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Simple Summary: A promising approach to combat aggressive prostate cancer involves androgen
receptor degraders, which break down the crucial protein driving cancer progression. In contrast
to traditional drugs, these degraders offer a potential solution to drug resistance. Methods like
PROTACs have shown promise in reducing androgen receptor levels in cells and clinical benefits
in patients. Six PROTACs and two other degraders have entered early clinical trials for potential
treatment. While progress has been made in understanding these degraders, it is essential to stay
updated on emerging developments. This article provides an overview of advancements in this field
since 2020.

Abstract: Induced protein degradation has emerged as an innovative drug discovery approach,
complementary to the classical method of suppressing protein function. The androgen receptor
signaling pathway has been identified as the primary driving force in the development and pro-
gression of lethal castration-resistant prostate cancer. Since androgen receptor degraders function
differently from androgen receptor antagonists, they hold the promise to overcome the drug resistance
challenges faced by current therapeutics. Proteolysis-targeting chimeras (PROTACs), monomeric
degraders, hydrophobic tagging, molecular glues, and autophagic degradation have demonstrated
their capability in downregulating intracellular androgen receptor concentrations. The potential
of these androgen receptor degraders to treat castration-resistant prostate cancer is substantiated
by the advancement of six PROTACs and two monomeric androgen receptor degraders into phase
I or II clinical trials. Although the chemical structures, in vitro and in vivo data, and degradation
mechanisms of androgen receptor degraders have been reviewed, it is crucial to stay updated on
recent advances in this field as novel androgen receptor degraders and new strategies continue to
emerge. This review thus provides insight into recent advancements in this paradigm, offering an
overview of the progress made since 2020.

Keywords: androgen receptor; castration-resistant prostate cancer; protein degradation; PROTACs;
hydrophobic tag; molecular glue; ubiquitin proteosome system; autophagy

1. Introduction
1.1. Androgen Receptor and Prostate Cancer

The androgen receptor (AR), NR3C4 (nuclear receptor subfamily 3, group C, gene 4), is
an androgen-dependent transcription factor with four functional domains: the ligand bind-
ing domain, DNA binding domain, hinge region, and N-terminal domain. Two endogenous
androgens, testosterone, and its more potent metabolite, 5α-dihydrotestosterone, bind to
the ligand binding domain and initiate the transcriptional pathway. This transcriptional
signal pathway has been established as the primary driving force behind prostate cancer
cell growth and metathesis [1]. Specifically, heat shock proteins, as chaperone proteins,
stabilize the AR in the cytoplasm. The binding of 5α-dihydrotestosterone to the ligand
binding pocket of the AR alters its conformation, causing the dissociation of chaperone
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proteins from the AR and exposing the AR to the nuclear localization signal. This process
induces the interaction between the N and C termini of the AR, enabling the binding of
AR dimers to importin-α for translocation into the nucleus [2]. Upon entering the nucleus,
AR dimers bind to androgen response elements located in the promoter regions of target
genes, such as prostate-specific antigen and transmembrane protease serine 2. This binding
promotes transcription, leading to responses such as cell proliferation and survival. The
search for the first generation of AR antagonists began in the late 1960s and early 1970s,
leading to the FDA approval of three first-generation AR antagonists: flutamide, nilutamide,
and bicalutamide for prostate cancer treatment. This validated the concept that blocking
the function of the AR could suppress prostate cancer cell growth [1]. The AR signaling
pathway remains a pivotal drug target for the treatment of both hormone-sensitive and
castration-resistant prostate cancer. This is further affirmed by the FDA’s recent approval
of three second-generation AR antagonists for patients at different stages of prostate cancer
since 2012 [3–5].

The benefits and limitations of AR antagonists as therapeutic strategies for prostate
cancer were overviewed in our earlier review article [6]. The intrinsic and acquired re-
sistance to AR antagonists posed the main concern of this group of therapeutics. One
of the most established mechanisms behind the resistance to the current FDA-approved
second-generation AR antagonists is the reactivation of AR signaling, driven by factors
documented in the literature [7–13]. These factors include:

• AR overexpression.
• AR gene amplification.
• Point mutations in the ligand-binding domain of the AR, creating a larger androgen

binding pocket and converting AR antagonists to agonists.
• AR splice variants (e.g., AR-V7) lacking the ligand-binding domain. These variants

are constitutively active and activate downstream transcription independently of
ligands. This explains the limited efficacy of current FDA-approved AR antagonists
for castration-resistant prostate cancer patients with AR splice variances [1,14–16].

• The hypersensitive pathway [17].
• The promiscuous pathway [17].
• Coactivators and corepressors [17].
• The outlaw pathway [17].

Some non-AR pathways, such as the AR bypass mechanism [18] and androgen-
independent lurker cells [19], also contribute to the therapy resistance of prostate cancer.

1.2. Targeting Proteins for Degradation

Targeting proteins for degradation emerges as a novel and innovative therapeutic
modality, aiming to completely remove target proteins from inside and outside cells rather
than merely suppressing their functions [20]. The first application of induced protein degra-
dation in drug discovery dates back to the development of heat shock protein 90 (HSP90)
inhibitors as anticancer agents in 1990. The reported HSP inhibitors have been revealed
to bind to the ATP-binding domain, altering the HSP90 chaperone cyclin and resulting in
the degradation of HSP90 client proteins. This therapeutic approach gained momentum
with the advent of proteolysis-targeting chimeras (PROTACs) and molecular glues, later
receiving an endorsement from the macroautophagic and endolysosomal protein degrada-
tion pathways [20]. Both PROTACs and molecular glues hijack the ubiquitin-proteasome
system, an indispensable pathway for the degradation of damaged or misfolded proteins.

1.3. Targeting AR for Degradation

Targeting AR for degradation emerges as a complementary approach to AR antago-
nists, offering potential benefits outlined below:

• It degrades the AR rather than antagonizes its function, overcoming resistance caused
by the reactivation of AR signaling through factors discussed in Section 1.1. This is
evidenced by the superior performance of the enzalutamide-based PROTAC (ARCC-4)



Cancers 2024, 16, 663 3 of 19

over enzalutamide in prostate tumor cells with point mutations (F876L and T877A) in
the AR [21].

• It is “event-driven” rather than “occupancy-driven” in AR antagonists, potentially
enhancing therapeutic potency while reducing systemic drug exposure.

• It can be synergistic with AR antagonists.

The chemical structures, structure–activity relationships, and in vivo and in vitro data
of AR degraders have been extensively reviewed in the literature [22–24]. This article
provides an overview of strategies for degrading the AR developed since 2020, highlighting
the current trends in this rapidly growing research field. Section 2 includes information on
AR degradation under physiological conditions, offering comparisons and insights into
diverse induced AR degradation. Notably, the classification systems for AR degraders have
been inconsistent and confusing, particularly for monomeric degraders. In this review, AR
degraders are classified below based on degradation mechanisms:

• Bifunctional AR PROTACs, which hijack the ubiquitin–proteasome system (Section 3).
• Hydrophobic tagged chimeric degraders, which simulate misfolded AR (Section 4).
• Monomeric AR degraders, which destabilize the AR via diverse mechanisms (Section 5).
• Molecular glues (Section 6).
• Autophagic degradation of AR (Section 7).

2. AR Degradation Pathways under the Physiological Conditions

As illustrated in Figure 1, the AR undergoes degradation either via the ubiquitin–
proteasome system or via PTEN-caspase-3 to maintain appropriate levels under physiolog-
ical conditions [25]. The ubiquitin–proteasome pathway plays a crucial role in maintaining
protein and cellular homeostasis by covalently attaching ubiquitin molecules to a target pro-
tein, facilitating its degradation by 26S proteasome. This process involves the activation of
ubiquitin by the E1 ubiquitin-activating enzyme. The activated ubiquitin is then transferred
over to the ubiquitin-conjugating enzyme E2. From the E2 enzyme, ubiquitin is transferred
over to an E3 ligase, which is then transferred over to the target protein. The protein tagged
with ubiquitin is recognized and degraded by 26S proteasome. About 600 enzymes belong
to the E3 ligase family, but the most established E3 ligases include Skp1-Cullin-F box (SCF),
inhibitor of apoptosis protein (IAP), mouse double minute 2 homolog (MDM2), cereblon
(CRBN), and von Hippel–Lindau (VHL) [26]. MDM2 E3 ligase is involved in systematic AR
degradation by the ubiquitin-proteasome pathway. Phosphorylation of AR at Ser213 and
Ser791 through the phosphatidylinositol-3-hydroxy kinase (PI3K)/Akt pathway leads to the
destruction sequence for recognition by MDM2 E3 ligase. The AR PEST sequence is in the
hinge domain, which is enriched in proline, glutamic acid, serine, and threonine and serves
as the UPS degradation motif [27,28]. MDM2 forms a complex with the AR by interacting
with its N-terminal domain and DNA binding domain, leading to AR ubiquitination and
subsequent degradation mediated by 26S proteasome [29].

Alternatively, independent of the 26S proteasome, AR degradation can be facilitated by
the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome
10) through the caspase-3-dependent pathway (Figure 1). The interaction between the AR
DNA-binding domain and the PTEN phosphatase domain exposes the AR active site for
recognition by caspase-3. PTEN-induced caspase-3 activation leads to the cleavage and
degradation of the AR into three fragments in the cytoplasm [25,30].
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3. AR PROTACs

The concept of proteolysis-targeting chimera (PROTAC) was initially documented
by Professor Deshaires at the California Institute of Technology and Professor Crews at
Yale University in 2001 in their joint paper in the Proceedings of the National Academy of
Sciences [31]. Since then, PROTACs have emerged as an innovative strategy for selectively
degrading target proteins, representing the most defined approach to induced protein
degradation. Various preclinical and clinical data have validated PROTAC’s capability to
combat resistance mechanisms. In contrast to occupancy-driven pharmacology, PROTACs
utilize an event-driven mode of action, down-regulating protein levels by hijacking the
ubiquitin–proteasome system. Generally, a PROTAC is a heterobifunctional molecule
consisting of three parts: a targeted protein ligand, an E3 ubiquitin ligase ligand, and an
appropriate linker connecting the two. A PROTAC molecule forms a ternary complex with
the target protein and an E3 ligase, creating proximity between the target protein and the
ubiquitin–proteasome system, ultimately degrading the target protein [32]. One key aspect
of PROTACs is that the binding site of the target protein does not need to be functional.
Additionally, in contrast to small molecule inhibitors and antagonists, temporary binding is
sufficient for PROTACs to induce degradation due to the low correlation between binding
affinity and degradation capability [33].

As mentioned in Section 1.3, degrading the AR has recently gained interest in the
search for treating castration-resistant prostate cancer. Furthermore, recent reports indi-
cate that castration-resistant prostate cancer cells exhibit high AR protein stability, thus
compromising the efficacy of AR antagonists [34]. This form of drug resistance is likely
to be overcome by AR degraders. The most clinically advanced strategy for degrading
the AR is the use of heterobifunctional PROTACs to bring the AR close to an E3 ligase
for ubiquitination. The AR was chosen for PROTAC investigation from the outset due
to its well-characterized association with androgens and its role in the development and
progression of prostate cancer [35]. Multiple PROTACs have demonstrated this, despite
their unique differences in mechanisms. Figure 2 illustrates the general mechanism of
AR degradation catalyzed by PROTACs by hijacking the ubiquitin-proteasome system.
Specifically, AR degradation begins when a PROTAC promotes the formation of a ternary
complex between the E3 ligase and the AR. Once the ternary complex is formed, a chain of
ubiquitin molecules is gradually transferred to the N-terminal of the AR, marking it for
degradation by the 26S proteasome.
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AR PROTACs. Additionally, four other AR PROTACs (three for metastatic castration-
resistant prostate cancer, one for androgenic alopecia and acne) have entered phase I 
clinical trials [22,37]. Given the substantial interest from both academia and industry, it is 
anticipated that more AR PROTACs will undergo clinical studies. These promising results 
stem from meticulous empirical structure–activity relationship investigations. Hence, 
having crystal structures of AR–PROTAC–Ligase ternary complexes is highly desirable 
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Figure 2. Mechanism of action behind AR degradation by PROTACs by hijacking the ubiquitin–
proteasome system. The PROTAC forces a ternary complex between the AR and the E3 ligase; von
Hippel–Lindau (VHL) E3 ligase is used as an E3 ligase example. E1 activates ubiquitin through the
adenylation of ubiquitin’s C-terminus, resulting in the linkage via a thioester bond to the catalytic
cysteine residue on the E1 enzyme. Subsequently, ubiquitin is transferred from E1 to the ubiquitin-
conjugating enzyme (E2) through transthioesterification. E2 then binds to VHL’s E2-ubiquitin-
binding domain for the transfer of ubiquitin to the N-terminal of the AR via the magic thioester
exchange reaction.

Several AR PROTACs have been identified. Their antiproliferative potency (IC50
values) against AR-positive prostate cancer cells, along with the degradability of represen-
tative androgen receptor PROTACs, have been summarized [36]. Two AR PROTACs have
advanced to phase II clinical trials, and other four have entered phase I clinical trials since
2020. During this period, a significant focus among scientists was on developing orally
active PROTACs by utilizing CRBN binders in combination with shorter and rigid linkers.
The advances of AR PROTACs in clinical studies, AR binders, E3 ligase binders, and linkers
since 2020 are overviewed below.

3.1. Advances in Clinical Studies

As of now, only ARV-110 and ARV-766 have advanced to phase II clinical trials as
AR PROTACs. Additionally, four other AR PROTACs (three for metastatic castration-
resistant prostate cancer, one for androgenic alopecia and acne) have entered phase I
clinical trials [22,37]. Given the substantial interest from both academia and industry, it is
anticipated that more AR PROTACs will undergo clinical studies. These promising results
stem from meticulous empirical structure–activity relationship investigations. Hence,
having crystal structures of AR–PROTAC–Ligase ternary complexes is highly desirable for
providing rational guidance in future PROTAC design [37].
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3.1.1. ARV-110 (Bavdegalutamide)

ARV-110 (bavdegalutamide), developed by Arvinas, stands as one of the most pio-
neering PROTACs to enter clinic trials in 2019 and is currently the most advanced PROTAC
in phase II clinical trials for castration-resistant prostate cancer. Its chemical structure
(Figure 3) was disclosed on 11 April 2021 at the annual American Association for Cancer
Research meeting. ARV-110 is an orally active AR PROTAC, characterized by an aryloxy
cyclohexane AR antagonist, a short and rigid piperidine–piperazine linker, and a cereblon
E3 ligase ligand (Figure 3). According to Ian Taylor, Avinas’s Chief Scientific Officer, this
clinically advanced AR PROTAC features a shorter and more rigid linker compared with
those targeting other proteins and early academic versions. The phase I trial (NCT03888612)
results suggested that ARV-110 is well-tolerated by the participants at doses up to 420 mg,
effectively degrading AR in prostate tumors and suppressing tumor growth. Consequently,
its phase II clinical study (ARDENT) commenced in October 2020 at a dose of 420 mg [38].
The phase II clinical results were presented at the 2022 American Society of Clinical Oncol-
ogy Genitourinary Cancer Symposium. ARV-110 consistently demonstrates its antitumor
efficacy among prostate cancer patients with T878X and H875Y mutations [39]. Approxi-
mately 50% of patients with these mutations treated with ARV-110 experienced a significant
reduction in prostate-specific antigen levels, an unexpected result since ARV-110 was not
initially designed to degrade mutated ARs.
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Additionally, a phase I clinical trial (NCT05177042) commenced on 1 February 2022 to
evaluate the safety, tolerability, and pharmacokinetics of the combination of ARV-110 plus
abiraterone in participants with metastatic prostate cancer. As of now, no results from this
trial have been disclosed.

3.1.2. CC-94676 (AR-LDD, NCT04428788)

The chemical structure of CC-94676 has not been disclosed. Initially developed by
Celgene, Inc. and later by Bristol Myers Squibb, it entered phase I clinical trials on 22 June
2020, with the objective of evaluating safety, tolerability, pharmacokinetics, and pharma-
codynamics in patients with metastatic castration-resistant prostate cancer. As of now, no
study results have been published.

3.1.3. ARV-766 (NCT05067140)

The chemical structure of ARV-766 (Luxdegalutamide), sponsored by Arvinas Inc.,
was disclosed at the American Association for Cancer Research (AACR) Annual Meeting on
14–19 April 2023 (Poster #AACR23). Enantiopure ARV-766, designed for optimal genotype
coverage, was developed by optimizing the AR ligand and E3 ligase ligand of ARV-110
(Figure 4). Preclinical experimental data demonstrated that ARV-766 robustly suppresses
tumor growth even under high concentrations of androgen. Clinical studies of ARV-766, as
a monotherapy or in combination with abiraterone, have recently progressed from phase I
to phase II in patients with metastatic castration-resistant prostate cancer.
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3.1.4. HP-518 (NCT05252364)

The chemical structure of HP-518 has not been disclosed. As an orally bioavailable
PROTAC, it entered a phase I clinical trial in 2022 in Australia for patients with metastatic
castration-resistant prostate cancer. Hinova Pharmaceuticals, Inc. is the sponsoring company.

3.1.5. AC176 (AC0176) (NCT05241613)

AC176-001 is another orally active AR degrader. AC176-001 (the chemical struc-
ture has not been disclosed yet) entered a phase I clinical trial in 2022 for participants
with metastatic castration-resistant prostate cancer who have received at least two prior
treatments (NCT05241613). This clinical study aims to assess safety, tolerability, phar-
macokinetic, pharmacodynamic, and preliminary anti-tumor efficacy in patients. The
sponsoring company is Accutar Biotechnology, Inc.

3.1.6. GT-20029 (NCT05428449)

The chemical structure of GT-20029 is undisclosed. Sponsored by Suzhou Kintor
Pharmaceutical, Inc., it entered a phase I clinical trial in 2022 for the potential treatment of
acne vulgaris and androgenetic alopecia.

3.2. Advances in AR Binders

Even though numerous AR PROTACs have been investigated both preclinically and
clinically, only a few AR agonists and antagonists have been used in the reported PROTACs.
The following groups of compounds have been used as AR ligands in PROTACs:

• Endogenous androgen as the ligand binding domain binder: dihydrotestosterone.
This AR agonist exhibits very high binding affinity to the ligand binding domain, and
its hydroxyl group at C-17 makes it easy to introduce various linkers via an ester bond
(Figure 5) [40–42].

• Nonsteroidal AR agonists: S-6 and derivatives. This group of agonists exhibits greater
anabolic activity than androgenic activity. Figure 6 illustrates that the linker is easily
incorporated into the N-acetyl group [43].

• Nonsteroidal AR antagonists binding to the ligand binding domain: enzalutamide
(Figure 7) and aryloxy tetramethylcyclobutane (Figure 8). Enzalutamide is a currently
marketed AR antagonist for castration-resistant prostate cancer. Enzalutamide-based
PROTACs, such as ARCC-4, exemplify this class [21]. Aryloxy tetramethylcyclobutane
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was identified by Pfizer as a highly potent AR antagonist using cell-based high-
throughput screening [44]. In addition to serving as the AR recruiter for ARC-766
developed by Arvinas, it has been successfully incorporated into a group of AR
PROTACs, such as ARD-69, by Dr. Wang’s research group [45]. Aryloxy cyclohexane
(Figure 3) and its amine derivative were used as AR binders in ARV-110 and ARD-
2585 [46], which are two orally active PROTACs with exceptional potency. Technically,
mutants and variants lacking the LBD render this group of AR degraders ineffective.
However, treatment with ARV-110 led to about a 50% decrease in prostate-specific
antigen in the treated patients with two mutations on the LBD.

• AR DBD binders: VPC-14228. This group of AR ligands has less specificity for the
AR due to the highly conserved DBD structure found in all nuclear receptors. MTX-
23 is a reported AR PROTAC with VPC-14228 as an AR ligand that binds to DBD,
enabling the degradation of ARV7 (Figure 9) [47]. The surface-exposed region on
the AR DBD has been identified as an alternative druggable pocket for potential AR
antagonists. VPC-14228 binds to this pocket through hydrogen bonding between its
morpholine group and Tyr594, hydrophobic interactions between the thiazole ring
and Val582/Phe583, and hydrophobic interactions between the phenyl ring and the
aliphatic side chains of Arg609 and Lys610 [47].

• AR antagonists binding to the N-terminal domain: The intrinsic disorder of the N-
terminal domain poses a challenge to the rational design of N-terminal domain binders.
The well-established AR N-terminal antagonist EPI-506 has been successfully used to
create an AR PROTAC BWA-522 and derivatives (Figure 10) [48]. EPI-506 functions as a
prodrug of EPI-002. Non-covalent interactions between EPI-002 and the transactivation
unit 5 (Tau-5) domain of the N-terminal domain have been identified using NMR
spectroscopy. This interaction involves a subset of three partially helical regions,
namely, the R1 region (residues S341–G371), R2 region (residues L391–G414), and R3
(residues S426–G446) [49]. All-atom molecular dynamics computer simulations further
elucidate that EPI-002 binds specifically to the R2 and R3 regions of Tau-5. Notably,
amino acid residues W397 and W433 play the most significant role in mediating the
interaction between EPI-002 and the R2 and R3 regions of Tau-5 [50].
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Since 2020, the spotlight has been on specific AR ligands in the development of
AR PROTACs. The primary focuses are (i) Nonsteroidal AR antagonists binding to the
ligand binding domain. Notably, aryloxy cyclohexane (depicted in Figure 3) and its amine
derivative, featured in ARV-110 and ARD-2585 [46], have emerged as key components in
the synthesis of AR PROTACs post-2020. (ii)AR antagonists binding to the DNA binding
domain (Figure 9). (iii) AR antagonists binding to the N-terminal domain (Figure 10).
Developing novel PROTACs with an N-terminal or DNA-binding domain AR binder has
been proposed to serve as a promising strategy to fight resistance to the current FDA-
approved AR antagonists.

3.3. Advandes in E3 Ligase Binders

Even though over 600 E3 ligases have been predicted, only a few of them possess
fully characterized functions [51]. Four groups of E3 ligases that have most frequently
been hijacked by PROTACs to induce protein degradation are von Hippel–Lindau (VHL),
cereblon (CRBN), MDM2, and IAP [52]. It has been demonstrated that hijacking the
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ubiquitin–proteosome system via different E3 ligases provided a significantly different
degree of protein degradation, even with an identical AR ligand and linker [33].

3.3.1. MDM2 and IAP Binders

So far, the only MDM2-based AR PROTAC was reported by the Crews research group
at Yale University back in 2008 [43]. This early PROTAC uses MDM2 antagonist nutlin as
an E3 ligase ligand to recruit MDM2 E3 ligase, which degrades the AR at 10 µM in HeLa
cells transiently expressing the AR. In addition to the low potency of this MDM2-based
PROTAC, interpreting nutlin PROTAC activity is challenging when nutlin is used as the E3
recruiting portion of the chimera. This is because AR is also a direct substrate of MDM2,
and nutlin itself is known to induce the ubiquitination of AR in cancer cells [26]. Therefore,
no other MDM2-based AR PROTAC has been reported since then.

Inhibitors of apoptosis protein (IAP) have been used as E3 ligase binders in three
AR PROTACs [53,54]. IAP-based PROTACs are also known as IAP-based protein erasers
(SNIPERs). SNIPER-13 [53] and SNIPER(AR)-51 [54] have displayed AR degradation
activity at micromolar concentrations. Since this group of PROTACs, using IAP inhibitors
as warheads to recruit IAP protein, does not demonstrate sufficient potency, IAP-based AR
PROTACs have not been further pursued since 2020.

3.3.2. VHL Binders

The recruitment of von Hippel–Lindau (VHL) for AR degradation was the most
explored approach during the period of 2018–2021, culminating in several promising
AR PROTACs with a VHL ligand warhead. ARCC-4 [21], ARD-69 [45], ARD-61 [55],
ARD-266 [56], and A031 [57] are excellent representatives. However, none of them has
advanced to clinical studies, and significantly fewer VHL-based PROTACs have been
reported since 2022. This is mainly because the VHL ligands in the reported AR PROTACs
are peptidomimetics with a molecular weight greater than 400, posing poor physiochemical
and pharmacokinetic properties [55].

3.3.3. CRBN Binders

The mechanism of thalidomide teratogenicity was unveiled when it was identified as
a ligand for the E3 ligase cereblon (CRBN) in 2010 [58]. Thalidomide and its analogs (e.g.,
phthalimides or IMiDs) have been used in PROTACs to induce the degradation of ARs, as
exemplified by two of the most clinically advanced AR degraders (ARV-110 and ARV-766).
Encouraged by the promising clinical data for ARV-110 and the disclosure of the chemical
structures of ARV-110 and ARV-766, CRBN binders emerged as the most favorable E3 ligase
binders in AR PROTACs since 2020.

Commonly used CRBN ligands include thalidomide and TD-106. These E3 ligase
recruiters are superior to VHL E3 ligase ligands due to their smaller molecular weight
(~250) and more drug-like properties. So far, only CRBN-based AR PROTACs demonstrate
satisfactory oral bioavailability. The meta and para positions in the phenyl ring of these
ligands have been used as linker attaching points. In addition to ARV-110 and ARV-766, the
representative PROTACs with a CRBN recruiter that have been reported since 2020 include
TD-802 [59], PAP508 [60], ARD-2128 [61], ARD-2585 [46], ARD-2051 [62], BWA-522 [48],
enzalutamide-based PROTAC [63], and S-6-Based PROTAC [64]. However, PROTACs with
CRBN binders lack sufficient selectivity and degrade off-target similar to G1 to S phase
transition protein 1 [52,65].

3.3.4. Emerging E2 Ligase Binders

One recent advancement involves recruiting E2 ubiquitin-conjugating enzymes, a core
component of the ubiquitin–proteasome system machinery, using an appropriate ligand
in PROTACs for AR degradation [66]. It is highlighted that covalent chemoproteomic
approaches can be used to quickly identify allosteric covalent ligands as ligase binders
in PROTACs.
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3.4. Advances in Linkers

The length and composition of a PROTAC influence not only its pharmacokinetic but
also its pharmacodynamic properties. However, the current consensus is that the linker
length and composition must be optimized individually for each PROTAC [67]. This adds
to the complexity of PROTAC design, as it is challenging to determine which combina-
tion of target protein, linker, and E3 ligase will provide optimal PROTAC degradation.
Although there is no agreed-upon strategy for the design of PROTAC linkers, alkyl or
PEG (polyethylene glycol) chain linkers are commonly used in PROTACs [67]. Historically,
around 65% of PROTACs consist of either a PEG or an alkyl chain linker [33,67]. Other
motifs represented in PROTAC linkers include triazoles, piperidines, and piperazines [67].
The prevalence of PEG and alkyl linkers is attributed to their flexibility, easier synthesis, and
the ability to easily manipulate the length to optimize PROTAC behavior. In determining
the minimum linear length for PROTACs targeting TBKI developed by ARVINAS, alkyl
linkers from 7 to 29 atoms were tested, and it was found that degradation was not observed
when the linker length was below 12 atoms. Degradation was observed for linkers ranging
from 12 to 29 atoms. Burkart and colleagues also noticed that there was a weak correlation
between PROTAC linker length and PROTAC efficacy when they compiled data on multi-
ple PROTACs with linear linkers [68]. Specifically, as linker lengths became shorter, protein
degradation sharply decreased, probably because of steric hindrance between the target
protein and E3 ligase complex, making the ternary complex impossible. On the other hand,
degradation gradually decreases as linkers become longer, likely because the E3 ligase
would have a harder time ubiquitinating the protein. No specific conclusion about the
optimal length was provided. However, with two different PROTACs, one with a 9-atom
linker and the other with a 16-atom linker, it was observed that both were equally potent.

Exploring AR PROTACs reported since 2020 reveals that potent representatives, such
as ARD-61 [55], TD-802 [59], ARD-2128 [61], ARD-2585 [46], BWA-522 [48], and ARV-766,
feature rigid heterocyclic linkers ranging from 6 to 12 atoms in length. Most of them use
piperidine and piperazine as rigid linkers. While ARV-110 was initially speculated to
have a long flexible linker, the actual linker is a short and rigid combination of piperidine
and piperazine. These rigid linkers endorse not only the degradability of PROTACs, as
evidenced by the reported DC50 and Dmax values, but also the kinetic profile [46].

4. Hydrophobic Tagged Chimeric AR Degraders

Similar to PROTACs, hydrophobic tagged degraders can decompose AR, albeit
through a different degrading mechanism. The hydrophobic tagged AR degraders have
been designed and synthesized by connecting a hydrophobic adamantyl group to the
AR agonist RU59063 or its derivatives through a flexible linker [69,70]. Mechanistically,
the bulky hydrophobic adamantyl group adheres to the surface of the AR, resembling a
partially denatured hydrophobic region of the AR. This adherence triggers AR degrada-
tion through ubiquitin proteolysis, facilitated by the HSP70/CHIP complex. However,
the hydrophobicity of the tag is directly associated with low oral bioavailability. As of
now, no hydrophobic tagged chimeric protein degraders have entered clinical studies [71].
Additionally, no new hydrophobic tagged AR degraders have been reported since 2021.

5. Monomeric AR Degraders with Diverse Mechanisms

In addition to PROTACs and hydrophobic tagged AR degraders, numerous monomeric
AR degraders, characterized by relatively low molecular weight, have been demonstrated
to reduce the expression of the AR and its variants. Monomeric AR degraders are smaller,
making it easier to ensure favorable pharmacokinetic properties. They have garnered more
attention from medicinal chemists since 2020. However, there are no rational guidelines
available for designing and screening monomeric AR degraders.



Cancers 2024, 16, 663 12 of 19

5.1. UT Series

The most investigated group of monomeric AR degraders is the UT series, also known
as selective AR degraders (SARD) [35,72–75]. This selective and orally active degrader
group was developed through chemical manipulation of AR antagonists (e.g., bicarlu-
tamide) and agonists (e.g., enobosam) (Figure 11), which bind to the ligand binding domain.
Surprisingly, some UT series compounds (e.g., UT-34) bind to both the ligand binding
domain and the N-terminal domain of AR. Upon binding to the AF1 region of the N-
terminal domain of both the full-length and ligand binding domain-truncated AR, the
UT series promotes the degradation of both the full-length AR and the ligand binding
domain truncated variant (AR-V7) via the proteasomal pathway. The UT series has been
evidenced by in vitro and in vivo experimental data to be more potent than enzalutamide
in enzalutamide-resistant castration-resistant prostate cancer cell models and xenografts,
especially in ligand binding domain-truncated AR-V7 xenograft [72–75]. UT-34 (ONCT-534)
has advanced into phase I/II clinical studies (NCT05917470). Further improvement of their
pharmacokinetic properties in vivo is the direction for moving the UT series toward clinical
use. Very recently, UT-143 has been reported to irreversibly suppress both full-length AR
and AR-V7 transactivation, with an IC50 value of 150 nM. This suppression occurs through
the selective and covalent binding to two cysteines (C406 and C327) via Michael additions
in the AF-1 region [76]. The mechanism underlying the deactivation of both full-length AR
and AR-V7 by UT-143 is associated with disrupting the formation of liquid–liquid phase
separation condensates and inducing subsequent conformational change.
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5.2. AR Degraders via the Dissociation of Chaperone Protein

The induction of the dissociation of chaperone protein HSP90 from the AR can promote
AR degradation, as chaperone protein HSP90 is indispensable for stabilizing the AR. Some
reported AR degraders achieved through the dissociation of the chaperone protein are
summarized below.

5.2.1. ASC-J9 (NCT01289574)

ASC-J9 (Figure 12), an AR degrader developed by AndroScience, has entered phase
II clinical trials for potential clinical use for men with androgenetic alopecia. Initially
identified as a potential AR antagonist [77], it was later established as an AR degrader [78].
Specifically, the conformational change induced by the binding of ASC-J9 to the AR leads
to the dissociation of the chaperone protein HSP90. Consequently, the unprotected AR
undergoes ubiquitination for degradation via proteasome. The follow-up investigations
suggest that the dissociation of AR induced by ASC-J9 from coregulators like ARA55 or
ARA70 promotes the association between AR and MDM2 E3 ubiquitin ligase, ultimately
leading to AR degradation via the ubiquitin–proteasome system [79,80].
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5.2.2. Niclosamide and ARVibs

Niclosamide, an antihelminthic drug, was identified as an AR-V7 degrader after screen-
ing 1120 FDA-approved marketed drugs [81]. Its derivatives, ARVibs [82], exhibit improved
pharmacokinetic properties and can degrade both the full-length AR and AR-V7 protein.
The mechanism behind AR/AR-V7 degradation involves the ubiquitin–proteasome path-
way. Specifically, ARVibs suppress the expression of chaperone protein HSP70 and promote
the translocation of STUB1 E3 ligase into cell nuclear. This results in the binding of AR/AR-
V7 to the STUB1 E3 ligase, followed by ubiquitination and degradation of AR/AR-V7.

5.2.3. Geldanamycin Analogs

17-Allylamino-17-demethoxygeldanamycin (17-AAG), a derivative of the naturally
occurring geldanamycin, has been proven to inhibit HSP90 chaperone function and degrade
both the wild-type and mutant ARs, which requires HSP90 for folding. In an in vivo
experiment using a CWRSA6 prostate cancer xenograft, the administration of 17-AAG
at 50 mg/kg reduced AR expression by 80% [83]. The potency and toxicity of 17-AAG
were assessed in patients with metastatic castration-resistant prostate cancer in a two-stage
phase II trial [84]. It was concluded that 17-AAG did not show any potential regarding
prostate-specific antigen response at the end of the first stage, leading to the termination of
further enrollment.

17-DMCHAG (17-(6-(3,4-dimethoxycinnamamido)hexylamino)-17-demethoxy-geldanamycin),
a newer analog of geldanamycin, has been demonstrated to dissociate the HSP90 chaperone
protein from the AR, leading to AR degradation via the ubiquitin–proteasome system [85].
No further research on geldanamycin analogs as AR degraders has been reported since 2020.

5.3. Other Monomeric AR Degraders

Several synthetic and naturally occurring compounds have been identified using
Western blotting experiments to have the ability to reduce AR levels via the ubiquitin–
proteasome system. However, many of them lack a clear degradation mechanism [22]. Two
examples are shown here. A darolutamide derivative has been found to suppress the activ-
ity of both wild-type AR and F876L mutants. It effectively downregulates the expression of
full-length AR and ligand-binding domain-truncated AR-V7, exhibiting superior anti-tumor
efficacy compared with enzalutamide against castration-resistant VCaP xenografts [86].
Galeterone and its derivatives have a unique capability to suppress CYP17, antagonize
AR, and induce AR degradation. They selectively degrade AR by interfering with the
balance between AR ubiquitination and deubiquitination in the ubiquitin–proteasome
system [87]. The phase III clinical trial of galeterone indicated insufficient efficacy toward
AR-V7-positive metastatic castration-resistant prostate cancer. However, modifications
at the C3 and C17 positions have led to more promising derivatives. Additionally, some
molecules have demonstrated a dual mechanism of action by suppressing the androgen/AR
signal pathway and promoting AR degradation.

6. Molecular Glues to Degrade AR

Molecular glues (also known as proximity inducers), which were originally discov-
ered serendipitously, have rapidly emerged as an innovative strategy for targeted protein
degradation since 2020 [88,89]. To target the AR for degradation, molecule glues induce
proximity between the AR and ubiquitin ligases, forming the ternary complex of the molec-
ular glue, the AR, and ubiquitin ligases. Through this process, molecular glues bring the
AR for degradation via the ubiquitin–proteasome system. VNPP433-3β, a new-generation
galeterone analog, is a molecular glue that facilitates physical proximity between the AR
and MDM2 E3 ligase, resulting in AR ubiquitination and degradation by proteasome [90].
Generally, molecular glues have a low molecular weight (less than 500 Da), likely possessing
favorable pharmacokinetic properties according to Lipinski’s rule of five. However, there
are currently no general drug discovery strategies and systematic evaluations available for
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molecular glue AR degraders. VNPP433-3β is the only reported molecular glue capable of
degrading the AR up to this point.

7. Autophagic Degradation of AR

It has been reported that the ubiquitination of target proteins can lead to either protea-
some degradation or autophagic degradation [91]. Ubiquitin codes, created by different
ubiquitin molecules, signal distinct degradation pathways for target proteins. For example,
K48 ubiquitin chains mainly flag proteins for proteasomal degradation, while K63 ubiquitin
chains promote lysosomal degradation [92,93]. Targeting proteins for autophagic degrada-
tion can be achieved by directing the ubiquitinated protein to autophagosomes through the
autophagy receptor p62, followed by degradation within lysosomes. Riluzole, a marketed
drug for the treatment of amyotrophic lateral sclerosis, has been reported to degrade full-
length ARs, mutant ARs, and AR-V7 [94]. Its degrading mechanism involves (i) promoting
selective autophagy via boosting the interaction between the AR and autophagy receptor
p62 and (ii) activating IRE1α and ATF6α endoplasmic reticulum stress signaling arms. This
represents an emerging strategy for degrading ARs, and riluzole is the only example found
so far.

8. Conclusions and Future Perspective

The AR remains a crucial target for castration-resistant prostate cancer. While various
AR antagonists have been approved by the U.S. FDA and demonstrated survival benefits for
patients at different stages of prostate cancer, the persistent challenge lies in drug resistance.
To address this limitation, there is a growing body of evidence supporting AR degrada-
tion as a viable strategy. Various approaches, including PROTACs, hydrophobic tags,
monomeric degraders, molecular glues, and autophagic degraders, have been explored for
this purpose. As summarized in Table 1, several AR degraders have reached clinical trials.
Notably, two AR PROTACs have advanced to phase II clinical trials, while four others
are in phase I clinical trials, underscoring the increasing interest since 2020. A focused
effort has been directed toward developing orally active PROTACs, using CRBN binders
and shorter, more rigid linkers. Novel PROTACs with N-terminal or DBD AR binders
have emerged as a promising strategy to combat resistance to currently FDA-approved
AR antagonists. The development of these promising degraders stems from meticulous
empirical structure–activity relationship studies. However, the crystal structures of AR–
PROTAC–ligase ternary complexes will be very critical to provide essential guidance for
future PROTAC design. Additionally, the incorporation of artificial intelligence, including
machine learning and deep learning algorithms, is recommended to expedite the discovery
of effective and drug-like AR degraders [95].

Table 1. AR degraders that have advanced to clinical studies.

Degrader Other Name Treatment Phase Sponsor ClinicalTrials.gov
Identifier

ARV-110 bavdegalutamide Prostate cancer I and II Arvinas Inc. NCT03888612
ARV-766 luxdegalutamide Prostate cancer I and II Arvinas Inc. NCT05067140
CC-94676 AR-LDD Prostate cancer I Bristol Myers Squibb NCT04428788
HP-518 – Prostate cancer I Hinova Pharmaceuticals Inc. NCT05252364
AC176 AC0176 Prostate cancer I Accutar Biotechnology Inc. NCT05241613

GT-20029 – Acne vulgaris and
androgenetic alopecia I Suzhou Kintor

Pharmaceutical, Inc. NCT05428449

UT-34 ONCT-534
GTx-534 Prostate cancer I & II Oncternal Therapeutics, Inc. NCT05917470

ASC-J9 – Acne vulgaris II AndroScience Corp. NCT00525499
17-AAG – Prostate cancer II National Cancer Institute NCT00118092

Galeterone – Prostate Cancer with
AR-V7 III LTN Pharmaceuticals, Inc. NCT02438007
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Innovative strategies, such as PROTAC prodrugs that have been proposed to mitigate
on-protein target off-tumor toxicity [96], PROTAC prodrugs demonstrating activation by
radiotherapy within tumors [97], advances in PROTAC delivery systems [98], the expansion
of ubiquitin E3 ligases for PROTACs [99], and a deeper understanding of ternary complex
structures should be recognized as critical areas for further exploration of AR degraders.
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