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Simple Summary: Population statistics from recent years have demonstrated that rates of colorectal
cancer among younger individuals have been increasing with alarming rates of mortality. This
is contradictory to expectations given preventative clinical measures and suggests that there are
factors that may cause greater rates of cancer in younger generations that are different than in older
populations. Bacteria and other microbial organisms in the gut microbiome are crucial to human
health, and research studies are beginning to demonstrate that disruptions to the gut microbiome are
tied to recent increasing trends of colorectal cancer in younger populations.

Abstract: Traditionally considered a disease common in the older population, colorectal cancer
is increasing in incidence among younger demographics. Evidence suggests that populational-
and generational-level shifts in the composition of the human gut microbiome may be tied to
the recent trends in gastrointestinal carcinogenesis. This review provides an overview of current
research and putative mechanisms behind the rising incidence of colorectal cancer in the younger
population, with insight into future interventions that may prevent or reverse the rate of early-onset
colorectal carcinoma.

Keywords: early-onset colorectal cancer; EOCRC; young onset; adenocarcinoma; gut microbiome;
inflammation; diet; environmental exposures; birth-cohort effect; risk factors; clinical translation

1. Introduction

Colorectal cancer (CRC) is currently the third most prevalent cancer in the United
States and the second most common cause of cancer-related deaths [1]. Traditionally
considered a disease of populations over the age of 50, there has been a steady rise in CRC
diagnoses in younger patients with greater rates of mortality in stark contrast to other age
categories [2,3] (Figure 1). Population-based screening has decreased the incidence and
mortality rates of traditional average-onset CRC (AOCRC), but that alone cannot explain
the discrepancy in the population data. In individuals younger than age 50, the incidence
of CRC has increased annually by 1–2% since the 1990s [4,5]. It is estimated that by 2030,
the incidence of early-onset CRC (EOCRC) will increase by 90–124%, compared to the rate
in 2010 [6,7].
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Approximately 85–90% of CRC tumors are sporadic without specific heritable genetic
factors [8,9]. Studies on germline genetics from CRC tumors, without known predisposition
syndrome to CRC or inflammatory bowel disease, found that tumors from young patients
have greater rates of pathogenic germline variants than that of AOCRC, which suggests
that tumors from younger patients have greater somatic genetic mutations or epigenetic
alterations induced by risk factors that are increased in the younger population [3]. In
this review, we examine literature relevant to how intrinsic and extrinsic factors may
impact the microbiome and their potential effect on the increasing rate of early-onset
colorectal carcinoma.
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these exposures for different populations have proposed a framework concept known as
exposomes, whereby life-time exposures to different external and internal factors contribute
to different risk factors of different birth cohorts [11,12]. This implies that because younger
populations have been exposed to a different set of factors by a given age compared to the
generation before them at the same age, these factors contribute to a different risk factor
profile for different diseases. This may explain why the risk for CRC in the current young
population is higher than in generations before. This is inherently different from what
has conventionally been considered as a period effect, whereby an event at a particular
time and location affects everyone equally [13,14]. The birth-cohort effect suggests that
due to the cumulation of different life-time exposures, younger populations have different
relative risks for various diseases compared to older generations. When examining the
population statistics for different cancers, we find that this is true for CRC (Figure 1B).
Younger birth-cohorts are at higher risk of CRC compared to older generations at the same
age, and these risks theoretically will only accumulate and increase with age.

Previous studies have already found numerous birth-cohort associated life-style factors
that are linked with increased rates of CRC, such as diet, sedentary lifestyle, smoking,
and alcohol use [2,15,16]. Furthermore, these factors also all appear to directly impact
the gut microbiome [17], which is composed of different populations of bacterial, viral,
fungal, and protozoan species. The organisms that compose the gut microbiome are
cumulatively greater in number than the number of cells in the human body, and could
be considered as an “internalized external organ” with an ever more expanding role
in the immunity and autoinflammation of the gastrointestinal system [18]. There is an
irreplaceable symbiotic relationship between the microbiome and its host. It is required
for homeostatic human health, but also contributes to human disease. For example, the
gut microbiome is required for the production of vitamins and essential fatty acids not
found elsewhere in the body [19]; conversely, pathologic changes in the microbiome are
associated with increased inflammation and carcinogenesis [9].

An emerging body of research studies suggests that changes to the host microbiome
are intimately tied to early-onset CRC carcinogenesis [20,21]. However, questions of what
defines a pro-versus anti-carcinogenic microbiome, and of how a healthy microbiome
morphs into a dysbiotic pro-tumorigenic one, remain largely unanswered. More research is
needed to understand the mechanisms behind these processes.

Many bacterial species have been identified as directly responsible for autoinflamma-
tion and carcinogenesis [20,22]. Our own data demonstrate that T-cell infiltration and the
expression of inflammatory mediators are similar in EOCRC and AOCRC, suggesting that
an innate immune response may be requisite to colorectal carcinogenesis in general [21,23].
However, though the presence or absence of individual species may be essential to disease,
changes to the composition of the rest of the gut microbial populations also appear to
be necessary for its pathogenesis. Here, we provide a generalized overview of possible
mechanisms behind how dysbiosis may induce early-onset colorectal carcinoma (Figure 2).
Gut microbiome dysbiosis is broadly defined as an imbalance of the microbial ecosystem.
At baseline, there are different microbial populations that inhabit different locations of the
gastrointestinal tract. These microbial populations interact with each other and the human
host. Dysbiosis occurs when the normal homeostatic balance is disrupted. The balance
between protective versus harmful microbial communities and metabolism is likely central
to understanding where imbalances result in tumorigenesis [24,25].

Microbial dysbiosis has already been proven to be crucial for many diseases and con-
ditions of the gastrointestinal tract. For example, the sole presence of toxigenic Clostridioides
(formerly Clostridium) difficile is not enough for the development of pseudomembranous
colitis. In addition to the presence of toxigenic strains, microbial dysbiosis with over-
population of C. difficile and disruption to other microbial species is required prior to the
development of diarrheal symptoms and clinical disease [26,27].
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More studies are needed to examine microbiome composition and shifts in microbiome
components in response to different external factors: how the microbiome changes to
external factors and how these changes drive tumor initiation, progression, and otherwise
amplify other cancer risk factors. The connection between dysbiosis of the gut microbiome
and the increasing incidence of CRC in young patients appears to have been hypothesized,
but concrete evidence of the mechanistic interplay between gut dysbiosis and CRC in
younger populations has yet to be published.

The human gut microbiome is composed of a wide range of bacteria, viruses, fungi,
and protozoa, with up to 1013 to 1014 microorganisms and over 3 million genes, more
than the entire human genome. Since the 1960s, it has been known that the carcinogen
induction of CRC is intertwined with the microbiome [25]. Experiments with germ-free
and conventional rats found that a known CRC carcinogen, cycasin, failed to induce cancer
in germ-free rats opposed to conventional strains [28]. Subsequent experiments with
other carcinogens found that Escherichia, Enterococcus, Bacteroides, and Clostridium bacteria
were responsible for carcinogenesis by increasing the number of aberrant foci caused by
the carcinogen 1,2-dimethylhydrazine [29]. The fecal transplant of patients with CRC
to mice increased intestinal cell proliferation and tumorigenesis under the influence of
carcinogen azoxymethane [30], which suggests that there is a causal relationship between
the composition of the gut microbiota and development of CRC under different external
stressors [31].

Studies on the gut microbiome in patients with CRC versus healthy individuals with-
out CRC have identified different bacterial compositions between the two populations.
When patients are analyzed along the adenoma–carcinoma sequence with metagenome-
wide analysis, patients with adenoma demonstrated similar relative deprivations of micro-
bial diversity as healthy individuals. However, patients with advanced CRC demonstrated
higher microbiota genes in both absolute number and diversity than the healthy controls
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and patients with adenoma only [32]. This appears counter to studies analyzing fecal 16S
rRNA genes that found patients with CRC had decreased overall microbial diversity via
16S rRNA sequencing, with specific lower relative abundances of specific bacterial species
that may be protective against carcinogenesis [33]. This result could be due to technical
differences between the studies, as one analyzed fecal 16S rRNA while the other used
genome-wide association; however, it could also suggest that the gut microbiome is con-
stantly in flux throughout the CRC developmental process, implying different microbiome
compositions at dissimilar stages of disease progression.

Several shotgun metagenomic sequencing analyses have found a core set of colonic
bacteria prevalent in patients with CRC and another set of anti-tumorigenic bacteria that are
depleted in patients with CRC [34–37]. Although some common bacterial species have been
found to promote CRC, including Bacteroides fragilis [38], Escherichia coli [39], Enterococcus
faecalis [40], Streptococcus gallolyticus [41], and Morganella morganii [42], not every single
clade in the specified species is carcinogenic. In fact, several of these bacteria are commonly
found in the gastrointestinal systems of healthy individuals. In metagenomic analyses, the
specific subspecies of the bacteria that cause inflammation and the associated toxigenic
genes are not always specified. The mechanisms behind the role of each bacterial clade in
carcinogenesis appear to be varied and distinct, but almost all seem to cause an inflam-
matory response in the enteric mucosal lining. Enterotoxigenic Bacteroides fragilis induces
inflammation by producing IL-17 via TH-17 T-cells and γδT-cells [38]. In colitis-susceptible
IL-10-deficient mice, the mono-colonization of polyketide synthase-expressing E. coli, which
specifically produce colibactin, a polyketide-peptide genotoxin, had increased rates of col-
orectal malignancy [39]. The depletion of putatively beneficial probiotic bacteria in patients
with CRC is less well studied compared to carcinogenic phyla, and the data are more con-
flicting, but notable species include Streptococcus thermophilus [43,44], several Lactobacillus
strains [45,46], Clostridium butyricum [47], and Carnobacterium maltaromaticum [48].

In addition to bacteria, the gut microbiome is also composed of other microorganisms,
including viruses [49] and fungi [50], that are altered in patients with CRC, though the data
are relatively sparse and occasionally conflicting [31]. Excessive cytomegalovirus, John
Cunningham (JC) virus, Epstein–Barr, and human papillomavirus have been identified
in human CRC fecal samples [51–53]. Increased abundances of Malassezia and other
fungi also appear to be associated with CRC [54]. Many of the different microorganism
communities crosstalk and influence each other to create dynamic and mutable microbiome,
which can contribute to the propagation of CRC [55].

3. Effect of Diet and Environmental Factors on the Microbiome

The influence of environmental extrinsic factors on the gut microbiome and subse-
quent effects on carcinogenesis remains a field of active investigation (Table 1). Since the
early 1900s, it has been established that diet is one of the main contributors to changes in
the gut microbiome [56]. The gut microbiome is generally stable over time under conven-
tional circumstances, but significant dietary interventions have also been demonstrated
to cause rapid changes over short amounts of time. A metagenomic analysis of fecal
samples from 308 male participants without targeted interventions found that between-
participant variation was consistently higher than longitudinal changes in the microbiome
over 6 months [57]. With dietary intervention, however, targeted qPCR and 16S rRNA
sequence analyses found that different bacterial blooms changed within 24–48 h of each in-
tervention, particularly in response to indigestible carbohydrate fibers [58,59]. Longer-term
chronic dietary changes in the gut microbiome can even impact the hosts’ offspring with
clear generational effects over time. Bacterial populations that decrease after prolonged peri-
ods of low carbohydrate diets are not recoverable in several subsequent murine generations
even after the reintroduction of the missing carbohydrates, requiring the reintroduction of
the lost taxa in addition to replacing the lost dietary carbohydrates [60].
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Table 1. Summary of some factors that have been found to influence the composition of the microbiome.

Factors That Influence the Microbiome

Host Factors Environmental Factors Dietary Factors

Diabetes Alcohol Fiber intake

Exercise Microplastics Indigestible carbohydrates

Genetics Pesticides Western diet and red meat

Immune health and
immunosuppression Other chemical exposures Probiotics and fecal transplant

Obesity Smoking Processed foods

One of the most prominent representative analyses of differing diets and their impact
on disease is the comparison between modern Western diets and rural agrarian diets.
Compared to a rural agrarian diet, the microbiome under a Western diet has significantly
lower microbial diversity [61]. The modern Western diet appears to increase specific
populations of bacteria, which can produce metabolites that form gut microbial exposomes
in the host body [62]. The production of N-nitroso compounds and hydrogen sulfide by
specific toxigenic bacterial species in nondiverse gut microbiomes exert carcinogenic effects
with DNA alkylation and genetic mutations of the gastrointestinal cells [63,64]. Increased
rates of CRC development in mice that were fed a Western diet could be attributed to
microbial dysbiosis. CRC progression was accelerated after a transplantation of feces from
obese to nonobese mice, which could be blocked by continuous treatment with a mix of
antibiotics, including ampicillin, vancomycin, neomycin, and metronidazole [65].

In addition to dietary fats and microbial-accessible carbohydrate fibers, the well-
demonstrated impact of Western diet on the gut microbiome appears to be also due to a
combination of red meat and processed pre-packaged foods. Red meat appears to promote
the selective growth of certain bacterial populations through an excessive production of
N-nitroso compounds and lipid peroxidation [66]. Ubiquitous in processed foods are emul-
sifiers that can act like detergents and increase the permeability of the mucosa, increasing
bacterial movement across the epithelium and promoting inflammatory bowel disease even
at relatively low concentrations [67]. This translocation is counteracted by some soluble
plant carbohydrate fibers that inhibit bacterial adhesion and invasion in a dose-dependent
manner [68]. The subsequent fermentation of the microbial accessible fiber also produces
short-chain fatty acids, which have been demonstrated to regulate intestinal immunity
and enhance the CRC treatment response [69]. Although the mechanism causing this phe-
nomenon is largely unclear, it appears to be independent of bacterial growth since the most
effective plant fibers seem to selectively enhance the growth of specific bacteria species.

Normally, gut bacteria metabolize dietary indigestible carbohydrates into short-chain
fatty acids, such as butyrate, that can be absorbed into the systemic circulation to reg-
ulate immune cells [70], epigenetically decrease the rate of proinflammatory cytokine
production [71], downregulate integrin to induce the apoptosis of some CRC cancer lines
in vitro [72], and suppress carcinogenesis [73]. This process can be disrupted in the presence
of many extrinsic factors, such as microplastics, nitrates, pesticides, and other chemicals,
which result in disease. At the population level, countries with looser environmental
regulations have seen a disproportionate rise in CRC over the last few decades, particularly
in local regions with higher rates of pesticide use and/or air pollution [74–76]. Other
studies have demonstrated increased serum-level pesticide levels in patients with CRC [77]
and increased risk of CRC in populations with high exposure to pesticides [78,79]. Even
at maximum residue levels tolerated by the European Commission and United States
Department of Agriculture, pesticides have been demonstrated to alter the composition of
the gut microbiome in both humans and animals [80]. Similar to dietary impacts on the gut
microbiome, chronic exposure to pesticides, such as those containing arsenic, appears to
drastically change the composition and metabolism of the gut microbial populations [81].
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For microplastics, a model of polyethylene terephthalate (PET) digestion in a simulated
gastrointestinal system demonstrated that in different parts of the colonic environment,
microplastics are modified by indigenous bacterial species [82,83]. In turn, the addition
of microplastics into the gut microbiome significantly changed the bacterial composition
over 24–72 h at different points in the ascending, transverse, and descending colon of the
simulated gut. In vivo studies have been difficult to perform due to inherent experimental
limitations; however, microplastics have been linked to bacterial dysbiosis and intestinal
irritation [84]. In female mice exposed to bisphenol A (BPA), there were significantly
increased abundances of Mogibacteriacae, Sutterella spp., and Clostridiales bacteria [85,86].

The link between microplastics and CRC is less well established. An analysis of
tumor biopsy samples from patients with CRC versus non-tumoral colon tissue from both
patients with CRC and healthy controls found that the tumor tissue had a greater number
of microplastic particles than the non-tumoral colon tissue from both CRC patients and
healthy controls [87]. Microplastic particles in samples from the CRC patients (both tumor
and non-tumoral colon tissue) were generally smaller than those in the healthy controls,
and smaller particles tended to aggregate more than larger particles, though the difference
was not statistically significant. However, aside from specimen analyses, a more direct link
between microplastics and CRC has yet to be established.

4. Effect of Host Factors on the Microbiome

Outside of extrinsic factors that influence the microbiome, generational shifts in intrin-
sic factors, such as disease burden and general populational health, may also contribute
to the rise in EOCRC. Diabetes, obesity, and smoking are well-established modifiable risk
factors of CRC [88]. As the rate of younger patients with diabetes and obesity rises, the
associated risks of these conditions on CRC have also been suspected to contribute to the
rise in EOCRC [89,90].

Several recent studies have prospectively found increased risk of EOCRC in individ-
uals with diabetes and obesity at the population level [90–94]. For every 10 kg increase
in body weight above the self-reported baseline or ideal weight, there is an associated 8%
increase in the risk of CRC [95]. The mechanism underlying the weight–CRC association is
still unclear. Obesity has been linked to the dysregulation of the endocrine, immune, and
metabolic systems, including excessive adipocyte deposition resulting in the preferential
promotion of the proliferation and migration of colon cancer cells in tumor microenvi-
ronments [96,97]. Excess adipose tissue can also remodel the gut microbiome, such as
by increasing the abundance of lipopolysaccharide endotoxin-producing gram-negative
bacteria, resulting in the disruption of the mucosal barrier and low-grade chronic inflam-
mation [98]. Subsequent experiments found that several bacterial populations appeared
to contribute to obesity’s link with CRC, yet no concrete list has been determined due to
the large variance in population characteristics and experimental models [99]. However,
what is clear is that obesity promotes the development of bacterial and viral microbiomes
associated with increased rates of CRC [100,101].

Host immune systems also appear intricately linked to CRC and microbial dysbio-
sis. The gut microbiome is closely tied to systemic inflammation, modulating numerous
immune cellular populations throughout the body. One of the first lines of defense is the
innate immune system that is governed by receptors, such as the Toll-like receptor (TLR),
which recognizes pathogen-associated molecular patterns (PAMPs). Mice with an innate
immune system deficient in TLR signaling are unable to recognize some PAMPs and have
decreased rates of insulin resistance and adipose inflammation [102,103]. This appears to
be due to macrophage infiltration into adipose tissue in response to the bacterial endotoxin
activation of TLR.

The microbiome is crucial in training the human immune system, and the immune
system, in turn, is responsible for maintaining the homeostatic balance or disruption of the
microbiome into dysbiosis [104]. Increased microbiome-mediated colonic inflammation is
associated with increased rates of DNA mutation. Mice deficient in TLR MyD88, therefore
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having suppressed innate immune systems with a limited ability to recognize PAMPs, were
found to be immune from microbial dysbiosis-associated tumor progression [65]. However,
localized immunosuppression can also be associated with increased rates of metastases.
Fusobacterium nucleatum colonization increases proliferation immunosuppressive cells at
pre-metastatic niches, which appears to be linked to increased rates of CRC metastases
to the liver [105,106]. Additionally, immunodeficient mice are associated with increased
risks of cancer, regardless of microbiome composition [107]. A homeostatic balance in the
immune system also appears to be necessary for tumor suppression.

5. Practical Implications for Microbiome-Associated Prevention or the Treatment of
Colorectal Carcinoma

Given the emerging evidence connecting microbiome dysbiosis and colorectal carci-
noma, it appears imperative to reverse current trends that might be contributing to EOCRC.
However, given the lack of cohesive targets, strategies to decrease microbiome-associated
risks are still in the early stages. Different dietary interventions for individuals with varied
bacterial populations resulted in various outcomes. Increasing dietary fiber can increase
the microbial diversity, but only in susceptible populations [58,108].

Preliminary evidence using a probiotic mixture composed of B. longum, B. bifidum, L.
acidophilus, L. plantarum, and various microbial-accessible starches was found to decrease
the growth of transplanted murine colorectal cancer cells in vivo [109]. In mice with CRC
induced by 1,2-dimethylhydrazine, probiotics composed of L. acidophilus, L. paracasei, B.
lactis, and B. bifidum decreased the rate of adenoma-to-carcinoma progression when co-
treated with 5-fluorouracil [110]. The mechanism behind this effect appeared to be the
up-regulation of IFN-gamma and Granzyme B production, increased tumoral infiltration
of NK and CD8+ T-cells, and promotion of Th1 CD4+ T-cells, which upregulate the body’s
own immune system to attack the tumor cells [45,111].

However, these findings should be considered with caution as the perturbation of
the microbiome for other cancer treatments has been less optimistic. Studies examin-
ing the effect of microbiome modulation on cancer treatment regimen have found that
increased dietary fiber is associated with improved disease-free survival in patients re-
ceiving checkpoint inhibitor for melanoma, but this benefit is disrupted after the use of
commercially-available B. longum or L. rhamnosus GG-based probiotic supplements [112].
Mechanistically, probiotics do not appear to repopulate the intestinal microbiome. Instead,
they appear to interfere with the quorum sensing of existing bacteria populations, thereby
competitively inhibiting their growth [113]. This may explain why probiotics interfered
with the beneficial effects of high-fiber diet on microbiome changes in patients under
checpoint inhibitor treatments.

Previous studies have found that the fecal transplant of CRC patients to mice resulted
in increased carcinogenesis and tumor progression [30,114]. However, experiments exam-
ining whether fecal transplants can prevent or aid in the current treatment of colorectal
carcinoma are relatively sparse. Studies on fecal transplants in combination with check
point inhibitors for multiple solid malignancies and metastases have been promising [115].

Whether these interventions could impact the rising trend of EOCRC remains open to
debate. Ultimately, current screening criteria for CRC may need to be further updated to
reflect the uptrends in EOCRC. The 2021 US Preventative Services Task Force recommenda-
tions for adults with average risk of CRC was adjusted to begin screening at 45 years of
age [116,117]. Similarly, the 2018 American Cancer Society (ACS) guidelines for screening
adults with average risk of CRC were revised to begin at age 45, rather than age 50, using a
high-sensitivity fecal occult blood test, a fecal immunochemical test, multitarget stool DNA
assay, computed tomography, flexible sigmoidoscopy, or colonoscopy. However, given the
increasing incidence of late stage EOCRC at time of diagnosis, the guidelines may warrant
further modification [118].
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6. Discussion and Future Directions

As the incidence of colorectal carcinoma continues to rise in a young population
that is not routinely screened, it is important to uncover the mechanisms underlying the
demographic shift. Given the low number of generations accounting for the populational
shift, current available data suggest that the increasing EOCRC incidence is most likely due
to external factors on the human body, rather than shifts in the human genome. In addition
to the structural components of the human body, microorganisms populate the surfaces
of external skin and intestinal lumen. Microbiomes of bacteria, fungi, viruses, and other
protozoa are essential for human survival and thrive in a symbiotic relationship with their
hosts. Disruptions to these relationships and shifts in microbiome compositions have clear
implications on human health. The links between dysbiosis and carcinogenesis shown
in cross-sectional studies appear irrefutable. However, definitions of what composes a
“healthy” human microbiome are still not fully understood.

Several bacterial species have been linked with CRC, and the list continues to grow.
However, external stressors may change not only the composition of the microbial pop-
ulations, but also the behavior. In addition to analyzing the fecal contents of patients
with and without EOCRC, we also need to understand how the microbiome functions in
different stages of the intestinal tract, and how the microbiome changes in response to
different stressors. In this review, we examined intrinsic and extrinsic factors that have
been implicated in CRC through the gut microbiome. The next step is to investigate how
these stressors change the behavior of the microbial populations.

Though the manipulation of the gut microbiome is compelling to prevent rising
EOCRC trends, interventions should be implemented with caution and evaluated within the
context of clinical trials. Given that we do not yet fully understand the cause of the disease
or possible treatment-related changes, without strict control of experimental variables, the
data may only challenge and delay knowledge of the disease and its mechanisms.

7. Conclusions

Early-onset colorectal carcinoma has been increasing at an alarming rate among indi-
viduals under 50 years old. The causes of this trend are not entirely clear, but evidence has
emerged to suggest that environmental and populational changes in the microbiome play a
vital role in colorectal carcinogenesis among young cohorts. In addition to elucidating the
possible mechanisms behind this phenomenon, it is imperative that we further investigate
possible ways to prevent and reverse the potential causes and implement clinical guidelines
to screen younger patients to begin treatment at earlier stages of the cancer.
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