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Simple Summary: In the fight against hepatocellular carcinoma (HCC), the most common form of
liver cancer, researchers are exploring the combination of immunotherapy and radiation therapy.
This article reviews the latest studies on this approach, focusing on how these two treatments can
work together to enhance their effectiveness against HCC. The findings from this research could
significantly impact the treatment of liver cancer, potentially leading to more effective strategies and
better outcomes for patients.

Abstract: Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents signifi-
cant treatment challenges, especially in its advanced stages. This article delves into the promising
approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation
therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical
research, highlighting the potential synergistic effects of this combinational treatment. Emerging
evidence suggests that this synergy enhances tumor control and improves patient survival rates. The
combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic,
immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each
treatment modality when used separately. This integrative approach is especially promising in
addressing the complex tumor microenvironment of HCC. However, the treatment landscape is
nuanced, with challenges such as patient-specific response variability and potential resistance to
therapies. Future research directions should focus on refining these combination strategies, tailoring
them to individual patient profiles, and understanding the underlying mechanisms that govern the
interaction between immunotherapy and radiation therapy. Such advancements could significantly
improve HCC management, setting new standards for patient care and treatment efficacy.

Keywords: hepatocellular carcinoma; immune checkpoint inhibitors; immunotherapy; radiation
therapy; combination cancer therapies

1. Introduction

Globally, liver cancer ranks as the seventh most frequently diagnosed cancer and
stands as the third leading cause of cancer-related mortality [1]. Hepatocellular carcinoma
(HCC) represents the predominant form of primary liver cancer, accounting for up to 85%
of all cases of liver cancer [1]. The multifactorial etiology of HCC, encompassing viral
hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease, contributes to its
complexity and the challenges encountered in its management [2].

Traditional therapeutic avenues such as surgical interventions, transplantation, and
locoregional therapies offer substantial benefits in the early stages of HCC. However, their
applicability diminishes in advanced, metastatic, or recurrent diseases, necessitating the
exploration of novel and effective treatment strategies [3]. Immunotherapy has surfaced
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as a beacon of hope, unveiling new horizons in the therapeutic landscape of HCC. By
harnessing the body’s immune system, immunotherapy, encompassing immune checkpoint
inhibitors (ICIs) and adoptive cell therapies, aims to bolster the immune response against
the tumor, marking a significant advancement in the battle against HCC [4]. Radiation
therapy continues to hold its ground as a pivotal element in the oncological arsenal. It is
utilized for its capacity to exert cytotoxic effects on tumor cells, facilitating local control and
palliation in HCC [5]. The integration of immunotherapy and radiation therapy presents
a novel paradigm, suggesting a symbiotic relationship that could potentiate therapeutic
outcomes. This amalgamation aims to capitalize on the strengths of each modality, fostering
a conducive environment for enhanced tumor control and improving survival outcomes [5].

This review aspires to navigate through the intricate pathways of interaction between
immunotherapy and radiation therapy in the context of HCC. It seeks to provide a com-
prehensive review of the preclinical and clinical data related to the combination of ICI
and radiation therapy, addressing the expected challenges and future direction of this
combination approach.

2. Overview of Current Management of HCC: Focus on ICI and Radiation Therapy

The treatment of HCC is guided by the Barcelona Clinic Liver Cancer (BCLC) stag-
ing system, which incorporates tumor burden, liver function, and patient performance
status [6]. Most patients present with BCLC stage B or later, where curative treatments like
resection, ablation, or transplantation are not feasible. Trans-arterial chemoembolization
(TACE) only applies to a limited number of BCLC B-stage patients with specific criteria
and is often used as a bridge to transplantation. However, many patients may not qualify
for transplantation due to disease progression or liver function limitations [7–9]. The
2022 BCLC guidelines introduced updates for systemic therapies in advanced-stage HCC
(BCLC C) [10].

2.1. Immunotherapy in HCC

Immunotherapy has marked a groundbreaking phase in treating liver cancer, intro-
ducing innovative strategies that enhance the body's own immune system to target and
destroy cancer cells effectively [11]. At the heart of this advancement are treatments known
as immune checkpoint inhibitors, including PD-1 and CTLA-4 blockers. These therapies
work by boosting the immune system's ability to detect and fight cancer cells, significantly
improving the chances of eliminating the disease [12,13].

The advent of ICI has significantly enhanced the management of HCC, particularly in
the context of BCLC stages B-C and unresectable/metastatic disease. Initially, monother-
apies targeting the programmed cell death protein 1 (PD-1), such as pembrolizumab
and nivolumab, demonstrated potential but exhibited relatively limited clinical bene-
fit when employed as later-line therapies following progression or intolerance to so-
rafenib [14–16]. Notably, two recent pivotal studies, IMBRAVE150 (NCT03434379) and
HIMALAYA (NCT03298451), have demonstrated promising clinical benefits associated
with the combination approach involving ICIs [12,13,17]. A phase 3 randomized clinical
trial (RCT), IMBRAVE150, assessed the ICI and anti-angiogenesis combination approach,
employing atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) in treatment-naive
advanced/metastatic HCC. Similarly, phase 3 RCT HIMALAYA investigated the dual check-
point inhibitor approach with durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA4)
as the frontline treatment for advanced/metastatic HCC. Both trials have demonstrated
promising efficacy with each combination approach, showcasing superior survival benefits
compared to the historical first-line therapy, sorafenib. Currently, these two ICI based
regimens are considered the standard front-line therapy for advanced/metastatic BCLC
stage B-C HCC [10].
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Artificial Intelligence-Based Pathology as a Biomarker for Immunotherapy in HCC

Innovative strides in HCC treatment have been made through the application of
artificial intelligence (AI) in pathology, presenting a novel approach to predicting treatment
sensitivity. A groundbreaking multicenter retrospective study introduces an AI model, the
atezolizumab–bevacizumab response signature (ABRS-P), designed to predict sensitivity
to atezolizumab–bevacizumab treatment in patients with hepatocellular carcinoma HCC.
This AI model, trained on data from The Cancer Genome Atlas and validated through
independent patient series, marks a significant advance in personalized cancer therapy.
The study’s key outcomes demonstrate the ABRS-P model’s effectiveness in identifying
patients likely to benefit from atezolizumab–bevacizumab based on the correlation between
model predictions and actual progression-free survival rates. Patients with ABRS-P-high
tumors exhibited notably longer median progression-free survival, highlighting the model’s
potential as a reliable biomarker for treatment sensitivity. Moreover, the integration of
spatial transcriptomics offered insights into the molecular characteristics associated with
treatment response, illustrating the model’s ability to uncover biological mechanisms
underlying HCC [18].

2.2. Radiation Therapy in HCC

The landscape of HCC management is multifaceted and marked by a diverse array of
locoregional therapy (LRT) options, each catering to different stages of tumor progression.
Radiation therapy has emerged as a crucial modality in HCC’s comprehensive manage-
ment strategy, leveraging high-energy rays to precisely target and eliminate cancer cells,
contributing significantly to local control and palliative care objectives. Traditionally, the
application of external beam radiotherapy (EBRT) in managing HCC has been constrained
due to technological hindrances and apprehensions regarding potential liver toxicity [19].
However, recent technological progress has facilitated the accurate administration of high-
intensity radiation doses specifically to the liver in HCC cases, concurrently minimizing
harm to the surrounding healthy tissues [20,21].

Rapid advancements in radiation therapy techniques, such as Stereotactic Body Ra-
diation Therapy (SBRT), Selective Internal Radiation Therapy (SIRT), and External Beam
Radiation Therapy (EBRT), represent a significant evolution in oncology that directly im-
pacts HCC treatment. SBRT, capable of delivering high doses of potent radiation over a
handful of treatment sessions without harming surrounding tissue, has shown exceptional
efficacy for small, well-defined liver tumors. Similarly, SIRT, or radioembolization, which
combines the embolic effect with targeted radiation delivery by directly injecting radioac-
tive microspheres into the blood supply of the tumor, offers a therapeutic option for HCC
patients with few alternatives. These innovations underscore a critical shift toward a highly
patient-centric approach in the treatment of cancer, including HCC, where minimizing
damage to healthy liver tissue is paramount [22,23].

For initial-stage HCC, the emphasis has predominantly been on ablation therapies.
However, in the intermediate stages and selected cases of advanced-stage HCC, a spectrum
of strategies comes into play, such as TACE, trans-arterial radioembolization (TARE), ra-
diofrequency ablation (RFA), microwave ablation (MWA), and SBRT [24–26]. The advent of
SBRT and proton therapy, in particular, has enhanced the precision and effectiveness of radi-
ation delivery, minimizing unintentional harm to surrounding healthy tissues and offering
a testament to the ongoing innovation within EBRT modalities such as Intensity-Modulated
Radiation Therapy (IMRT) and Image-Guided Radiation Therapy (IGRT) [27,28].

The clinical panorama of radiation therapy in treating HCC is in a state of constant flux,
enriched by recent research revelations elucidating its effectiveness and prospective applica-
tions. Contemporary studies have underscored the auspicious results linked with radiation
therapy, reflecting enhancements in overall survival and a decline in recurrence rates. Such
favorable outcomes permeate various therapeutic scenarios, where radiation therapy is
either utilized as an isolated modality or is integrated synergistically with alternative
interventions, like surgery or systemic therapies, to bolster treatment efficacy [29].
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3. Current Limitations of ICIs and Radiation Therapy in HCC

As previously indicated, ICI has brought successful improvement in the management
of HCC, and currently, ICI-based regimens are considered the standard front-line therapy
for unresectable/metastatic HCC. However, only 15–30% of HCC patients have a durable
response to these ICI regimes, and 20–40% of patients fail to respond [12,13,17]. A recent
post hoc biomarker analysis from GO30140 or IMbrave150 studies pool by Zhu and col-
leagues suggested several potential predictive biomarkers [30], but these need external
validation ideally by biomarker-driven prospect study to establish their roles. Currently,
there is no reliable predictive biomarker for ICI in HCC to drive clinical decisions. There are
vigorous ongoing efforts in CAR-T cell therapy and targeting other checkpoint molecules
such as TIM-3, LAG-3, and TIGIT, which might broaden the range of ICI-based treatments
for HCC. Further research might also pave the way for small-molecule inhibitors targeting
the PD-1/PD-L1 pathway, offering an alternative with greater oral bioavailability, enhanced
anti-tumor efficacy, and reduced toxicity [31].

Radioresistance in HCC involves multiple factors, including genetic mutations in DNA
repair genes and altered signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/
ERK. Hypoxia within tumors upregulates hypoxia-inducible factors (HIFs), leading to en-
hanced DNA repair and reduced apoptosis. The tumor microenvironment also contributes
to resistance by secreting protective cytokines and growth factors. Strategies to overcome
this resistance include targeted therapies, hypoxia-modifying agents, and epigenetic drugs,
which show promise in enhancing the efficacy of radiotherapy in HCC [32,33]. The fore-
front of innovation is the combination of radiation therapy with other therapeutic methods.
A notable area of exploration is its integration with immunotherapeutic agents, exemplified
by studies investigating the synergy between radiation therapy, regorafenib, and PD-1
inhibitors, unveiling promising strides in therapeutic efficacy and manageable toxicity
profiles in advanced HCC stages [34].

4. Combination of Radiotherapy and Immunotherapy

The dynamic interplay between immunotherapy and radiation therapy is carving
a novel trajectory in the therapeutic management of cancer. The radioimmunotherapy
combination has been meticulously explored in the field of oncology, including HCC, based
on the multiple synergistic/complementary mechanistic rationales of these two anti-cancer
modalities, namely radiation and immunotherapy.

4.1. Rationale of Radioimmunotherapy

Building on our previous discussion, radiation therapy significantly influences both
the tumor and the host’s immunological microenvironments [35]. The response to radiation
therapy notably includes the increased expression of MHC class I molecules on tumor
cells, enhancing their visibility and recognition by cytotoxic CD8 T cells, and promoting
intra-tumoral infiltration of cytotoxic T cells [36,37]. Additionally, dendritic cells, central
to antigen presentation to T cells, are activated by radiation therapy. This activation
involves the release of pro-inflammatory cytokines and the upregulation of co-stimulatory
molecules, leading to cancer cell death and promoting the unveiling of neoantigens [38,39].
In addition, recent research has revealed that DNA damage caused by radiation therapy
can induce a high mutational and neoantigen burden, which, in turn, promotes tumor
death via cytotoxic T cell activity [40].

Transitioning to the role of ICIs, these treatments disrupt specific cellular interactions,
notably between PD-1 and PD-L1 or CTLA-4 and B7-1 (CD80)/B7-2 (CD86) [41]. This
disruption facilitates T-cell activation with anti-tumor properties. Notably, when ICIs
are paired with radiation therapy, a synergistic effect occurs, amplifying T cell-mediated
cytotoxicity through mechanisms like improved antigen presentation and recognition, the
release of pro-inflammatory cytokines, and the generation of tumor-specific antigens or
neoantigens [42]. Concurrently, studies reveal that radiation enhances PD-L1 expression
in tumor cells via the IFN-γ/STAT3 pathway [43]. Another study delves into the realm
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of this interaction, exploring the modulation of the immune response following radiation
therapy. Their research elucidates that radiation therapy can induce the upregulation of
PD-L1 on tumor cells, which could potentially influence the effectiveness of PD-1-based
immunotherapies. In their innovative approach, they utilize attenuated Salmonella carrying
siRNA-PD-L1, demonstrating that this combination could enhance the anti-tumor effects
of radiation therapy in HCC. This synergy is manifested through inhibited tumor cell
proliferation, enhanced apoptosis, and stimulated immune cell infiltration and activation
within tumor tissues [44]. These processes induced by radiation therapy not only augment
the priming and activation of immune cells, but also enhance the overall immune response
against the tumor [45] (Figure 1).
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and T cell activation, facilitating the recognition and destruction of tumor cells. Concurrently, RT may
induce an immunosuppressive environment characterized by the recruitment of regulatory T cells
(Tregs) and tumor-associated macrophages (TAMs), as well as upregulation of inhibitory checkpoint
molecules PD1, PD-L1, and CTLA4 on immune and tumor cells. The administration of checkpoint
inhibitors—anti-PD-1, anti-PD-L1, and anti-CTLA-4—acts to mitigate these immunosuppressive
signals, thereby potentiating the cytotoxic activity of CD8+ T cells within the tumor microenvironment.
This combination therapy paradigm aims to maximize tumor eradication while limiting tumor
escape mechanisms.

These multiple mechanistic rationales well support a novel combination of radiation
and immunotherapy, effectively merging the direct cytotoxic effects on the local tumor
by radiation with the complementary effects of ICIs and TME modification by radiation
therapy [43].

4.2. Optimal Timing of ICI during Radioimmunotherapy

The timing and sequencing of immunotherapy and radiation therapy are crucial for
maximizing therapeutic synergy. For example, one study emphasized the significance
of timing in administering ICIs in relation to whole-brain radiation therapy, suggesting
that the sequence could influence clinical outcomes [46]. However, the ideal timing for
administering ICIs in relation to radiation therapy—whether concurrently, prior to, or
following radiation—remains unclear, as evidenced by the range of approaches observed
in various animal studies [47,48].

Research indicates that combining CTLA-4 blockade with radiation therapy may
bolster T-cell activity in tumors and extend survival in mouse models, as evidenced by
two studies with differing administration sequences: one applied anti-CTLA-4 before
radiation, while the other did the opposite. Additionally, a study by Young and colleagues
found that administering anti-CTLA-4 before radiation was more effective, possibly due
to reduced regulatory T cells. In a different approach, administering anti-OX40 one day
post-radiation proved most effective in enhancing antigen presentation. However, the
ideal timing for the PD-L1 blockade remains contested. While one study advocates for
radiation before immunotherapy, another suggests that simultaneous treatment, rather
than sequential, yields better survival outcomes [47,49].

Administering immunotherapy before radiation therapy aims to prime the immune
system, enhancing the recognition of tumor antigens released during subsequent radiation
therapy. Post-radiation administration of immunotherapy is also a focal point of research.
Radiation therapy can modulate the tumor microenvironment, enhancing the expression
of molecules such as PD-L1, thus providing a rationale for the subsequent introduction of
immunotherapeutic agents like PD-1/PD-L1 inhibitors. A recent study demonstrated that
combining siRNA-PD-L1 post-radiation could effectively enhance the anti-tumor effect,
inhibiting tumor cell proliferation and stimulating immune cell infiltration [44].

In addition, the relative immunogenicity of different RT dosages, including hypofrac-
tionation versus conventional fractionation, is under investigation [50,51]. The determi-
nation of optimal dosage, fractionation, and sequencing of RT and immunotherapy is
an area of ongoing research in HCC, influenced by factors like tumor size, location, and
liver function.

4.3. Pathological Aspects of Hepatocellular Tumors Expressing PD-L1

PD-L1 significantly influences HCC progression by enabling immune evasion, which
adversely affects patient outcomes. It mediates immunosuppression primarily through the
inhibition of T-cell activity, promoting tumor growth. The regulation of PD-L1 expression
is complex, involving pathways like IL-6/JAK/STAT3, which are pivotal for maintaining
an immunosuppressive tumor microenvironment. Additionally, the tumor microenviron-
ment itself, through interactions with tumor-associated macrophages and the PKM2-STAT1
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pathway, can further stimulate PD-L1 expression. These insights suggest that immunother-
apeutic strategies targeting not only PD-L1 but also these regulatory pathways could be
crucial for reversing immune resistance and enhancing therapy effectiveness [52,53].

4.4. Strategies for Minimizing Hepatotoxicity in Combined Immunotherapy and Radiotherapy

The treatment of HCC through the synergistic use of immunotherapy and radio-
therapy underscores the essential requirement to reduce hepatotoxicity, given the liver’s
particular sensitivity to radiation. Recent innovations highlight a variety of tactics designed
to lower this hazard, including the adoption of precision radiotherapy methods such as
IMRT and SBRT. These techniques focus on accurately targeting the tumor masses while
preserving the integrity of the surrounding healthy liver tissue. Enhancing the effectiveness
of immunotherapy by selecting compounds that exert minimal hepatic side effects and
scheduling their application in synchronization with radiotherapy serves as a further mea-
sure to curb hepatotoxicity. A critical component of this strategy is the ongoing assessment
of liver function, enabling adjustments in dosage or temporary halts in treatment in re-
sponse to the specific risk profile of each patient, thereby averting significant hepatic injury.
The preventive employment of drugs aimed at safeguarding liver health adds another de-
fensive layer against hepatotoxicity. Prioritizing patient evaluation and risk categorization
before initiating therapy is crucial for tailoring treatment protocols that minimize negative
outcomes. Beyond merely aiming to reduce liver toxicity, these approaches seek to amplify
the combined effect of radiotherapy and immunotherapy. By refining radiation exposure,
utilizing radioprotective agents, and exploiting precise targeting practices, this holistic
treatment methodology aspires to bolster the reciprocal action between radiotherapy and
immunotherapy. It achieves this by altering the TME to enhance the potency of ICIs, de-
manding a thorough grasp of the TME’s dynamic interrelations. The primary aim is to
advance patient results by balancing the maximization of therapeutic efficiency against the
minimization of adverse effects, requiring a collaborative approach to adeptly manage the
complex dynamics within the TME [36,54].

4.5. Abscopal Effect and Its Implications for HCC

The abscopal effect involves systemic radiation-induced anti-tumor effects and is
translated locally, representing a very promising therapeutic avenue for HCC patients
which potentially exploits the immune system to recognize and destroy cancerous cells
that are remote from the site of initial intervention, offering a complement to conventional
therapies and a truly novel approach to management of this daunting neoplasm. Key
mechanisms proposed are the release of tumor antigens following radiation-induced cell
death, in turn leading to activation of T cells systemically when presented by antigen-
presenting cells. This implies the ability to target not only the irradiated tumor but also
distant metastases, indicating this to be a hopeful strategy for HCC, which so far has
poor prognosis and limited therapy [55,56]. This phenomenon underscores the synergistic
potential of combining radiotherapy with immunotherapy, suggesting that radiotherapy
may target the local tumor and induce systemic immune responses beneficial for overall
treatment outcomes. In the context of HCC, liver-directed combined radiotherapy as
a downstaging strategy for liver transplantation has demonstrated favorable oncologic
outcomes [57].

Clinical application of the abscopal effect in HCC still lies in its infancy, with a long way
to go, although the continuous investigations are aimed at the optimization of radiation
protocols and combinations with immunotherapies, which would reliably induce the
phenomenon in practice. Further study on the molecular and immunological profile of
HCC is critical in tailoring treatment strategies, based on exploiting the abscopal effect with
hope for overall improvements in the management of patients [58,59].
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4.6. Clinical Trials Investigating Radioimmunotherapy in Hepatocellular Carcinoma

Building upon the aforementioned rationale for radioimmunotherapy and the well-
established roles of radiotherapy and ICI in HCC, the combination approach of radiation
therapy and ICI has been under investigation in multiple clinical trials.

Incorporating specific genetic markers and biomarkers into the selection criteria for
clinical trials investigating radioimmunotherapy in HCC can significantly refine patient
selection and treatment outcomes. Recent studies highlight the potential of various genetic
alterations and biomarkers in predicting responses to treatment. For example, alterations
in the TERT promoter and mutations in genes such as TP53, CTNNB1, and the presence of
specific non-coding RNAs have been associated with HCC progression and response to
therapies. Additionally, the expression of PD-L1, a key marker in immunotherapy response,
and serum proteins such as AFP (alpha-fetoprotein), have been explored for their predictive
value in treatment efficacy. The integration of these genetic markers and biomarkers in trial
design could enable more personalized and effective radioimmunotherapy strategies for
HCC patients [60–62].

A phase 1 trial investigated the effectiveness and safety of combining SBRT with
immunotherapy for treating advanced or inoperable HCC. Participants underwent SBRT
and were then treated with either nivolumab alone or in combination with ipilimumab. The
study’s primary concern was identifying dose-limiting toxicities within a 6-month period
following SBRT. The findings revealed a more favorable outcome in patients treated with
nivolumab and ipilimumab, showing higher response rates, extended progression-free, and
overall survival [63]. A phase 2 single-arm study (START-FIT, NCT03817736) evaluated se-
quential TACE and SBRT followed by avelumab (anti-PDL1) in locally advanced HCC, with
the rate of amenable to curative treatment as the primary endpoint. Thirty-three patients
were included, with 36% in BCLC stages A-B and 64% in stage C without extrahepatic
disease. The radioimmunotherapy strategy yielded promising conversion rates (55%) and
radiographic complete response (42%) without demonstrating any new safety concerns [64].
Another phase 2 trial, CA 209-678 (NCT03033446), assessed Y90-radioembolization fol-
lowed by nivolumab in 36 patients with advanced HCC. Among these patients, 36% had
extrahepatic spread, and 44% had disease outside Y90-radioembolization fields. The pri-
mary endpoint was evaluated using the Simon two-stage design, targeting an ORR of 41%.
The ORR was 30.6%, failing to meet the pre-specified target ORR. However, the ORR in
patients without extrahepatic disease was at 43.5%. Conversely, patients with extrahepatic
disease showed a limited ORR of 7.7%. Treatment-related grade 3–4 adverse events or
serious adverse events occurred in 14% of patients, but the overall combination was well-
tolerated without any treatment-related deaths [65]. These findings suggest that further
investigation of this radioimmunotherapy strategy is warranted, especially in patients with
refractory or ineligible BCLC B disease for TACE and those with BCLC C disease without
extrahepatic spread.

Table 1 below lists the ongoing trials incorporating RT and ICIs in HCC. This table
provides a snapshot of current research endeavors, showcasing the diverse approaches
adopted to enhance HCC treatment.

Table 1. Ongoing trials of RT + ICIs in HCC *.

NCI ID
(Trial) Phase Eligibility Type of RT Type of ICI Design Target

Enrollment
Primay

Endpoint Status Estimated
Completion

NCT04857684 1
Resectable

Child–Pugh:
A

SBRT
Atezo–Bev

(anti-PDL1/anti-
VEGF)

SBRT -> 2 cycles of
Atezo–Bev ->

Surgery
20 G3-4 TRAE

rate Recruiting 31 December
2024

NCT05286320 1/2

Disease with
PVI

Child–Pugh:
A

SBRT
Pembrolizumab +

Lenvatinib
(antiPD1/TKI)

Pembrolizumab +
Lenvatinib

SBRT during C2 of
pembrolizumab

27 Phase1: DLT
Phase2: ORR

Not Yet
Recruiting

30
September

2026
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Table 1. Cont.

NCI ID
(Trial) Phase Eligibility Type of RT Type of ICI Design Target

Enrollment
Primay

Endpoint Status Estimated
Completion

NCT05625893
(PORTAL) 2

Disease with
PVI

Child–Pugh:
A

Proton
radiotherapy

Atezo–Bev
(anti-PDL1/anti-

VEGF)

Atezo–Bev
PBT 1 wk after C2

Atezo–Bev
63 PFS Recruiting 31 December

2025

NCT05339581
(iPLENTY-

pvtt)
N/A

Disease with
PVI

Child–Pugh:
7 or less

IMRT anti-PD1 +
Lenvatinib (TKI)

Anti-PD1 +
Lenvatinib + IMRT

(C3 of anti-PD1)
or

Anti-PD1 +
Lenvatinib

78 ORR Not Yet
Recruiting 31 May 2024

NCT06040177 2

Unresectable
with PVI

BCLC: Stage
C

Child–Pugh:
7 or less

SBRT
Cadonilimab

(anti-
PD1/CTLA4)

Renvatinib
SBRT ->

Cadonilimab
30 ORR Recruiting 1 February

2025

NCT04913480 2

Unresectable,
non-

metastatic
BCLC: Stage
C or earlier
Child–Pugh:

7 or less

SBRT Durvalumab
(anti-PDL1)

Durvalumab
SBRT 1 wk after 1st

Durvalumab
37 PFS at 1 year Recruiting 31 December

2024

NCT03942328 1/2

Unresectable,
non-

metastatic
BCLC: Stage
C or lower

Child–Pugh:
A

EBRT

Autologous
Dendritic Cells
+ Atezo–Bev

(anti-PDL1/anti-
VEGF)

EBRT (1–3 wks)
-> Autologous

Dendritic Cells +
Atezo–Bev

54
DLT

PFS at 2
years

Recruiting 31 August
2027

NCT04988945 2

Non-
metastatic

Child–Pugh:
7 or less

SBRT
Durva–Treme

(anti-
PDL1/CTLA4)

TACE & SBRT ->
Durva–Treme 33

Downstaging
for

resection rate
Recruiting 1 December

2024

NCT05488522 1

Non-
metastatic

Child–Pugh:
7 or less

SBRT
Atezo–Bev

(anti-PDL1/anti-
VEGF)

Atezo–Bev
SBRT on wk2 18 DLT Recruiting 31 December

2024

NCT06133062
(ProtonAB) 2

Non-
metastatic

BCLC: Stage
B-C

Child–Pugh:
A

Proton
radiotherapy

Atezo–Bev
(anti-PDL1/anti-

VEGF)

Proton radiotherapy
with Atezo–Bev 45 PFS Recruiting

30
September

2028

NCT05992220
(ALERT-

HCC)
2,RCT

Non-
metastatic

with
vascular
invasion

Child–Pugh:
A

EBRT
Atezo–Bev

(anti-PDL1/anti-
VEGF)

Atezo–Bev + EBRT
after C1D2 of

Atezo–Bev
vs.

Atezo–Bev w/o
EBRT

138 PFS Recruiting 31 March
2026

NCT05096715 1

Non-
metastatic

BCLC: Stage
B-C

Child–Pugh:
A

SBRT
Atezo–Bev

(anti-PDL1/anti-
VEGF)

SBRT + Atezo–Bev
-> Atezo–Bev 20 DLT Not Yet

Recruiting
1 January

2026

NCT05377034
(STRATUM)

2,
RCT

Non-
metastatic

Child–Pugh:
A

Radioembolization
(yttrium-90)

Atezo–Bev
(anti-PDL1/anti-

VEGF)

Radioembolization
-> Atezo–Bev

vs.
Atezo–Bev

176 ORR at
1 year Recruiting 1 November

2025

NCT03316872 2

Advanced/
Metastatic

Child–Pugh:
A

SBRT Pembrolizumab
(anti-PD1)

Pembrolizumab
SBRT on C1D2 of
Pembrolizumab

30 ORR Recruiting N/A
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Table 1. Cont.

NCI ID
(Trial) Phase Eligibility Type of RT Type of ICI Design Target

Enrollment
Primay

Endpoint Status Estimated
Completion

NCT04430452 2

Advanced/
Metastatic

Child–Pugh:
8 or less

Progression
on anti-

PD1/PDL1

Hypofracti-
onated

radiotherapy

Durva–Treme
(anti-

PDL1/CTLA4)

Hypofractionated
RT

-> Durvalumab or
Durva–Treme

21 ORR Recruiting 28 February
2027

NCT05396937 2
Metastatic

Child–Pugh:
7 or less

SBRT
Atezo–Bev

(anti-PDL1/anti-
VEGF)

Atezo–Bev
SBRT 1–2 wks after

C1 Atezo–Bev
42 ORR Recruiting N/A

NCT05809869 2 Metastatic
Radioem-
bolization

(yttrium-90)

Durva–Treme
(anti-

PDL1/CTLA4)

Durva–Treme
Radioembolisation

on wk 2
25 ORR Recruiting 31 December

2025

* This information is available on https://clinicaltrials.gov/ (accessed on 14 January 2024). Abbreviations:
Atezo–Bev, Atezolizumab plus bevacizumab; C, Cycle; DLT, Dose-limiting toxicity; Durva–Treme, Durvalumab
plus tremelimumab; EBRT, External beam radiation therapy; G, Grade; ICI, Immune checkpoint inhibitor;
IMRT, Intensity-modulated radiotherapy; N/A, Not available; ORR, Objective response rate; PBT, Proton beam
radiotherapy; PFS, Progression-free survival; PVI, Portal vein invasion; RCT, Randomized clinical trial; RT,
Radiation Therapy; SBRT, Stereotactic body radiotherapy; TACE, Transarterial chemoembolization; TKI, Tyrosine
kinase inhibitor; TRAE, Treatment-related adverse effect; Wk, Week.

The trials listed in Table 1 represent a significant push toward innovation in HCC
treatment. The results of this series of ongoing clinical trials elucidate multiple questions,
including (1) the overall role of radiation therapy and ICI combination in HCC, (2) the
optimal timing of ICI administration within the peri-radiation context, (3) the proper types
and doses of radiation therapy, and (4) the ideal clinical setting in the context of HCC for
this combination approach. The success of these trials could lead to changes in clinical
practice, offering more effective and personalized treatment options for HCC patients.

5. Challenges and Future Directions

The journey towards integrating immunotherapy and radiation therapy in treating
HCC is laden with challenges. As we navigate this complex terrain, understanding these
challenges and envisioning future directions becomes paramount.

5.1. Balancing Efficacy and Safety: A Primary Challenge

While promising, the confluence of immunotherapy and radiation therapy brings
forth unique challenges. Balancing the efficacy of these potent treatments with the safety of
patients is a delicate act, especially considering the potential for severe adverse events. The
heterogeneous nature of HCC further complicates patient selection, as responses to com-
bined therapy can vary significantly. Additionally, the high cost and limited accessibility of
advanced immunotherapies and radiation techniques pose significant barriers, especially
in resource-limited settings.

5.2. Challenges in Current Therapeutic Approaches

Although preclinical studies have shown promising results [66], to our knowledge, there
are not enough published prospective clinical trials on the combined use of RT and HCC,
except for a few limited series demonstrating encouraging clinical effectiveness [63,67].

Given that this area of research is still in its early stages, most studies have indicated
promising effectiveness and an acceptable toxicity profile for patients treated with a com-
bination of RT and ICI; they have yet to determine the optimal RT dose, fractionation
schedule, and sequencing with ICI. Factors such as the type of cancer, the specific ICI
used, and the tumor’s histological and mutational characteristics greatly influence these
variables [68]. Moreover, a dose range of 8–10 Gy RT administered in one to three fractions
is proposed to induce an abscopal effect [68,69], and the radio-sensitivity of nearby vascula-
ture, the toxicity profile, and the identification of pro-immunogenic signatures following
RT are critical considerations for optimizing protocols [70].

https://clinicaltrials.gov/
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Another formidable hurdle is the resistance to therapy, either inherent or acquired,
which can impede the success of these treatments. Numerous unresolved questions remain
in the field, yet the combination of radiation therapy and immunotherapy holds substantial
promise due to their synergistic effects. Thus, further research to address these issues and
advance the development of radiation immunotherapy is of paramount importance.

5.3. Envisioning Future Directions

The future of HCC treatment lies in the realm of personalized medicine. Genomics
and biomarker research advancements hold the key to tailoring therapy based on indi-
vidual patient profiles, aiming to maximize efficacy while minimizing toxicity. Exploring
various combination and sequencing strategies through ongoing and future trials is critical,
including the convergence of radiation therapy with immunotherapy, which could enhance
therapeutic outcomes in cancer treatment, including HCC [71].The complexity of com-
bining immunotherapy and radiation therapy necessitates an interdisciplinary approach,
fostering collaboration across various fields such as oncology, radiology, immunology,
and pharmacology. As we stand at the crossroads of a potential paradigm shift in HCC
treatment, embracing these challenges and future directions is pivotal. Through this con-
certed effort, we can harness the full potential of combining immunotherapy and radiation
therapy, ultimately leading to a new standard of care that offers improved outcomes for
patients battling this formidable disease.

6. Conclusions

The exploration of combining immunotherapy and radiation therapy in HCC treat-
ment is a rapidly evolving and promising area of oncology. This approach marks a signif-
icant shift in the therapeutic landscape, offering new hope and possibilities for effective
HCC management.

Clinical trials, such as those investigating the synergistic effects of durvalumab with
SBRT, nivolumab with radiotherapy, and the innovative combination of atezolizumab,
bevacizumab, and SBRT, are at the forefront of this evolution. Each study contributes
critical insights into optimizing treatment strategies, aiming to enhance the efficacy and
precision of HCC therapies.

Despite the potential of these combined modalities, the journey is fraught with chal-
lenges. Managing the unique adverse events, addressing the variability in patient responses,
overcoming resistance to therapies, and ensuring the accessibility and affordability of treat-
ments are key hurdles that need to be addressed. The future direction of HCC treatment is
steering towards personalized medicine, where therapies are tailored to individual patient
profiles, and novel combination and sequencing strategies are continuously explored.

The ongoing research and clinical trials are vital in overcoming these challenges,
setting the stage for more effective, personalized, and accessible treatment options for HCC.
As the medical community eagerly anticipates the results of these studies, there is growing
optimism about the potential to improve patient outcomes and quality of life significantly.

In summary, the integration of immunotherapy and radiation therapy in HCC signifies a
dynamic and transformative field filled with both opportunities and challenges. The continued
advancements in this area hold the promise of establishing new standards of care, ultimately
leading to enhanced treatment outcomes for patients facing this challenging disease.
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