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Simple Summary: Glutamine, vital for the body’s functions, is pivotal in cancer metabolism as
it influences tumor growth. However, cancer cells’ complex adaptive metabolic dynamics raise
concerns about potential limitations in glutamine antagonism strategies to impede tumor growth.
Similarly, while glutamine supplementation shows promise in supporting cancer patients, careful
considerations are necessary to address possible interactions with ongoing treatments and concerns
about inadvertent tumor growth stimulation. Recent studies have shed light on the effects of
glutamine on the epigenetic regulation of cancer cells and the enhancement of anti-cancer immune
functions, providing valuable insights for potential therapeutic advancements. Understanding the
intricacies and challenges of glutamine interventions is essential for optimizing their potential benefits
in cancer treatment and patient well-being.

Abstract: Glutamine, a multifaceted nonessential/conditionally essential amino acid integral to cellu-
lar metabolism and immune function, holds pivotal importance in the landscape of cancer therapy.
This review delves into the intricate dynamics surrounding both glutamine antagonism strategies and
glutamine supplementation within the context of cancer treatment, emphasizing the critical role of
glutamine metabolism in cancer progression and therapy. Glutamine antagonism, aiming to disrupt
tumor growth by targeting critical metabolic pathways, is challenged by the adaptive nature of cancer
cells and the complex metabolic microenvironment, potentially compromising its therapeutic efficacy.
In contrast, glutamine supplementation supports immune function, improves gut integrity, alleviates
treatment-related toxicities, and improves patient well-being. Moreover, recent studies highlighted
its contributions to epigenetic regulation within cancer cells and its potential to bolster anti-cancer
immune functions. However, glutamine implementation necessitates careful consideration of poten-
tial interactions with ongoing treatment regimens and the delicate equilibrium between supporting
normal cellular function and promoting tumorigenesis. By critically assessing the implications of
both glutamine antagonism strategies and glutamine supplementation, this review aims to offer
comprehensive insights into potential therapeutic strategies targeting glutamine metabolism for
effective cancer management.

Keywords: cancer; metabolism; glutamine; amino acids; nutrition; cancer therapy; cachexia

1. Introduction

Cancer therapy continues to face challenges arising from treatment-related toxicities
and the intricate metabolic adaptations of cancer cells, necessitating a comprehensive
understanding of the roles of cancer metabolism in both tumor progression and patient
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well-being. Amino acids play immeasurable roles in cell survival through nucleotide
biosynthesis, redox balance management, epigenetic regulation, and immune response
associated with tumorigenesis and metastasis [1]. Many studies have highlighted amino
acids essential for tumor growth, including glutamine, proline, and serine [2,3]. Glutamine
(Gln), a “conditionally essential” amino acid with diverse roles in cellular physiology [4,5],
has earned significant attention in cancer research and therapy [6,7]. Due to its implication
in various cellular processes, ranging from energy production to nucleotide biosynthesis,
glutamine has been of growing interest in cancer biology research, where it has been
shown to support the aberrant growth and survival mechanisms of cancer cells [7–9].
Antagonism of Gln metabolism has been studied as a foundational approach for targeting
cancer metabolism by blocking glutamine transporters or glutaminase [6,10–12]. However,
these efforts do not provide durable benefits due to multiple mechanisms [12,13]. Therefore,
several studies have helped unravel the interplay between glutamine metabolism and how
to tailor this toward cancer treatment strategies effectively [12,14].

In recent years, research has attempted to show the power of glutamine modulation as
a complementary approach in cancer therapy [11,15,16]. Glutamine supplementation offers
a promising potential for improving treatment-related toxicities by fortifying immune
function and possibly enhancing the overall well-being of cancer patients [5]. The versatile
benefits of glutamine supplementation include its role in promoting gut integrity, mitigating
mucositis, and supporting the maintenance of intestinal barrier function in the face of
aggressive cancer treatments [17,18]. Nevertheless, glutamine supplementation in cancer
therapy is not without challenges. This includes optimal dosages, potential interactions
with standard treatments, tailored approaches for specific cancer subtypes, and adequate
patient cohort choices, which are crucial considerations. The complex interplay between
glutamine metabolism and cancer progression necessitates a nuanced understanding of the
inherent implications of glutamine supplementation on tumor growth, emphasizing the
need for comprehensive clinical investigations to delineate its precise role in personalized
cancer care [10,19].

This review offers broad insights into the evolving landscape of glutamine precise
modulation as a potential adjunct therapy in cancer treatment while underscoring the
significance of personalized approaches in harnessing the full potential of this amino acid
in cancer therapy.

2. Regulation of Glutamine Metabolism in Cancer

Regulation of glutamine metabolism in cancer cells involves complex molecular and
signaling pathways that dynamically influence cellular processes, including proliferation,
survival, and adaptive responses to tumor microenvironments [20]. Central to this regu-
latory network are vital enzymes such as glutaminase (GLS), glutamine synthetase (GS),
and glutamine transporters (SLC1A5, also known as ASCT2, etc.), whose activities are
finely modulated by various oncogenic and tumor suppressive pathways involving pri-
mary metabolites, such as glutamate (Glu), α-ketoglutarate (α-KG), and lactate. These
crosstalk help establish a metabolic landscape favoring increased glutamine uptake and
utilization in cancer cells [21]. Dysregulated glutamine metabolism in cancer cells facilitates
the synthesis of macromolecules (proteins, nucleotides, and lipids), oxidative stress/redox
homeostasis, epigenetic functions, and anabolic processes crucial for sustaining cancer
cells’ rapid proliferation and survival [22]. On the other hand, cancer cells also exhibit
a significantly high consumption of glucose (the Warburg Effect) and lactate production.
Like glucose, glutamine can be degraded to lactate and produce the nicotinamide ade-
nine dinucleotide phosphate (NADPH) as a by-product of this flux via malic enzyme,
contributing to fatty acid synthesis by facilitating the cell’s ability to use glucose-derived
carbon [6,8,23,24]. However, glutamine metabolism reprogramming often occurs under
nutrient-limited conditions and metabolic stress, highlighting the capacity of the cancer cell
to adapt by rewiring its metabolism pathways to its environment and making glutamine a
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vital metabolic substrate. Regulation and roles of glutamine metabolism in cancer cells are
depicted in Figure 1.
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Figure 1. Regulation and roles of glutamine metabolism in cancer. Cancer cells take up glutamine
(Gln) through glutamine transporters, including SLC1A5 (ASCT2), SLC38A1, and SLC6A14. For
glutaminolysis, glutamine is transported into the mitochondrial matrix through the SLC1A5 variant
and subsequently catalyzed to glutamate (Glu) by glutaminases (GLS1 and GLS2). Glutamine and
glutamate are indirectly responsible for the uptake of other amino acids, such as leucine (Leu) and
cystine (Cys), via the SLC7A5 (LAT1) and SLC7A11 (xCT) transporters, respectively. Glutamate is
converted to α-KG through GLUD1 or aminotransferases (GPT2, GOT1 and GOT2). α-KG contributes
to epigenetic modifications by histones and DNA demethylation. The resulting intermediates can
supply bioenergetics through the TCA cycle and support the biosynthesis of proteins, nucleotides, and
lipids. In addition, glutamine metabolism maintains redox balance via GSH synthesis and reduces
oxidative stress via NADPH synthesis. Glutamine metabolism in cancer is regulated by oncogenes
(KRAS, MYC, and PI3KCA, etc.) and tumor suppressor genes (p53 and RB, etc.) (red lightning).

Among the prominent signaling pathways influencing glutamine metabolism [25], the
K-RAS pathway is a pivotal driver of glutamine dependency in various cancer types [9,26].
Mutations in the K-RAS oncogene are commonly found in pancreatic, colorectal, and lung
cancers, where it has been shown to regulate glutamine uptake (glutamine addiction) and
subsequent utilization of anabolic processes unfolding non-canonical pathways crucial for
sustaining rapid tumor cell proliferation and growth [27,28]. The MYC oncogene, known
for its critical role in cellular growth and proliferation, profoundly impacts glutamine
metabolism by amplifying the expression of glutamine transporters and glutaminase [29].
MYC promotes the conversion of glutamine to glutamate to fuel the TCA cycle and facilitate
anabolic pathways essential for cellular division and growth. The MYC-driven metabolic
program highlights the indispensable role of glutamine as a key player in the continuous
proliferation associated with several cancer types [30]. Additionally, dysregulation in the
phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway
further accentuates the demand for glutamine, driving an accelerated flux through the
tricarboxylic acid (TCA) cycle to fuel the biosynthetic requirements of rapidly proliferating
cancer cells [31].

Similarly, the tumor suppressor protein p53, known for its multifaceted roles in main-
taining genomic stability and orchestrating cellular stress responses, exerts intricate control
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over glutamine metabolism [32]. In the face of genotoxic stress, p53 directs a metabolic
shift that reduces glutamine consumption, thus promoting the conservation of cellular
resources and redirecting metabolic intermediates toward pathways essential for cellular
survival [33]. Moreover, p53 suppresses the expression of glutamine transporters and
glutaminase, curbing glutamine utilization and reshaping the metabolic mercenaries to
favor stress adaptation and cellular survival. The dynamic interplay between p53 and
glutamine metabolism underscores the delicate balance between tumor cell metabolism
and the intricate signaling pathways that govern cellular responses to the tumor microen-
vironment [34]. The retinoblastoma (Rb) protein, another critical tumor suppressor, also
modulates glutamine metabolism in the context of cancer. Rb regulates the expression of
genes involved in cell cycle progression and metabolism, impacting the utilization of glu-
tamine for various biosynthetic pathways necessary for cell growth and proliferation [35].
Perturbations in the Rb signaling axis can lead to alterations in glutamine metabolism,
promoting the metabolic adaptations required for sustained tumor growth and progression.

Moreover, glutamine metabolism is also affected by the tumor microenvironment
(TME) (Figure 2). Several studies reported that tumors, including pancreatic ductal
adenocarcinoma (PDAC) and esophageal cancer, inherently have low glutamine levels
compared to benign adjacent tissues or other normal tissues [36–38]. This may induce
different metabolic reprogramming, including activating macropinocytosis and other
alternative metabolic pathways, to meet nutrient demands under glutamine-restricted
conditions [39–42]. Furthermore, tumor core regions display low glutamine levels com-
pared to the periphery, and this regional glutamine deficiency in tumors promotes de-
differentiation through the inhibition of histone demethylation [40,43]. Additionally, the
competition for glutamine between tumor cells and immune cells in the TME causes glu-
tamine deficiency, affecting immune cells’ function [44]. Interestingly, cancer-associated
fibroblasts (CAFs) also display heightened macropinocytosis induced by glutamine starva-
tion or oncogenic signaling, providing a source of intracellular amino acids and secreted
amino acids that support CAF functions and tumor cell survival [45,46].
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Upper right: the competition for glutamine between tumor cells and immune cells in the tu-
mor microenvironment (TME) causes glutamine deficiency, affecting immune cells’ function.
Lower left: systemic glutamine deficiency. Blood glutamine concentration changes according to
the balance between significant organ producers (liver, skeletal muscle, lung, adipocytes, etc.) and
consumers (brain, kidney, gut, liver, immune cells, etc.) in health and catabolic situations. In health,
there is a balance between glutamine synthesis and degradation. In contrast, under stress and/or
catabolic conditions such as cancer, organs responsible for glutamine synthesis (such as the skeletal
muscle tissue) reduce its production, and at the same time, immune cells increase their demand for
glutamine. Cancer patients have significantly decreased serum glutamine levels compared to healthy
individuals; under this condition, the endogenous synthesis of glutamine does not appear to meet
the human body’s demand, and glutamine assumes the role of a conditionally essential amino acid.

In summary, regulating glutamine metabolism in cancer cells involves a complex inter-
play of diverse oncogenic and tumor-suppressive pathways and the complex influence of
TME, underscoring glutamine’s dynamic and context-dependent roles in supporting tumori-
genesis and malignant progression. These oncogenic and tumor-suppressive pathways also
play a pivotal role in regulating glycolysis [47–51]. Thus, both glutaminolysis and glycolysis
contribute synergistically to fuel the heightened energy demands of cancer cells, provide
essential building blocks for biomass synthesis, and foster the uncontrolled growth charac-
teristic of malignancies. A comprehensive understanding of these regulatory mechanisms
is crucial for developing targeted therapeutic strategies to disrupt the glutamine-dependent
metabolic needs of cancer cells and impede their proliferative potential.

3. Glutamine Deprivation Strategies in Cancer

Over the last few decades, glutamine has become an attractive cellular target for can-
cer therapy due to its pleiotropic roles in fundamental cellular functions. The complexity
and adaptability of cancer metabolism have prompted considerable interest in targeting
glutamine metabolism as a therapeutic strategy. Glutamine metabolism has become a focal
point for intervention in cancer due to its role in sustaining the increased metabolic de-
mands of rapidly proliferating malignant cells [11]. Several approaches for depriving cancer
cells of glutamine have been attempted, with encouraging preclinical data, although clinical
translation has yet to be formally achieved. Among those strategies are glutamine mimick-
ing compounds (DON and JHU083), glutamine transporter blockers (GPNA, V-9302, and
JPH203), major glutamine-producing enzymes (CB-839 and BPTES), glutamine depletion
(L-asparaginase), and multiple downstream actors of glutamine biosynthesis [12,14,52].

Among the more recent strategies targeting glutamine metabolism for cancer therapy
is the inhibition of glutaminase. Glutaminase (GLS) is an enzyme that catalyzes the
conversion of glutamine to glutamate, a crucial step in glutamine metabolism [53,54].
Glutaminase inhibitors, such as CB-839, have shown promise in preclinical studies and
early-phase clinical trials, demonstrating their ability to impede glutamine catabolism and
disrupt the supply of glutamate, a precursor for numerous biosynthetic pathways critical
for cancer cell survival and proliferation [12,55]. The disruption of the vital enzymatic
steps associated with glutamine utilization by glutaminase inhibitors results in reduced
availability of metabolic intermediates required for nucleotide synthesis, tricarboxylic acid
(TCA) cycle replenishment, and redox balance maintenance, collectively inducing metabolic
stress and compromising cancer cell viability [56]. In addition to the effects on tumor cells,
CB-839 may improve immune function in a tumor microenvironment by enhancing the
anti-tumor activity of both autologous T-cell therapies and checkpoint inhibitor therapies
in a mouse melanoma model [57].

Another avenue for glutamine metabolism-targeted interventions lies in modulating
the transport systems responsible for glutamine uptake by cancer cells [58]. Glutamine is
transported into and out of cancer cells via specific transporters, such as SLC1A5 (ASCT2)
and SLC7A5 (LAT1), which play integral roles in sustaining the increasing glutamine de-
mands of proliferating cancer cells [59,60]. Inhibitors targeting these transporters, such as
V-9302 and JPH203, have emerged as potential strategies for disrupting the influx of extra-
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cellular glutamine, thereby impairing its supply to intracellular metabolic pathways [61,62].
This inhibition strategy induces cellular stress by impeding anabolic processes and under-
mining the adaptability of cancer cells to the dynamic tumor microenvironment [63]. No-
tably, the expression and functionality of glutamine transporters and other genes/proteins
related to glutamine metabolism may differ significantly between cancer vs benign cells and
different types of cancers [55,64]. Additionally, even within the same type of cancer, there
can be substantial heterogeneity in terms of glutamine reliance based on genotype or sub-
type of cancer [65,66]. Understanding the contrasting expression patterns and functional
aspects of these glutamine metabolism-related molecules is crucial for comprehending
the broader implications of targeted therapies, including insights into potential side ef-
fects associated with therapeutic strategies, thereby enhancing the precision and safety of
cancer treatments.

Beyond glutaminase inhibition and modulation of transport systems, other targeted
therapeutic approaches are being explored to disrupt glutamine metabolism in cancer cells.
For instance, targeting glutamine synthetase (GS), the enzyme that catalyzes the conversion
of glutamate to glutamine, represents an alternative strategy to perturb glutamine home-
ostasis within cancer cells [67]. In preclinical studies, inhibition of glutamine synthetase
has demonstrated anti-proliferative effects by disrupting glutamine-dependent pathways
crucial for cancer cell survival [68]. Additionally, efforts are underway to potentially tailor
therapeutics to be able to distinguish metabolic tumor status, for example, by intervening
in glutamine utilization in specific subsets of cancer cells that exhibit glutamine addiction.

Despite the promise of glutamine deprivation strategies, several challenges and limita-
tions warrant consideration [13]. As discussed earlier, some cancers show low glutamine
levels compared to benign adjacent tissues [36–38], raising a question about the rationale of
this therapeutic approach (Figure 2). Several studies have reported significantly decreased
serum glutamine levels in cancer patients compared to healthy individuals, possibly due to
a higher glutamine demand by cancer cells [65,69]. Of note, low serum glutamine levels
were associated with advanced-stage, higher proinflammatory cytokine levels, poorer
overall survival (OS), and progression-free survival (PFS) compared with those with high
glutamine levels in colorectal cancer (CRC) patients [70]. Furthermore, cancer cells of-
ten display remarkable metabolic adaptability, allowing them to reroute metabolic flux
through alternative pathways in response to therapeutic interventions. This phenomenon,
known as metabolic plasticity, can undermine the efficacy of glutamine-targeted strategies,
resulting in the need to comprehensively understand and predict cancer cells’ reprogram-
ming mechanisms. For example, PDAC cells scavenge extracellular proteins by oncogenic
KRAS-driven macropinocytosis to adapt to nutrient-restricted microenvironments such
as glutamine-restricted conditions [39,40]. Additionally, cancer cells can reprogram their
metabolism to utilize, if necessary, other carbon sources for survival, such as asparagine and
aspartate [41,42]. The intricate metabolic microenvironment within the tumor, character-
ized by nutrient gradients, hypoxia, and interactions with stromal cells, adds another layer
of complexity to the design and implementation of glutamine-targeted therapies [40,43–46].

Some attempts at blocking glutamine metabolism in cancer patients resulted in un-
acceptable toxicity, particularly in the gastrointestinal tract [71]. Leone et al. designed a
prodrug form (JHU083) of the glutamine antagonist DON, administered in an inert state
but then preferentially activated by enzymes enriched in the tumor microenvironment [72].
Glutamine blockage by JHU083 downregulated glycolysis and oxidative phosphorylation
in cancer cells, resulting in a concomitant decline in hypoxia, acidosis, and nutrient deple-
tion while enhancing anticancer immunity and oxidative phosphorylation in T-cells. These
findings suggest exploiting cellular metabolic plasticity to modulate T-cell metabolism and
antitumor immune responses through glutamine blockade.

In conclusion, the evolving landscape of glutamine deprivation strategies in cancer
therapy highlights the diverse approaches to disrupting glutamine metabolism in specific
vital cellular nodes. The pursuit of precision medicine in this context involves not only
elucidating the intricacies of glutamine-dependent pathways but also addressing the chal-
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lenges posed by metabolic plasticity and the complex evolving tumor microenvironment.
Despite these challenges, the ongoing research in this field holds promise for advancing
therapeutic strategies that exploit the vulnerabilities of cancer cells dependent on glutamine
for their survival and proliferation (Figure 3).
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4. Glutamine Supplementation in Cancer

Glutamine has emerged as a potential adjunct therapy in the comprehensive man-
agement of cancer. Beyond its fundamental role as a building block for protein synthesis,
glutamine has garnered significant attention for its diverse functions in supporting immune
function, preserving gut integrity, and alleviating treatment-related toxicities, thereby im-
proving the overall well-being and quality of life of cancer patients undergoing various
therapeutic regimens [5,18,73].

The immune system is vital in surveilling and eliminating cancer cells, which signifi-
cantly rely on glutamine to sustain their metabolic demands [5]. Glutamine aids in main-
taining the redox balance within immune cells, thereby preventing oxidative stress-induced
damage and promoting their longevity and functionality. Several studies have high-
lighted the potential of glutamine supplementation in enhancing the anti-cancer immune
response, presenting a compelling avenue for improving the efficacy of immunotherapeutic
approaches in cancer treatment [73]. In an early experimental study, Klimberg’s group
revealed that glutamine gavage (1 g/kg/day) reduced tumor growth by 40%, associated
with a 30% increase in natural killer (NK) cell activity in tumor-bearing animals [74]. A re-
cent study demonstrated that directly enhancing intratumoral glutamine abundance affects
anti-tumor immunity in subcutaneous tumor xenograft in immunocompetent mice [75].
Glutamine supplementation inhibited tumor growth by enhancing type-1 conventional
dendritic cells (cDC1s)-mediated CD8+ T cell immunity, overcoming resistance to im-
munotherapies. Mechanistically, tumor cells and cDC1s compete for glutamine uptake,
and glutamine signaling via folliculin (FLCN) affects nutrient- and stress-sensitive tran-
scription factor TFEB function. Interestingly, enhanced antitumor responses were also
observed by glutamine blockade, and this was associated with an increased glutamine level
in the tumors [72].

Glutamine supplementation has demonstrated a significant impact on preserving
gut integrity, particularly in cancer therapy-associated gastrointestinal toxicities. Cancer
treatments, including chemotherapy and radiation therapy, often exert detrimental ef-
fects on the gastrointestinal tract, leading to mucosal damage (mucositis), compromised
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barrier function, and intestinal inflammation [76]. Glutamine is known for its trophic
effects on the intestinal mucosa by helping maintain the structural integrity of the gut
lining and supporting the regeneration of damaged mucosal cells [77]. By promoting
the proliferation of intestinal epithelial cells and enhancing mucin synthesis, glutamine
supplementation has shown promise in alleviating gastrointestinal toxicities and reducing
the severity of treatment-induced side effects. This helps strengthen the tolerability of
anticancer therapies and improves patients’ overall quality of life [78]. Additionally, by
acting as a precursor for glutathione, an essential antioxidant, glutamine aids in mitigating
oxidative stress and reducing the risk of chemotherapy-induced neurotoxicity, such as
peripheral neuropathy [79].

Furthermore, its role in promoting protein synthesis, reducing inflammation, and
preserving muscle mass has garnered attention in managing cancer cachexia. Cancer
cachexia is a debilitating condition characterized by increased inflammation resulting
in progressive muscle wasting and weight loss [80]. Glutamine supplementation has
shown promise in alleviating the severity of cachexia by improving the nutritional status
and functional capacity of cancer patients undergoing intensive treatment regimens [81].
Glutamine also contributes to maintaining acid-base balance by its ability to produce
ammonium ions, a typical weak base [82]. Since acidosis is a hallmark of inflammatory
processes as well as a crucial determinant of tumor progression, resulting from the increased
glycolysis and the subsequent accumulation of lactic acid as well as the massive production
of protons [83], glutamine supplementation may help to reduce inflammation in cancer
cachexia patients by maintaining pH homeostasis in the body via ammonia (NH3) transport
between tissues [5,84]. Furthermore, glutamine can change the composition or function
of microbiota [78] by potentially influencing gut microbial metabolism, including the
production of the metabolites from the tumor-promoting/suppressing gut microbiome,
metabolites that contribute to extracellular acidosis, and short-chain fatty acids (SCFAs)
that provide energy to colonic epithelial cells [85–88].

Recent studies have also highlighted the potential of glutamine supplementation
in modulating epigenetic regulation in cancer cells [43,89]. Glutamine serves as a crit-
ical substrate for α-ketoglutarate (α-KG) production, which is an essential cofactor for
several enzymes involved in epigenetic modifications, e.g., Jumonji C (JmjC)-containing
histone lysine demethylases (KDM) and DNA demethylases ten–eleven translocation (TET)
enzymes [90,91]. In melanoma tumors, low glutamine levels often drive the cells to an
undifferentiated state; however, upon supplementation with dietary glutamine, tumor
growth was significantly inhibited, pushing the tumor to become sensitive to a BRAF
inhibitor. Mechanistically, it was revealed that glutamine uptake effectively increased the
concentration of tumor glutamine and its downstream metabolite α-KG, which drove hy-
pomethylation of H3K4me3 via JmjC-containing KDMs, resulting in the downregulation of
epigenetically activated oncogenic pathways [89]. By influencing the epigenetic landscape
of cancer cells, glutamine supplementation holds promise in regulating gene expression
patterns and modulating critical signaling pathways implicated in tumorigenesis and can-
cer progression. Additionally, understanding the interplay between glutamine metabolism
and epigenetic regulation offers a novel perspective for leveraging glutamine supplementa-
tion as an adjunct therapy to conventional cancer treatments, potentially enhancing their
efficacy and improving patient outcomes.

Glutamine is directly or indirectly responsible for the uptake and efflux of other amino
acids, such as alanine (Ala), threonine (Thr), leucine (Leu), and cystine (Cys), via trans-
porters such as SLC1A5 (ASCT2), SLC38A1, SLC6A14, SLC7A5 (LAT1), and SLC7A11 (xCT).
Based on a competitive inhibition mechanism, adding supraphysiological concentrations of
glutamine (SPG) inhibited the uptake of neutral amino acids in oocytes expressing human
SLC1A5 (ASCT2), the primary glutamine transporter in cancer cells [92,93]. Interestingly,
anti-cancer effects of increased intratumoral glutamine were observed in subcutaneous
mouse tumor xenograft models where L-Gln was directly injected into tumors at a lower
dose than that prescribed for sickle cell disease patients [43,75,94]. While it has been
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considered challenging to manipulate local glutamine concentrations in vivo, especially
in the tissues by oral supplementation or enteral feedings, the typical methods for glu-
tamine supplementation [5], this finding highlights the therapeutic importance of local
intratumoral glutamine levels for cancer patients. Extended investigations are warranted
to clarify the effects of SPG on amino acid uptake in cancer cells and the response to
chemotherapy drugs.

Overall, the diverse roles of glutamine supplementation in cancer therapy, encom-
passing immune modulation, gut integrity preservation, mitigation of treatment-related
toxicities, and its potential impact on epigenetic regulation and amino acid transport, un-
derscores the promising therapeutic potential of this amino acid in the comprehensive
management of cancer. Integrating glutamine supplementation into the existing treatment
paradigm can improve the tolerability and efficacy of conventional cancer therapies and en-
hance patients’ overall well-being and quality of life during their cancer treatment journey.
However, further research is warranted to elucidate the optimal dosing regimens, possible
interferences with other therapeutic modalities, and long-term safety profile of glutamine
supplementation in different cancer patient populations (Figure 4).
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5. Clinical Evidence of Glutamine Modulation

Clinically targeting glutamine metabolism has been pushed forward following cancer
metabolism’s exceptional plasticity and conventional therapies’ limits (recurrence and
resistance) [38]. Several drugs have been developed with promising animal studies; nev-
ertheless, only limited ones have been attempted in clinical trials [11]. Recently, a GLS1
selective inhibitor, CB-839 (telaglenastat), tested in preclinical trials showed no significant
side effects and, therefore, was moved forward into clinical trials. While the in vitro model
using KRAS-derived PDAC cells had a promising impact, the in vivo experiment, unfor-
tunately, did not achieve reduced cell growth due to the adaptive metabolomic plasticity
of those cells in response to CB-839 [43]. Accordingly, CB-839 has been tested on solid
tumors in a combination trial. In these clinical studies, CB-839 has been administered with
nivolumab as a treatment for melanoma, renal cell carcinoma (RCC), and non-small cell
lung cancer (NSCLC); everolimus for RCC; palbociclib for KRAS-derived PDAC, NSCLC
and CRC; and cabozantinib for advanced RCC. In vitro and animal studies have shown
that CB-839 can potentially improve the radiosensitivity of head and neck carcinomas



Cancers 2024, 16, 1057 10 of 19

(HNSCC) and NSCLC, making it a good candidate for chemotherapy and radiotherapy in
clinical settings.

The phase 1 clinical trials evaluated escalating doses of CB-839 in patients with ad-
vanced solid tumors among the patients with triple-negative breast cancer, RCC, mesothe-
lioma, NSCLC, fumarate hydratase (FH)-deficient tumors, succinate dehydrogenase (SDH)-
deficient gastrointestinal stromal tumors (GIST) or non-GIST tumors, cMyc-mutated tumors,
and isocitrate dehydrogenase-1 (IDH1)- or IDH2-mutant tumors in combination with stan-
dard of care chemotherapy. Some adverse clinical effects were observed, such as diarrhea,
decreased appetite, nausea, and fatigue. However, the trial outcome was encouraging, with
good patient tolerability [95].

On the other side of the spectrum, the only FDA-approved glutamine therapy is
in sickle cell disease (SCD) patients of all ages based on a Phase III clinical trial where
L-glutamine was well tolerated and reduced pain crisis [96]. There exists no formal FDA
approval of glutamine supplementation as a cancer therapeutic, however. Instead, the bulk
of the clinical data that supports glutamine supplementation to date exist in clinical studies
where glutamine supplementation was used as an adjunct to chemotherapy or radiation
therapy to mitigate toxicities from cancer therapies (Table 1) [73].

Table 1. Clinical trials of glutamine supplementation in cancer patients.

Patients (Cancer Types) n Therapy Gln Supplementation Outcome Ref.

Esophageal cancer 13
Radiochemotherapy; cisplatin
and 5-FU *1 30 g/day Gln over 28 days

• Reduction in the lymphocyte
count prevented

• Gut permeability attenuated
[97]

Esophageal cancer 13 Radiochemotherapy 30 g/day Gln over 4 weeks
• Enhanced lymphocyte mitogenic

function
• Reduced gut permeability

[98]

Gastrointestinal cancer 28 Chemotherapy; 5-FU and FA *2 16 g/day Gln for 8 days
• Good tolerance
• No significant effect on oral

mucositis
[99]

Metastatic colorectal cancer 24 Chemotherapy; 5-FU and CF *3 0.4 g/day i.v. Gly-Gln for
5 days

• Reduction in mucositis, gastric
ulcerations and duodenal mucosa [100]

Head and neck cancer 17 Radiation therapy 2 g/m2 Gln swish therapy,
4×/day

• Shorter duration and severity of
oral mucositis [101]

Breast cancer 326
Chemotherapy;
cyclophosphamide *4,
doxorubicin and 5-FU

2.5 g Gln (Saforis), 3×/day for
14 days

• Reduced incidence of ≥ grade 2
and 3 mucositis

• Safe and effective
[102]

Metastatic colorectal cancer 86 Chemotherapy; oxaliplatin
15 g Gln, 2×/day for 7 days,
every 2 weeks during
chemotherapy

• Lower incidence of
oxaliplatin-induced mucositis

• No effect on response to
chemotherapy and survival

[103]

Soft tissue sarcoma,
osteosarcoma, Kaposi’s
sarcoma, and breast cancer

14 Chemotherapy; doxorubicin,
dacarbazine, CP, etc.

4 g Gln swish and swallow
2×/day

• Decreased severity and number of
days of mucositis [104]

Sarcoma and neuroblastoma 24
Chemotherapy; 5-FU and
leucovorin; carboplatin and
etoposide, methotrexate

4 g/day Gln for at least 14 days
• Reduction in duration and severity

of chemotherapy-associated
stomatitis and mouth pain

[105]

Breast cancer 65 Doxifluridine and leucovorin 30 g/day Gln for 8 days

• Doxifluridine-induced diarrhea
not prevented

• No impact on tumor response to
chemotherapy

[106]

Breast cancer 60 Chemotherapy Gln ≥ 12 days

• Amelioration of the
chemotherapy-induced increase in
intestinal permeability

• No significant positive effects on
stomatitis, diarrhea, and the
antitumor effect of chemotherapy

[107]
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Table 1. Cont.

Patients (Cancer Types) n Therapy Gln Supplementation Outcome Ref.

Rectal, bladder, prostate, and
gynecologic cancers and
pelvic soft tissue sarcomas

36 Radiotherapy 15 g Gln, 3×/day for 2 weeks

• No difference in overall diarrhea
incidence

• None of the patients in the
glutamine-treated group had
grade 3–4 diarrhea, but in the
placebo group, grade 3–4 diarrhea
was seen in 69% of the patients

[108]

Advanced/metastatic
colorectal cancer 70 Chemotherapy; 5-FU and FA 18 g/day Gln for 15 days

• Reduction in intestinal absorption
and permeability [109]

Gastrointestinal cancer 39 Chemotherapy; CF and 5-FU 30 g/day Gln for 7 days • Decrease in intestinal permeability [110]

Advanced/metastatic cancer 51 Chemotherapy; 5-FU and
leucovorin 30 g/day Gln for 15 days

• Lower intestinal permeability
score with Gln vs. controls

• Lower incidence of grade 2–4
mucositis

[111]

Breast cancer 32 HMB *5 14 g/day of Gln for 24 weeks
• Reduction in cancer

cachexia-related protein
• Improvement in protein synthesis

[112]

Hematological, solid cancer,
and multiple sclerosis 40

High-dose chemotherapy with
autologous stem cell
transplantation

30 g/day Gln for 14 days
• Causes proteo-catabolism of

medium severity [113]

Neck and head malignancy 44 Surgery 0.3 g/day Gln for 4 weeks
• Significant improvement in fat-free

mass and serum albumin
• Maintenance of lean body

[114]

NSCLC *6 60 Concurrent radiotherapy 10 g/8 h Gln for 12 months • Radiation-induced injury and
body weight loss prevented

[115]

Gastric adenocarcinoma 1950 Gastrectomy 0.05–0.49 g/kg/day Gln
• A decrease in serum albumin

levels [116]

Lung cancer (SCLC*7 or
NSCLC) 96 - 2.4 g HMB, 14 g Arg *8,

Gln 14 g Gln/day for 12 weeks
• A patient lived without significant

loss of lean body mass [117]

*1 5-FU, 5-fluorouracil; *2 FA, folinic acid; *3 CF, calcium folinate; *4 CP, cyclophosphamide; *5 HMB, β-hydroxy-β-
methylbutyrate; *6 NSCLC, non-small cell lung cancer; *7 SCLC, small cell lung cancer; *8 Arg, arginine.

Glutamine supplementation has garnered significant attention for its potential to
bolster immune function, a critical aspect of the body’s defense against cancer [5]. Studies
in patients with esophageal cancer on radiochemotherapy reported that high-dose oral
glutamine supplementation (30 g/day) can restore the lymphocyte count and enhance
lymphocyte mitogenic function. This suggests a positive impact on immune function
during cancer treatment [97,98]. While further research is required to delineate the specific
conditions under which glutamine supplementation may exert maximal immunomodu-
latory effects in different cancer types, these immune-enhancing effects hold promise for
optimizing the host’s defense mechanisms against cancer cells and potentially enhancing
the efficacy of immunotherapeutic interventions.

Chemotherapy-induced mucositis, a debilitating side effect characterized by inflam-
mation and ulceration of the mucous membranes, has been a particular target in glutamine
supplementation studies [18]. Findings from clinical trials exploring oral or parenteral
glutamine supplementation in cancer patients undergoing chemotherapy have presented
a mixed picture [73]. While some studies suggest a potential reduction in the severity
and duration of mucositis with glutamine supplementation, others report more modest
or inconclusive outcomes [99–103]. In several studies, glutamine supplementation, both
oral (including “swish and swallow” therapy) and parenteral, has effectively reduced
the severity and duration of stomatitis in patients receiving chemotherapy [104,105]. It
is unclear whether glutamine can ameliorate diarrhea associated with abdominal radia-
tion or chemotherapy; studies showed mixed results [106–108]. Moreover, it also showed
promising results in preventing intestinal absorption and permeability impairments dur-
ing chemotherapy [97,98,107,109–111]. Variability in study protocols, glutamine dosages,
and patient cohorts may contribute to the divergent findings, emphasizing the need for
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standardized approaches, and larger, well-controlled trials to elucidate the true impact of
glutamine supplementation on mucositis and other treatment-related toxicities.

The potential benefits of glutamine supplementation extend beyond immune modu-
lation and enteric toxicity mitigation to encompass broader aspects of patient well-being
during cancer treatment [73]. Studies examining the impact of glutamine on nutritional
status, quality of life, and treatment tolerance have provided insights into the multifaceted
effects of this amino acid supplementation [112–117]. The positive outcomes of these clini-
cal studies with different types of cancer patients/treatments include a reduction in cancer
cachexia-related protein, an improvement in protein synthesis, a significant improvement
in fat-free mass and serum albumin, maintenance of the lean body, and prevention of
radiation-induced injury and body weight loss. Maintaining adequate nutritional status in
cancer patients undergoing intensive treatments is crucial for sustaining energy levels, pre-
serving muscle mass, and supporting overall health [118]. Glutamine, as a key substrate for
protein synthesis and an essential component of the body’s antioxidant defenses, has been
explored in both experimental and clinical studies for its potential to diminish treatment-
induced weight loss and improve nutritional parameters. Clinical evidence, however,
presents a complex narrative, with some studies suggesting benefits in weight maintenance
and improved quality of life, while others report more equivocal outcomes. The influence
of factors such as treatment regimens, cancer types, and patient-specific characteristics
should be further examined to define the contexts in which glutamine supplementation
may be most advantageous for the overall well-being of cancer patients.

6. Perspective, Challenges, and Future Directions

Despite the promising roles of glutamine deprivation strategies and supplementation
in cancer therapy, several challenges persist, including the need for a comprehensive under-
standing of the metabolic adaptation of cancer cells, personalized delivery methods, and
identifying patient subgroups likely to benefit the most (Figures 3 and 4). The fine-tuning
between giving L-glutamine and depriving it is still not well understood and is dependent
on a specific personalized patient’s profile and timing. Moreover, the debate between local-
ized, stable glutamine levels, and circulating levels within the tumor and the surrounding
cells is of significant concern and needs thorough dissection and mechanistic understanding
(Figure 2). Addressing these challenges requires continued research to optimize the clinical
application, minimize potential side effects, enhance the efficacy of these interventions, and
develop improved glutamine-like chemicals or better combination strategies.

The safety profile of glutamine supplementation is critical to its clinical evaluation.
While glutamine is generally considered safe, there are some adverse effects reported
in clinical studies as limited/rare adverse events, including toxicity in the liver and
kidneys [119–121]. Additionally, concerns regarding potential interactions with specific
cancer types and treatments persist mainly due to the early in vitro knowledge that cancer
cells preferably consume glutamine (Figure 4). Several studies have provided evidence
suggesting that glutamine is not linked to the promotion of tumor growth and does not
adversely affect the outcomes of diverse cancer treatments. In a study involving breast
cancer patients, the reduction in tumor size did not show a significant difference between
the groups receiving glutamine and those receiving a placebo [107].

Similarly, a study by Topkan et al. found that oral glutamine supplementation in
patients with locally advanced non-small cell lung cancer undergoing chemoradiotherapy
did not lead to significantly different outcomes in terms of cancer-related clinical results,
overall survival, and progression-free survival compared to the group without glutamine
treatment [122]. Another investigation by Tsujimoto et al. focused on patients with head
and neck cancer, revealing no significant difference in the overall response rate, which
represents the percentage of patients achieving complete or partial response, between
the glutamine and placebo groups 10 weeks post-chemoradiotherapy completion [123].
However, high doses of glutamine supplementation in certain contexts, particularly in
patients with gastrointestinal cancers, have raised questions about the theoretical risk of
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fueling cancer growth. We are currently investigating the safety and feasibility of a com-
bination of gemcitabine and nab-paclitaxel with oral L-glutamine powder as a first-line
systemic therapy in patients with unresectable or metastatic PDAC (GlutaPanc phase I
trial [124]). This will be the first-ever prospective trial to employ a dose-finding design
of an approved oral L-glutamine therapy along with first-line standard chemotherapy
in untreated metastatic PDAC. The intricate balance between providing a substrate for
normal cellular functions and potentially supporting malignant cells underscores the im-
portance of careful consideration and individualized approaches in the clinical application
of glutamine supplementation.

Clinical evidence for the optimal delivery methods, concentration, and chemical sta-
bility of glutamine supplementation remains an area of ongoing exploration; the efficacy of
the treatment can be influenced by factors such as solubility and absorption. Glutamine
solubility is low (25 g/L); thus, suspensions are needed for topical, oral, and enteral sup-
plementation; therefore, adding disaccharides can facilitate mucosal uptake. Manipulating
glutamine levels is challenging because glutamine is abundant in the body, as studies show
minimal changes in plasma glutamine levels even after repeated high-dose supplemen-
tations [125]. Additionally, monitoring local glutamine concentrations might be difficult
since, in general, there is a poor correlation between plasma concentration and tissue
concentrations [126]. Moreover, whether administered orally, intravenously, or even locally,
the bioavailability and effectiveness of glutamine supplementation may vary. Determining
the optimal dosage and duration of supplementation and identifying patient populations
that derive the most benefit are crucial considerations for refining the clinical applica-
tion of glutamine supplementation in cancer therapy. In addition, glutamine delivery
through free and dipeptide forms has been explored, focusing on the efficacy of glutamine
dipeptides [127]. Glutamine dipeptides, particularly l-alanyl-l-glutamine (Ala-Gln), have
shown efficacy in reducing infectious complications, hospital stay length, and mortality
in critically ill patients, as supported by clinical and experimental studies [127–134]. The
choice between free glutamine and glutamine dipeptides depends on the patient’s catabolic
circumstance and route of administration. Therefore, it is crucial to consider patient-specific
factors in deciding the route, dose, and form of glutamine supplementation.

7. Conclusions

Glutamine, as a key player in cancer metabolism, holds significant promise as a
target for therapeutic intervention. While both glutamine deprivation strategies and
supplementation offer potential benefits in cancer treatment, their complex interplay with
tumor microenvironments and metabolic adaptations necessitates further research and
refinement to maximize clinical efficacy and ensure patient safety. As we navigate the
intricacies of glutamine modulation, sustained efforts in research and development remain
imperative to harness its full therapeutic potential in the fight against cancer.
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