.

5. Conclusions

In summary, the present study has demonstrated the alterations of arginine methyla-
tion patterns in plasma sEVs derived from patients with early-stage PDAC and identified
arginine-methylated proteins that are exclusively present in PDAC plasma sEVs. These
findings support the view that arginine methylation patterns in plasma sEVs are poten-
tial circulating biomarkers for the early detection of PDAC, a concept that has not been
previously examined.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16030654/s1, Supplementary Table S1: Clinicopathological
features of the late-stage PDAC patients (n = 10, mean age: 66.7, median age: 68); Supplementary
Table S2: Clinicopathological features of the colon cancer patients (n = 16, mean age: 59.75, median
age: 58.5); Supplementary Table S3: Clinicopathological features of the chronic pancreatitis patients
(n = 8, mean age: 53.75, median age: 52); Supplemental Figure S1: Numbers of exosome-associated
proteins detected by proteomic analysis of the Coomassie-stained SDMA bands I and II of the
plasma sEV lysates. (A) Excision of the gel corresponding to SDMA bands I and II for proteomics.
(B) DAVID bioinformatics analysis of the proteins identified by proteomics; Supplemental Figure S2:
Detection of complement C3 and Alpha-2-macroglobulin in plasma sEV lysates. (A) Western blot
detection of complement C3 in plasma sEV lysates from patients with colon cancer and early-stage
PDAC, and healthy controls. (B) Western blot detection of Alpha-2-macroglobulin in plasma sEV
lysates from patients with colon cancer and early-stage PDAC, and healthy controls; Supplemental
Materials_Uncropped blots: uncropped western blots for the data presented in this study.
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