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Simple Summary: In cancer, hotspots are those mutations emerging recurrently in tumors. Hotspots
are highly likely to be functional because tumors tend to keep those mutations that provide phys-
iological advantages. However, few hotspots have been studied, mainly because it is costly and
time-consuming. Here, we systematically test more than 1400 hotspots for their association with
patient survival and provide the results, including more than 300 significant associations, accessible
on the web. This would help prioritize hotspots that are likely functional and affect patient survival,
accelerating our knowledge of cancer and improving patient care.

Abstract: Background: Cofactors, biomarkers, and the mutational status of genes such as TP53,
EGFR, IDH1/2, or PIK3CA have been used for patient stratification. However, many genes exhibit
recurrent mutational positions known as hotspots, specifically linked to varying degrees of survival
outcomes. Nevertheless, few hotspots have been analyzed (e.g., TP53 and EGFR). Thus, many other
genes and hotspots remain unexplored. Methods: We systematically screened over 1400 hotspots
across 33 TCGA cancer types. We compared the patients carrying a hotspot against (i) all cases,
(ii) gene-mutated cases, (iii) other mutated hotspots, or (iv) specific hotspots. Due to the limited
number of samples in hotspots and the inherent group imbalance, besides Cox models and the
log-rank test, we employed VALORATE to estimate their association with survival precisely. Results:
We screened 1469 hotspots in 6451 comparisons, where 314 were associated with survival. Many
are discussed and linked to the current literature. Our findings demonstrate associations between
known hotspots and survival while also revealing more potential hotspots. To enhance accessibility
and promote further investigation, all the Kaplan–Meier curves, the log-rank tests, Cox statistics, and
VALORATE-estimated null distributions are accessible on our website. Conclusions: Our analysis
revealed both known and putatively novel hotspots associated with survival, which can be used as
biomarkers. Our web resource is a valuable tool for cancer research.

Keywords: TCGA; recurrent mutations; log-rank; cox; VALORATE; biomarkers

1. Introduction

Factors influencing cancer survival are crucial for patient stratification for therapies
and the development of novel treatments. Several individual-level factors are commonly
utilized, including age, sex, and ethnic group. Classical tumor factors such as TNM staging
(size, nodal invasion, metastases), FIGO, or other tumor-specific classification systems also
play a significant role. Pathology observations are also considered, such as the degree of
differentiation or invasiveness. Molecular markers, single and multiple, have emerged as
valuable tools for assessment. For instance, ALK rearrangements or overexpression in non-
small-cell lung cancer [1] and the 70-gene signature known as Mammaprint [2] are used
for prognosis. Moreover, many clinically informative molecular markers are associated
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with specific tumor mutations, such as EGFR in lung cancer [3], BRCA1/2 in breast and
ovarian cancers [4], or BRAF in melanoma [5]. Somatic molecular markers are currently
preferred due to their higher accuracy in stratifying patients, ultimately improving overall
survival rates.

Numerous genes exhibit recurrent mutations at specific positions across multiple
patients, a phenomenon extensively identified through various computational methods [6].
These highly recurrent positions are commonly referred to as “hotspots”. We focus on
hotspots at the nucleotide level in coding regions that have an impact on the translated
protein, for example, a change in the amino acid at position 41, which is observed in
several patients. Given the low likelihood of positional recurrence across diverse patients,
hotspots are believed to result from positive selection during tumor progression, rendering
them biologically and clinically significant [7]. Recently, there has been a growing interest
in utilizing hotspots as survival markers due to their apparent associations with patient
survival and their presumed distinct biological functions. However, investigating hotspots
in this context has been limited to specific cases. Notably, hotspots within TP53 have been
extensively studied [8–10], revealing associations with survival in ovarian [9] and liver
cancers [8]. Additionally, other hotspots have also been studied in specific cancers, such
as IDH1 and IDH2 in gliomas [11], EGFR in the lung [3], and BRAF in skin cancer [12].
Throughout this manuscript, we explore more than 1400 potential hotspots from TCGA
data and their potential associations with patient survival across diverse cancer types.

To discern the distinct clinical effects of hotspots, a commonly adopted practice in-
volves comparing the survival of patients carrying mutations in a hotspot with those who
do not [8]. This approach assumes that the survival of patients with the hotspot mutation
differs from the overall survival rate. However, it is worth noting that the observed survival
difference could be attributed to any other mutation in the gene rather than specifically
to the hotspot. Therefore, an alternative and reasonable approach is to compare patients
carrying the mutations in the hotspot with those carrying any other mutation in the same
gene. An alternative and reasonable approach to identify differences in survival is by
comparing a specific hotspot with another hotspot [9]. This comparison holds particular
interest as it may aid in selecting hotspots for use in clinical settings, facilitating rapid
tests. In this manuscript, we adopt a generalized approach to explore broader potential
associations using four tests, as depicted in Figure 1.

We conducted a rigorous and systematic screening of 1469 candidate hotspots across
33 cancer types from the TCGA dataset. To ensure inclusivity and avoid specific criteria
for hotspot selection, we focused on sequence-based hotspots, considering amino acid
positions that exhibited mutations in four or more patients within a particular cancer type.
To encompass various comparative scenarios, we implemented four different statistical
tests for screening purposes (as illustrated in Figure 1). Subsequently, we performed 6451
evaluations encompassing hotspots in all genes and cancer types. The results of each test are
presented, with specific examples being highlighted and discussed in detail. Overall, our
study reveals that numerous hotspots demonstrate significant associations with survival,
thereby underscoring their potential relevance for clinical applications. These findings pave
the way for the possible use of hotspots in personalized treatment approaches, ultimately
contributing to improved patient outcomes. The results are available in our web site
(http://bioinformatics.mx/SurvHotspots).

http://bioinformatics.mx/SurvHotspots
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Figure 1. The four tests were performed to identify hotspots associated with survival. Top: as an
example, a hypothetical gene is schematized for 54 patients, where 34 patients show mutations in
their tumor sample. Each colored sphere corresponds to a patient carrying a mutation. An empty
sphere corresponds to a patient not mutated in the gene. For this figure, 3 mutations in the same
amino acid position defined a hotspot. Thus, there are 4 hotspots at positions X, Y, Z, and W. Bottom:
the four tests performed. A vertical dashed bar splits the set of patients being tested. The four tests
differ in the set of patients being compared with X, a specific hotspot (in red).

2. Methods
2.1. Cancer Data

Cancer data for this study were obtained from The Cancer Genome Atlas (TCGA)
data portal (https://portal.gdc.cancer.gov, accessed on 10 June 2021). We included a total
of thirty-three different cancer types in our analysis. The mutations were obtained from
MAF files generated through exome sequencing. The data files were dated 30 September
2017 (#filedate 20170930) with #annotation.spec tag as gdc-1.0.1-public. To extract overall
survival data, we utilized Clinical TSV files. Annotations available within the MAF files,
such as a brief description of amino acid alterations, transcript information, and gene
identifiers, were utilized. We filtered mutations to use only those annotated with the field
HGVSp_Short, which summarizes the amino acid change and position. The position and
transcript ID were used to pool mutations. Silent mutations were not removed due to possi-
ble functional effects [13,14]. All data processing was performed using the R programming
language, with the maftools package 2.18.0 [15] from Bioconductor (https://bioconductor.
org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html, accessed first on
10 June 2021). We used CRAN R (https://cran.r-project.org/, accessed on 10 June 2021)
version 4.1.1 in Mac and Windows.

2.2. Detection of Hypermutated Samples

Some samples showing an exacerbated number of mutations were excluded from
the study to ensure robust analyses. The tumor mutation burden (TMB) was calculated
as the total count of single nucleotide variations per sample. For further investigation
and similarly to other studies [16,17], we classified samples as hypermutated if their TMB
exceeded 500 mutations and if their TMB ranked within the top 10% among all samples.
Additionally, we considered samples as hypermutated if their TMB was higher than the
median plus four times the median absolute deviations of the TMB distribution.

https://portal.gdc.cancer.gov
https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
https://cran.r-project.org/
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2.3. Statistical Analyses

As depicted in Figure 1, our study involved the execution of four tests, all of which
required the comparison of two survival curves. Traditionally, the log-rank test is commonly
utilized for such comparisons. However, this test internally employs a χ2 distribution,
assuming large sample sizes and comparable numbers of samples in both groups. This
assumption becomes problematic in our analyses as the number of samples carrying a
hotspot is expected to be small compared to the entire set of samples within a given
cancer type. Past studies have established that the log-rank test is inappropriate for the
proposed analyses [17–19]. To address this issue, we employed our R package VALORATE
1.0-1 [17,19], which accurately and efficiently estimates the exact null distribution for
specific comparisons of survival curves. Briefly, the algorithm implemented in this package
was designed to quickly estimate the distribution of the log-rank, especially for heavily
unbalanced groups, as this is the case for hotspots. In addition to the p-value estimated by
VALORATE, we also included the p-values calculated using the classical log-rank test and
the Cox proportional hazard model as implemented in the survival package 3.5-8 in R. This
comprehensive approach enables a more robust and reliable assessment of the statistical
significance of the observed associations in our analyses.

2.4. Test Strategies

We pursued our investigation using four distinct strategies outlined in Figure 1.
Specifically, we considered amino acid positions with at least four patients containing
clinical data, resulting in 1469 potential hotspots. For the second test, “Hotspot X vs. Gene”,
the universe of hotspots was reduced to 1226. This reduction occurred because the patients
were mutated in the same gene as the hotspot being tested. In some cases, this subset did
not reach the minimum requirement of 4 patients for testing against the hotspot. In the
third test, “Hotspot vs. Other Hotspots”, the set of patients was further reduced to those
carrying a different hotspot, making 594 hotspots available for comparison. Finally, for
the fourth test, “Hotspot X vs. Hotspot Y”, we compared each combination of hotspots
within a gene, resulting in a total of 3162 combinations. All the results of these analyses
are provided as supplementary files and have been deposited on our website for access
and reference.

3. Results

In our comprehensive screening, we rigorously examined the association of hotspots
with survival through four distinct tests, as illustrated in Figure 1. To elucidate these
tests briefly, we evaluated whether the survival of a hotspot differs in terms of (a) the
overall survival of all samples in the given cancer type (referred to as “Hotspot X vs. All”),
(b) the survival of other mutations present in the same gene as the hotspot (“Hotspot X vs.
Gene”), (c) the survival of other hotspots within the same gene (“Hotspot X vs. Spots”), or
(d) the survival of a specific hotspot compared to another hotspot within the same gene
(“Hotspot X vs. Hotspot Y”). We employed the VALORATE method, recalculating hotspots
as previously performed in our work for HotSpotsAnnotations [20]. Nevertheless, we also
provided classical log-rank tests and Cox model estimations. Additionally, to ensure the
robustness of our analysis, we limited our investigations to hotspots with a minimum of
four mutations.

3.1. Hypermutated Samples Bias Hotspots Associated with Cancer Survival

Our initial observation revealed a bias in the number of hotspots associated with
survival, primarily due to the presence of hypermutated samples (Supplementary Figure
S1). This finding aligns with previous reports indicating that the detection of hotspots can
be influenced by the presence of hypermutated samples [16,17]. To ensure the integrity of
our analyses, we proceeded to challenge the hotspots after excluding the hypermutated
samples from further investigations. Details of the hypermutated samples removed during
this process are presented in Supplementary Figure S2.
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3.2. Many Hotspots Are Potentially Associated with Cancer Survival

Throughout our analysis across all cancer types, we methodically screened a total
of 1469 distinct hotspots, resulting in noteworthy survival associations (p ≤ 0.05) for the
“X vs. All” test in 95 cases, the “X vs. Gene” test in 44 cases, the “X vs. Spots” test in
44 cases, and 146 combinations for the “X vs. Y” test (Table 1). Among the cancer types
examined, uterine corpus (UCEC), skin (SKCM), and colon (COAD) displayed a substantial
number of detections in the first three tests (vs. All, vs. Gene, vs. Spots). On the other hand,
11 cancer types did not show any significant associations in these tests. These cancer types
include adrenocortical (ACC), cholangiocarcinoma (CHOL), lymphoma (DLBC), kidney
chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), pheochromocytoma
and paraganglioma (PCPG), prostate (PRAD), sarcoma (SARC), testicular (TGCT), thyroid
(THCA), thymus (THYM), and uterine carcinosarcoma (UCS). In the following section, we
will analyze the results of each test.

Table 1. Summary of results.

Cancer Type Potential Hotspots X vs. All X vs. Gene X vs. HS X vs. Y

ACC 1 - - - -
BLCA 50 2 - - 4
BRCA 56 3 3 1 14
CESC 10 1 - - -
CHOL 1 - - - -
COAD 108 10 6 3 4
DLBC 2 - - - -
ESCA 15 - - - 2
GBM 23 3 1 1 2
HNSC 50 3 2 4 27
KICH 0 - - - -
KIRC 7 1 1 - -
KIRP 3 - - - -
LAML 8 1 - - -
LGG 35 6 3 2 7
LIHC 15 1 - - -
LUAD 29 2 2 3 2
LUSC 49 3 4 4 45
MESO 0 - - - -
OV 38 3 3 3 28
PAAD 13 2 - - -
PCPG 3 - - - -
PRAD 8 - - - -
READ 15 2 1 1 3
SARC 3 - - - -
SKCM 178 18 6 2 1
STAD 95 2 2 - -
TGCT 4 - - - -
THCA 5 - - - -
THYM 4 - - - -
UCEC 631 31 10 5 7
UCS 7 - - - -
UVM 3 1 - - -

Sum 1469 95 44 29 146

Comparisons 1469 1226 594 3162

Hotspot X vs. All. When contrasting the survival of patients carrying a hotspot
with those without carrying the hotspot, 95 associations were positive out of 1469 po-
tential hotspots (Supplementary Table S1). Henceforth, in the subsequent text, we will
refer to these 95 hotspots as being associated with survival. Among the 33 cancer types
studied, 19 displayed at least one significant hotspot, with the most noteworthy hotspot
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for each cancer type shown in Figure 2. Intriguingly, some of these significant hotspots
correspond to lesser-known genes or hotspots. For instance, EEF1A1 observed in LICH is
an elongation factor that has been demonstrated to play a critical role in efficient protein
translation through phosphorylation at Ser300 [21], extending to other phosphorylation
sites, including Thr432 [22]. Although overexpression of EEF1A1 in the liver enhances
tumor progression [23], the mechanism behind the high-risk (hazard ratio = 3.8, p = 0.002)
EEF1A1-432 hotspot in liver hepatocellular carcinoma, or any other cancer, remains unex-
plored. Similarly, NFE2L2, a leucine zipper transcription factor involved in antioxidant
responses, has recently been implicated in head and neck radioresistance, particularly
when carrying a mutation at amino acid 79 [24]. However, the mechanism underlying the
hotspot NFE2L2-79 (HR = 3.8, p = 0.003) observed in HNSC (head and neck squamous cell
carcinoma) remains poorly understood.

BLCA
KRAS−12
p=0.005
HR=3.8

CESC
ERBB2−310
p=0.0259
HR=5.4

GBM
IDH1−132
p=0.0006
HR=0.3
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p=0.0004
HR=0*

Figure 2. Survival curves represent the top significant hotspot for each cancer type. The red curve
represent patients carrying the specified hotspot. The blue curve represent the rest of patients. The
gray curve include all patients (for comparison). The axis of all curves has been removed to enhance
clarity. Complete figures are accessible on our website. The non-symmetrical null distributions are
depicted on the right, showcasing a selected example per row. In each row, the hotspot drawn on
the right is highlighted with a gray square. The bottom row displays an additional distribution
for EEF1A1, a gene that has received limited study in liver cancer. The p-values obtained from
VALORATE are estimated by calculating twice the shaded pink area, corresponding to a two-sided
test aimed at evaluating the log-rank statistic’s difference from zero, utilizing an empirical null
distribution. * refers to underestimated HR given no events.

Except for IDH1-132, which is well-known in LGG and GBM [11], no other hotspot
demonstrated significance in more than one cancer type, indicating that hotspots associated
with survival in the “vs. All” test are specific to each cancer type. At the gene level, seven
genes exhibited more than two significant hotspots or cancer associations (TP53, KRAS,
APC, IDH1, EGFR, CIC, and ARID1A). Among them, TP53 displayed 14 hotspot associations
across nine different cancer types, with 3 observed in ovarian cancer and 2 in GBM, HNSC,
and LUSC. Notably, five of these associations were associated with a lower risk, while nine
were linked to a higher risk. KRAS displayed two hotspots in pancreatic cancer, including
the well-known KRAS-12 [25] and KRAS-61. Additionally, KRAS-12 was observed in
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bladder cancer, and KRAS-13 was identified in uterine corpus (UCEC). These associations
corresponded to a higher risk in the bladder and pancreas and a lower risk in UCEC. The
gene APC also demonstrated three hotspot associations in closely related cancers, colon
and rectal, all of which were associated with a lower risk. These associations suggest that
the risk group depends on the specific gene and the context of the cancer type. EGFR, IDH1,
ARID1A, and CIC also displayed two associations each, while the remaining 68 hotspots
corresponded to one gene associated with one specific cancer type.

Table 2 presents the most frequently mutated hotspots observed in this analysis. At the
top of the list is IDH1-132 in LGG, detected in 384 samples. Next, BRAF-600 in SKCM was
observed in 141 samples, followed by KRAS-12 in PAAD, identified in 128 samples; GNAQ-
209 in UVM, found in 37 samples; FGFR3-249 in BLCA, seen in 29 samples; PPP2R1A-179 in
UCEC, present in 26 samples; AKT1-17 in BRCA, noted in 24 samples; EGFR-858 in LUAD,
seen in 21 samples; and IDH2-172 in LGG, identified in 20 samples. All of these hotspots
are well-known in cancer research and have been studied [3,11,12,26–29]. Interestingly,
PIK3CA was the second most frequently tested gene across cancers, with 59 tests (followed
by TP53 with 235 tests). However, only the PIK3CA-1047 hotspot in COAD (n = 16) passed
our threshold for significance. The functional relevance of this hotspot is well-established
in the literature [30]. Recent studies have also shown the functional impact of PPP2R1A-179
in UCEC (n = 26) [27,31] and CIC-215 in glioblastomas [32]. Other less frequent but known
hotspots include VHL-158 in KIRC (n = 7) [33], PPP6C-264 in SKCM (n = 7) [34], and SF3B1-
625 in UVM (n = 13) [35]. The hotspot RUNX1-96 in BRCA, which is formed by frameshifts
and lacks death events, has not been thoroughly studied. Still, overall, RUNX1 mutations
are well-known in leukemias [36], suggesting that this hotspot may have functional effects
that deserve further investigation. Several other hotspots have not been well studied, such
as those in SLC3A2, OR14K1, SETD1B, and PTCH1.

Table 2. Selected top mutated hotspots associations.

Test Cancer Gene Hotspot
Position

n
(with/without) p HR

X vs. All LGG IDH1 132 384/114 0 0.2
SKCM * BRAF 600 141/182 0.01 0.7
PAAD KRAS 12 128/48 0.04 1.6
SKCM BRAF 600 47/373 0.05 2.9
UVM GNAQ 209 37/42 0.053 0.4
BLCA FGFR3 249 29/357 0.04 0.5
UCEC PPP2R1A 179 26/448 0.04 2.4
BRCA AKT1 17 24/918 0.02 <1
LUAD EGFR 858 21/457 0.03 2
LGG IDH2 172 20/478 0.04 0.2
GBM IDH1 132 19/340 0 0.3
UCEC SLC3A2 300 17/457 0.03 <1
COAD PIK3CA 1047 16/326 0.05 0.2
UCEC KRAS 13 14/460 0.04 <1
UVM SF3B1 625 13/66 0 <1
UCEC OR14K1 14 13/461 0.01 <1
LGG CIC 215 12/486 0 <1
GBM TP53 248 12/347 0.01 0.5
COAD SETD1B 8 12/330 0.04 <1
BLCA KRAS 12 10/376 0 3.8
LIHC TP53 249 10/339 0.054 2.6
HNSC TP53 193 9/466 0.02 3.1
BRCA TP53 196 8/934 0.01 <1
READ APC 876 8/110 0.01 <1
BRCA RUNX1 96 7/935 0.04 <1
UCEC PTCH1 1203 7/467 0.03 <1



Cancers 2024, 16, 1072 8 of 17

Table 2. Cont.

Test Cancer Gene Hotspot
Position

n
(with/without) p HR

UCEC ZFP37 161 7/467 0.03 <1
KIRC VHL 158 7/323 0.02 2.9
SKCM * PPP6C 264 7/316 0.04 0.4
PAAD KRAS 61 7/166 0.04 2.8

X vs. Gene LUAD EGFR 746 15/43 0.01 0.2
UCEC UPF3A 267 12/7 0 >1
COAD BMPR2 583 9/8 0.04 >1
UCEC ATF7IP 320 7/14 0.01 >1
COAD DOCK3 1852 7/12 0.04 <1
STAD PSME4 1805 6/7 0.03 <1
LUSC CDKN2A 108 6/64 0.01 3.4
LGG KAT6B 1203 6/5 0.04 >1
LUSC TP53 126 6/361 0.05 4.5
HNSC TP53 306 6/310 0.02 4.5
UCEC ZMYND8 635 6/18 0.04 <1
COAD FBXW7 505 5/40 0.04 4.4
SKCM * SALL1 675 5/37 0.01 <1
LUSC TP53 176 5/362 0.01 4.1
OV TP53 179 5/359 0.02 0.2
OV TP53 244 5/359 0.03 0.2
OV TP53 266 5/359 0.02 3.2

X vs. Other HS UCEC KRAS 12 65/17 0.04 >1
UCEC CTNNB1 37 19/69 0.04 3.8
LUSC NFE2L2 29 14/35 0.05 2.8
LGG TP53 248 14/128 0.04 0.3
UCEC PIK3CA 38 10/172 0.03 3.9
LUAD TP53 125 10/144 0.01 3.9
UCEC ARID1A 1989 5/72 0.04 <1
HNSC NFE2L2 79 5/4 0.05 2.6

X vs. Y UCEC ARID1A 1850 vs. 1989 17/5 0.03 >1
LUAD EGFR 746 vs. 858 15/21 < 0.01 0.2
UCEC FBXW7 505 vs. 545 12/4 0.04 <1
UCEC PIK3CA 38 vs. 545 10/26 0.04 5.5
UCEC PIK3CA 38 vs. 542 10/22 0.03 9.1
UCEC PIK3CA 118 vs. 93 9/8 0.03 >1
READ APC 213 vs. 876 6/8 0.04 >1
READ APC 1114 vs. 213 5/6 0.02 <1
READ APC 1114 vs. 1450 5/4 0.05 <1
UCEC PIK3CA 111 vs. 118 4/9 0.04 <1
HNSC NFE2L2 29 vs. 79 4/5 0.05 <1
LGG CIC 201 vs. 215 4/12 0.03 >1
LGG CIC 202 vs. 215 4/12 0.04 >1

Only those whose total number of mutated samples is seven or more for the “X vs. All test” or five or more for the
other tests. The complete list is included in the Supplementary Materials. * Mark TCGA type = 06, metastatic site
samples. HR refers to the hazard ratio. HR marked “<1” or “>1” seems to be associated with low- or high-risk,
respectively, with HR estimation not clear due to a low number of samples and/or lack of events in one sample.

Figure 2 also presents selected examples of multimodal null distributions arising
from highly unbalanced groups and small sample sizes. These conditions violate the
assumptions of the classical log-rank test, emphasizing the need for a more specific and
robust statistical test, such as VALORATE.

Hotspot X vs. Gene. When comparing the survival of patients carrying a hotspot
against all other patients with mutations in the gene, we identified significant hotspots in
only 13 out of the 33 cancer types, resulting in a total of 44 associations from 1226 valid com-
parisons (Supplementary Table S2). The subsequent text will refer to this set of 44 hotspots
associated with survival. Notably, no hotspot demonstrated significance in two or more
cancer types, further suggesting specific associations between hotspots and particular
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cancer types. Only three genes (APC, EGFR, and TP53) exhibited two or more hotspots at
the gene level. APC hotspots (−876 and −1489) were associated with a lower risk. In EGFR,
two hotspots (−289 and −746) were linked to a lower risk in LGG and LUAD, respectively.
EGFR-858 (n = 21) demonstrated marginal significance at p = 0.07, associated with a higher
risk in LUAD. Among the 13 TP53 hotspots, ten were associated with a higher risk, with
three (−176, −280, −126) being linked to LUSC (lung squamous cell carcinoma).

Due to the inherent similarity in the patient sets used for the analysis, it is unsurprising
that several hotspots were also detected in the “X vs. All” test. For instance, hotspots
such as BRAF−600, PPP2R1A−179, and AKT1−17 were also identified in the “X vs. All”
test. This overlap in significant hotspots between the two tests reinforces the consistency
and validity of our findings, indicating that these particular hotspots play critical roles in
determining survival outcomes across different analyses.

To support the association of hotspots with survival, we present a brief description of
biological and clinical findings related to the detected hotspots, focusing on those that were
significant in the “X vs. Gene” test but not in the “X vs. All” test or were frequently mutated
(Table 2). EGFR−746 in LUAD (n = 15) is a well-known hotspot [37] associated with a lower
risk (HR = 0.22). In contrast, EGFR−858 showed marginal significance (p = 0.07) in LUAD,
indicating a tendency for higher risk. The UPF3A−267 hotspot (n = 12) in UCEC has not
been extensively studied, but UPF3A is known to inhibit the non-sense mediated decay
response, implicated in more aggressive metastasis [38]. Our results are consistent with
these findings, as UPF3A−267 (containing frameshifts) appeared to be more aggressive
than other mutations in the gene (n = 6, no events). Regarding BMPR2−583, a recent
study found BMPR2 germline mutations in unexplained colon cancer cases, including the
BMPR2−583 hotspot [39]. Our analysis observed that BMPR2−583 appeared to be more
aggressive, although this estimation was based on only two events. ATF7IP encodes a
protein that binds to the histone methyltransferase SETD1B, affecting immunogenicity
when ATF7IP is depleted [40]. Our study found that ATF7IP−320 seemed more aggressive
in UCEC, but this calculation was based on only two events. PSME4 is an essential
component of the proteasome, modulating its activity and diversity in antigen presentation
in lung cancer [41]. We observed the PSME4−1805 hotspot in STAD (n = 6, three events,
median survival (MS) > 1000 days) compared with other mutations (n = 7, four events,
MS = 400 days), suggesting that PSME4−1805 may behave differently. CDKN2A has
multiple hotspots [42] and has been associated with poor survival in lung cancer [43]. The
unstudied higher-risk CDKN2A−108 hotspot in LUSC (n = 6, all deaths) is the only hotspot
significantly associated with survival in any cancer for this gene. The KAT6B−1203 hotspot
detected in LGG (n = 6) has not been extensively studied, but the gene has been recently
associated with modulating ferroptosis in gliomas [44]. In our analysis, we observed
three deaths vs. zero deaths, suggesting that the mutations in 1203 may confer more
aggressive characteristics.

Hotspot X vs. Other Hotspots. Under the assumption that only recurrent mutation
sites within the same gene are considered, which can be useful in clinical settings to select
competing hotspots, we found 29 significant comparisons out of 594. These significant
comparisons were distributed across 11 cancer types, with 5 in UCEC; 4 in LUSC and
HNSC; 3 in OV, COAD, and LUAD; 2 in SKCM and LGG; and 1 in BRCA, GBM, and READ.
The top hotspots, each with five or more samples, are presented in Supplementary Table
S3. To summarize, let us discuss some of the genes or hotspots not present in the previous
tests (Table 2). CTNNB1−37 has already been observed in cancers [45]. Our analysis
showed that this hotspot in UCEC was associated with a higher risk for overall survival, a
finding consistent with a recent study on endometrial carcinoma in Spain, which associated
CTNNB1−37 with a higher risk for disease-free survival but not for overall survival on
mutations in exon 3 [46]. This difference suggests that CTNNB1−37 behaves differently
than other mutations in exon 3. NFE2L2, a transcription factor involved in the antioxidant
response, exhibited interesting hotspots at position 29 in LUSC (n = 14) and HNSC (n = 4)
and at position 79 in HNSC (n = 5). NFE2L2−79 has been linked to radioresistance in
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HNSC [24], and NFE2L2−29 and others have also been associated with radioresistance
in LUSC [47]. However, the underlying mechanisms remain unknown. ARID1A-1989,
observed in UCEC (n = 5), has been suggested to be involved in altering the epigenetic and
immune response through interaction with EZH2 [48].

Hotspot X vs. Hotspot Y. In this part of the study, we compared specific hotspots
within a gene, similar to previous work on TP53 [9]. Out of 3162 comparisons involving
four or more mutations, we identified 146 significant associations at our screening threshold.
Most of these significant associations (n = 132, 90%) were found in the TP53 gene, where we
observed 47 significant hotspot positions across 11 cancer types (Figure 3). As an example,
Figure 3 illustrates comparisons for the hotspot at position 248 in eight cancer types, with
four showing a higher risk and four showing a lower risk. Similarly, the most recurrent
significant hotspot was TP53−176 (observed in 20 out of 144 comparisons), showing higher
risk in most comparisons. The next significant hotspot, TP53−306, was found in 18 com-
parisons, with higher risk observed in HNSC (n = 13) and OV (n = 2). Detailed information
for many other comparisons is available on our website and in Supplementary Table S4.
Apart from TP53, we identified 15 hotspot comparisons involving other genes (EGFR, APC,
TTN, PIK3CA, CIC, ARID1A, FBXW7, and NFE2L2), presented in Table 2. For instance,
PIK3CA−38 has been shown to be oncogenic [49]. In our comparisons, it displayed higher
risk compared to PIK3CA−545 and PIK3CA−542. Similarly, PIK3CA−118 showed higher
risk than PIK3CA−93 and PIK3CA−111 in UCEC. In LUAD, EGFR−858 is a well-known
hotspot [3]. We found that the most relevant comparison was against EGFR−746, which
showed a lower risk than EGFR−858 in LUAD. ARID1A−1850 is frequent in colorectal
cancer [50]. In our study, among UCEC patients, 17 showed this mutation, and three death
events were observed, compared to no events in ARID1A−1989. In colorectal cancer, APC
exhibits various hotspots [51], including APC−213 and APC−876. In our comparisons,
APC−213 showed higher risk than APC−876 and APC−1114, although only two events
were registered.
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Figure 3. Hotspots in TP53 associated with survival across cancers in the X vs. Y comparison. The
top bars display the hotspots per position and cancer type. The bottom Kaplan–Meier curves show
examples of the hotspots at amino acid position 248 across eight of the nine observed cancer types.
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3.3. Web Resource

We have deposited the results of the four tests in the Supplementary Materials. Ad-
ditionally, the Kaplan–Meier curves and the null distribution plots are available on our
website at http://bioinformatics.mx/SurvHotspots. Figure 4 provides an example of a
selected hotspot in the Hotspot X vs. All test. The results are presented by test, and all tests
are also merged. They can be filtered by field and exported to common formats for further
analysis and exploration.
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4. Discussion

Hotspots hold significant biological and clinical relevance as they are believed to
confer functional advantages in tumor progression [7]. Previous studies have demonstrated
the impact of specific hotspots, such as those in TP53, IDH1, EGFR, and BRAF, among
others, on survival in certain cancer cases [3,8–12]. To the best of our knowledge, our
study represents the first systematic effort to comprehensively characterize hotspots across
diverse cancer types. In this endeavor, we applied four approaches to explore potential
survival associations among various cancer types. Through 6451 comparisons, we identified
314 associations with p < 0.05, encompassing well-known hotspots and others that have

http://bioinformatics.mx/SurvHotspots
http://bioinformatics.mx/SurvHotspots
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not been extensively studied. Detailed results are available in the Supplementary Materials
and on our website.

This manuscript incorporates supporting information for functionally tested hotspots,
revealing a mix of studied and unstudied hotspots within genes showing two or more
hotspots. While some hotspots, such as EGFR−858 and EGFR−746, have been thoroughly
investigated [3,37], other hotspots within the same gene, like EGFR−252 and EGFR−289
(p < 0.05 in LGG), remain unstudied. This pattern is consistent across various genes,
highlighting the need for further investigations into unexplored hotspots. For instance,
KRAS−12 and −13 have been well-studied [25], but KRAS−61 (p < 0.05 in PAAD) lacks sim-
ilar attention. Similarly, although ARID1A−1989 is reported [48], ARID1A−1335 (p < 0.05
in UCEC) awaits functional assays. Likewise, SF3B1−625 is known [35], while SF3B1−902
(p = 0.066 in BLCA) has not been experimentally explored. TP53 is an extreme case with
64 hotspots, but only a few have been studied. Numerous other interesting hotspots have
not been thoroughly investigated. Genes like TTK show potential as significant targets
reported in breast, bladder, and prostate cancers [52–55], warranting further investiga-
tion of TTK−192 (p = 0.04 in UCEC) as an intriguing hotspot. Moreover, several other
interesting hotspots accumulate numerous mutations without corresponding assays. For
instance, genes PPP2R1A, SLC3A2, OR14K1, and UPF3A have over 10 mutations each,
while ATF7IP, PPP6C, ZFP37, PTCH1, DOCK3, ZNF728, PSME4, WNT1, NFRKB, PRSS35,
KAT6B, ZMYND8, and many others have 6 or more mutations. These hotspots could serve
as potential targets for future studies.

At the gene level, there are 18 genes showing more than five hotspots across all cancer
types (in order, TP53, PIK3CA, PTEN, APC, KRAS, CTNNB1, FBXW7, CDKN2A, ARID1A,
PIK3R1, NFE2L2, EGFR, NRAS, BRAF, HRAS, VHL, IDH1, ERBB2). From these, only four
genes did not show a significant survival-associated hotspot (PTEN, PIK3R1, NRAS, HRAS).
Nevertheless, one hotspot in PTEN and NRAS could be interesting (for PTEN-267, p = 0.06
at higher risk in STAD, n = 5, while for NRAS−61 p = 0.07 at lower risk in SKCM, n = 86
vs. 8 not mutated). Thus, most frequently “hotspoted” genes show survival associations.

Mutations in certain large genes, such as TTN, NEB, SYNE1, MUC16, and OBSCN,
have previously been associated with tumor mutation burden (TMB) [56]. Among these
genes, NEB, SYNE1, and OBSCN showed no recurrent amino acid (AA) position with
four or more mutations, suggesting randomness. MUC16 exhibited five mutations in
AA positions 5119 and 11,642 in SKCM and UCEC, respectively, but all comparisons had
p-values greater than 0.05. On the other hand, TTN showed five AA positions with four or
more mutations, and among these, TTN-20780 in SKCM displayed a significant association
(p < 0.05) linked to lower risk. Interestingly, when a Cox proportional hazard model of
the SKCM data (type 06) was fitted to TMB (in logarithm scale), it yielded a significant
result (p = 0.000842) associated with lower risk. This finding suggests that TTN−20780 or a
broader region may be a potential surrogate marker for TMB in SKCM.

Interestingly, we observed that the majority of hotspots exhibited cancer-type-specific
associations, underscoring the significance of considering both the hotspot and the cancer-
type context. These findings highlight the intricate interplay between genetic alterations
and the underlying biology of various cancer types, emphasizing the necessity for tailored
therapeutic approaches based on the specific genetic landscape of each patient’s tumor.

Indeed, it is important to acknowledge the limitations and complexities associated
with testing hotspots for an association with survival independently of other factors. In
many studies, including this one, accounting for all potential confounding factors, such
as treatment, age at diagnosis, sex, cancer heterogeneity, and molecular subtypes that
can influence survival times, presents a challenge. These factors may vary significantly
among different cancer types, making a systematic analysis considering all these variables
difficult. Furthermore, in cases where the number of samples is limited, as observed in
many hotspots, introducing a correcting factor in statistical models can complicate the
estimation of possible effects and may lead to unstable or biased results. Balancing the
need for correction with the risk of overfitting or introducing additional biases into the
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analysis is essential. Despite these challenges, the estimations provided in this study offer
valuable insights into potential associations between hotspots and survival outcomes. By
highlighting hotspots that show a significant association with survival, this research can
serve as a basis for further investigation and validation of these findings. Additionally,
identifying hotspots likely to have functional effects on tumor progression can inform
future research and therapeutic strategies. Researchers must be aware of these limitations
and interpret the results in the context of the study design and the data available.

Indeed, using a raw p-value threshold of 0.05 is a common approach for filtering
significant associations in statistical analyses. However, it is essential to recognize that
some associations may still be of potential interest, even if they do not reach strict statistical
significance (p < 0.05). Marginal associations, such as those with p-values close to 0.05,
can still provide valuable insights and warrant further investigation. For example, the
GNAQ-209 hotspot, despite not meeting the strict significance threshold, may still be
biologically and clinically relevant, especially given its association with lower risk. This
finding aligns with previous research on this hotspot in uveal melanoma [57,58], and
its potential implications in tumor progression and patient outcomes could be worth
exploring in more detail. Similarly, the ATAD2B−307 hotspot, despite having limited
studies, may represent an interesting candidate for further investigation. The fact that it
shows an association with higher risk (albeit marginally significant) suggests that it could
be involved in tumor aggressiveness or disease progression. Given its role in interacting
with histones [59], studying the functional implications of this hotspot could shed light on
its potential role in cancer development. Overall, while a strict p-value threshold is a useful
way to identify statistically significant associations, it is crucial not to overlook potentially
important findings that fall just below this threshold. Researchers should consider such
marginal associations in the context of the existing literature, biological plausibility, and
potential clinical implications. Further functional studies and validation in independent
datasets can help confirm the significance of these marginal associations and their relevance
in cancer biology.

In our study, we conducted numerous statistical tests to assess the association of
hotspots with survival across various cancer types. This procedure presents the challenge
of multiple testing and the potential for increased false positive calls. While there are
several methods to address with multiple testing approaches [60], it is recognized that some
approaches may overcorrect p-values [61]. To address this concern, we adopted a data-
driven approach to estimate the null distribution on a per-case basis, taking into account
specific conditions of each test, such as the total number of patients and the number of
patients carrying a hotspot in each cancer type. By tailoring the correction to the individual
characteristics of each test, our goal was to mitigate the risk of overcorrection and provide
a more accurate assessment of statistical significance. This approach acknowledges that the
assumptions of traditional p-value correction methods, which assume a single common null
distribution, may not hold in our context. However, it is crucial to acknowledge that despite
our efforts to address multiplicity, caution is still warranted, especially when dealing with
hotspots having a low number of mutations. In some cases, the sample size for certain
hotspots or cancer types may be limited, impacting the reliability of statistical estimates.
To account for these limitations, we transparently present the results, including p-values,
hazard ratios, and null distributions, enabling researchers to assess the robustness of the
associations. Moreover, we advise prioritizing hotspots for further validation based on
additional criteria, such as biological relevance, existing supporting evidence, and potential
clinical implications.

In this study, we opted to use the VALORATE R package, a tool we previously pro-
posed for analyzing survival data with small sample sizes and unbalanced groups. The
classical log-rank test, which assumes large sample sizes and similar group sizes, can pose
challenges when applied to situations with small samples. To illustrate the limitations of
using the log-rank test in such scenarios, we present two examples. In the X vs. Y test,
comparing hotspot TP53−175 vs. TP53−273 in STAD, the log-rank test yielded a p-value
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of 0.019, while VALORATE produced a p-value of 0.299 (Supplementary Figure S3). This
discrepancy underscores the impact of using a generic test that assumes large and balanced
sample sizes when the data violate these assumptions. In this case, VALORATE’s estimation
of the null distribution better accounts for the specific characteristics of the data, leading to
a more reliable p-value. In the X vs. All test, the well-known hotspot IDH1-132 in gliomas
demonstrated a clear difference in survival curves, with 384 patients carrying the mutation
compared to 115 patients without it. The log-rank test estimated a p-value of 0.9027, while
VALORATE’s computation resulted in a p-value approaching zero (p < 10−13, as shown in
Supplementary Figure S4). The substantial difference in sample sizes among the groups in
this case violates the log-rank test’s assumption, leading to an inaccurate p-value. Once
again, VALORATE’s approach provides a more accurate and meaningful assessment of
statistical significance. By relying on VALORATE’s more appropriate estimation of the null
distribution, we aim to avoid false-positive or false-negative calls in our results, ensuring a
more robust and reliable identification of hotspots associated with survival across diverse
cancer types.

5. Conclusions

In conclusion, our comprehensive analysis of hotspots across a wide spectrum of can-
cer types sheds light on their potential role as survival biomarkers. The identified hotspots,
encompassing both established and novel associations, constitute a valuable resource for
future studies and may contribute to the development of personalized treatment strategies
for cancer patients. Briefly, hotspots can be added as clinical information to inform higher
or lower risk or to design new prognostic models. With the availability of our results in
supplementary tables and on our website, we ensure accessibility and encourage further
exploration by the scientific community. Subsequent research should delve into the func-
tional implications of these hotspots and assess their potential as targets for therapeutic
interventions, ultimately advancing patient outcomes in precision oncology.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers16051072/s1. Figure S1. Detection of significant hotspots in
UCEC before and after hypermutated sample removal; Figure S2. Tumor mutation burden (TMB)
per cancer type and removed hypermutated samples; Figure S3. Comparison of hotspots TP53-175
(red) vs. TP53-273 (blue) in STAD cancer; Figure S4. Comparison of hotspots in IDH1 (red) vs. All
other patients not carrying mutation (blue) in LGG; Table S1. Hotspots evaluated in the X vs. All Test;
Table S2. Hotspots evaluated in the X vs. Gene Test; Table S3. Hotspots evaluated in the X vs. Other
Hotspots Test; Table S4. Hotspots evaluated in the X vs. Y Test.
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10. Munch-Petersen, H.D.; Asmar, F.; Dimopoulos, K.; Areškevičiūtė, A.; Brown, P.; Girkov, M.S.; Pedersen, A.; Sjö, L.D.; Heegaard, S.;
Broholm, H.; et al. TP53 Hotspot Mutations Are Predictive of Survival in Primary Central Nervous System Lymphoma Patients
Treated with Combination Chemotherapy. Acta Neuropathol. Commun. 2016, 4, 40. [CrossRef]

11. Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al.
IDH1 and IDH2 Mutations in Gliomas. N. Engl. J. Med. 2009, 360, 765–773. [CrossRef]

12. Sullivan, R.; LoRusso, P.; Boerner, S.; Dummer, R. Achievements and Challenges of Molecular Targeted Therapy in Melanoma.
Am. Soc. Clin. Oncol. Educ. Book 2015, 35, 177–186. [CrossRef]

13. Supek, F.; Miñana, B.; Valcárcel, J.; Gabaldón, T.; Lehner, B. Synonymous Mutations Frequently Act as Driver Mutations in Human
Cancers. Cell 2014, 156, 1324–1335. [CrossRef]

14. Kikutake, C.; Suyama, M. Possible Involvement of Silent Mutations in Cancer Pathogenesis and Evolution. Sci. Rep. 2023, 13,
7593. [CrossRef] [PubMed]

15. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and Comprehensive Analysis of Somatic
Variants in Cancer. Genome Res. 2018, 28, 1747–1756. [CrossRef] [PubMed]

16. Roberts, S.A.; Gordenin, D.A. Hypermutation in Human Cancer Genomes: Footprints and Mechanisms. Nat. Rev. Cancer 2014, 14,
786–800. [CrossRef] [PubMed]

17. Treviño, V.; Martínez-Ledesma, E.; Tamez-Peña, J. Identification of Outcome-Related Driver Mutations in Cancer Using Condi-
tional Co-Occurrence Distributions. Sci. Rep. 2017, 7, srep43350. [CrossRef] [PubMed]

18. Vandin, F.; Papoutsaki, A.; Raphael, B.J.; Upfal, E. Accurate Computation of Survival Statistics in Genome-Wide Studies. PLoS
Comput. Biol. 2015, 11, e1004071. [CrossRef] [PubMed]

19. Treviño, V.; Tamez-Pena, J. VALORATE: Fast and Accurate Log-Rank Test in Balanced and Unbalanced Comparisons of Survival
Curves and Cancer Genomics. Bioinformatics 2017, 33, 1900–1901. [CrossRef]

20. Trevino, V. HotSpotAnnotations-A Database for Hotspot Mutations and Annotations in Cancer. Database 2020, 2020, baaa025.
[CrossRef]

21. Lin, K.W.; Yakymovych, I.; Jia, M.; Yakymovych, M.; Souchelnytskyi, S. Phosphorylation of EEF1A1 at Ser300 by TβR-I Results in
Inhibition of MRNA Translation. Curr. Biol. 2010, 20, 1615–1625. [CrossRef] [PubMed]

22. Soares, D.C.; Barlow, P.N.; Newbery, H.J.; Porteous, D.J.; Abbott, C.M. Structural Models of Human EEF1A1 and EEF1A2 Reveal
Two Distinct Surface Clusters of Sequence Variation and Potential Differences in Phosphorylation. PLoS ONE 2009, 4, e6315.
[CrossRef] [PubMed]

23. Chen, S.L.; Lu, S.X.; Liu, L.L.; Wang, C.H.; Yang, X.; Zhang, Z.Y.; Zhang, H.Z.; Yun, J. ping EEF1A1 Overexpression Enhances
Tumor Progression and Indicates Poor Prognosis in Hepatocellular Carcinoma. Transl. Oncol. 2018, 11, 125–131. [CrossRef]
[PubMed]

24. Guan, L.; Nambiar, D.K.; Cao, H.; Viswanathan, V.; Kwok, S.; Hui, A.B.; Hou, Y.; Hildebrand, R.; von Eyben, R.; Holmes, B.J.; et al.
NFE2L2 Mutations Enhance Radioresistance in Head and Neck Cancer by Modulating Intratumoral Myeloid Cells. Cancer Res.
2023, 83, 861–874. [CrossRef]

https://doi.org/10.1111/1759-7714.12613
https://doi.org/10.1056/NEJMoa021967
https://www.ncbi.nlm.nih.gov/pubmed/12490681
https://doi.org/10.1038/sj.bjc.6603040
https://www.ncbi.nlm.nih.gov/pubmed/16552419
https://doi.org/10.1001/jama.2017.7112
https://www.ncbi.nlm.nih.gov/pubmed/28632866
https://doi.org/10.1038/nrc3760
https://www.ncbi.nlm.nih.gov/pubmed/24957944
https://doi.org/10.1016/j.csbj.2020.11.020
https://doi.org/10.1016/j.cels.2015.08.014
https://doi.org/10.1007/s00432-018-2817-z
https://doi.org/10.1038/s41416-019-0654-8
https://doi.org/10.1186/s40478-016-0307-6
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.14694/EdBook_AM.2015.35.177
https://doi.org/10.1016/j.cell.2014.01.051
https://doi.org/10.1038/s41598-023-34452-w
https://www.ncbi.nlm.nih.gov/pubmed/37165041
https://doi.org/10.1101/gr.239244.118
https://www.ncbi.nlm.nih.gov/pubmed/30341162
https://doi.org/10.1038/nrc3816
https://www.ncbi.nlm.nih.gov/pubmed/25568919
https://doi.org/10.1038/srep43350
https://www.ncbi.nlm.nih.gov/pubmed/28240231
https://doi.org/10.1371/journal.pcbi.1004071
https://www.ncbi.nlm.nih.gov/pubmed/25950620
https://doi.org/10.1093/bioinformatics/btx080
https://doi.org/10.1093/database/baaa025
https://doi.org/10.1016/j.cub.2010.08.017
https://www.ncbi.nlm.nih.gov/pubmed/20832312
https://doi.org/10.1371/journal.pone.0006315
https://www.ncbi.nlm.nih.gov/pubmed/19636410
https://doi.org/10.1016/j.tranon.2017.11.001
https://www.ncbi.nlm.nih.gov/pubmed/29248802
https://doi.org/10.1158/0008-5472.CAN-22-1903


Cancers 2024, 16, 1072 16 of 17

25. Guerrero, S.; Casanova, I.; Farre, L.; Mazo, A.; Capella, G.; Mangues, R. K-Ras Codon 12 Mutation Induces Higher Level of
Resistance to Apoptosis and Predisposition to Anchorage-Independent Growth than Codon 13 Mutation or Proto-Oncogene
Overexpression. Cancer Res. 2000, 60, 6750–6756.

26. Carpten, J.D.; Faber, A.L.; Horn, C.; Donoho, G.P.; Briggs, S.L.; Robbins, C.M.; Hostetter, G.; Boguslawski, S.; Moses, T.Y.; Savage,
S.; et al. A Transforming Mutation in the Pleckstrin Homology Domain of AKT1 in Cancer. Nature 2007, 448, 439–444. [CrossRef]

27. Taylor, S.E.; O’Connor, C.M.; Wang, Z.; Shen, G.; Song, H.; Leonard, D.; Sangodkar, J.; LaVasseur, C.; Avril, S.; Waggoner, S.;
et al. The Highly Recurrent PP2A Aa-Subunit Mutation P179R Alters Protein Structure and Impairs PP2A Enzyme Function to
Promote Endometrial Tumorigenesis. Cancer Res. 2019, 79, 4242–4257. [CrossRef]

28. Christensen, E.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Høyer, S.; van der Keur, K.; van Kessel, K.; Zwarthoff, E.; Agerbæk,
M.; Ørntoft, T.F.; Jensen, J.B.; et al. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in
Bladder Cancer. Eur. Urol. 2017, 71, 961–969. [CrossRef]

29. Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C.
Frequent Somatic Mutations of GNAQ in Uveal Melanoma and Blue Naevi. Nature 2009, 457, 599–602. [CrossRef]

30. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High
Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [CrossRef]

31. Wang, Y.; Chiappetta, G.; Guérois, R.; Liu, Y.; Romero, S.; Boesch, D.J.; Krause, M.; Dessalles, C.A.; Babataheri, A.; Barakat, A.I.;
et al. PPP2R1A Regulates Migration Persistence through the NHSL1-Containing WAVE Shell Complex. Nat. Commun. 2023, 14,
3541. [CrossRef] [PubMed]

32. Kilian, M.; Friedrich, M.; Sanghvi, K.; Green, E.; Pusch, S.; Kawauchi, D.; Löwer, M.; Sonner, J.K.; Krämer, C.; Zaman, J.; et al.
T-Cell Receptor Therapy Targeting Mutant Capicua Transcriptional Repressor in Experimental Gliomas. Clin. Cancer Res. 2022, 28,
378–389. [CrossRef] [PubMed]

33. Razafinjatovo, C.F.; Stiehl, D.; Deininger, E.; Rechsteiner, M.; Moch, H.; Schraml, P. VHL Missense Mutations in the P53 Binding
Domain Show Different Effects on P53 Signaling and HIFα Degradation in Clear Cell Renal Cell Carcinoma. Oncotarget 2017, 8,
10199–10212. [CrossRef] [PubMed]

34. Maskin, C.R.; Raman, R.; Houvras, Y. PPP6C, a Serine-Threonine Phosphatase, Regulates Melanocyte Differentiation and
Contributes to Melanoma Tumorigenesis through Modulation of MITF Activity. Sci. Rep. 2022, 12, 5573. [CrossRef] [PubMed]

35. Alsafadi, S.; Houy, A.; Battistella, A.; Popova, T.; Wassef, M.; Henry, E.; Tirode, F.; Constantinou, A.; Piperno-Neumann, S.;
Roman-Roman, S.; et al. Cancer-Associated SF3B1 Mutations Affect Alternative Splicing by Promoting Alternative Branchpoint
Usage. Nat. Commun. 2016, 7, 10615. [CrossRef]

36. Brown, A.L.; Arts, P.; Carmichael, C.L.; Babic, M.; Dobbins, J.; Chong, C.E.; Schreiber, A.W.; Feng, J.; Phillips, K.; Wang, P.P.S.;
et al. RUNX1-Mutated Families Show Phenotype Heterogeneity and a Somatic Mutation Profile Unique to Germline Predisposed
AML. Blood Adv. 2020, 4, 1131–1144. [CrossRef]

37. Furukawa, M.; Nagatomo, I.; Kumagai, T.; Yamadori, T.; Takahashi, R.; Yoshimura, M.; Yoneda, T.; Takeda, Y.; Goya, S.;
Matsuoka, H.; et al. Gefitinib-Sensitive EGFR Lacking Residues 746-750 Exhibits Hypophosphorylation at Tyrosine Residue 1045,
Hypoubiquitination, and Impaired Endocytosis. DNA Cell Biol. 2007, 26, 178–185. [CrossRef]

38. Nogueira, G.; Fernandes, R.; García-Moreno, J.F.; Romão, L. Nonsense-Mediated RNA Decay and Its Bipolar Function in Cancer.
Mol. Cancer 2021, 20, 72. [CrossRef]

39. Bonjoch, L.; Fernandez-Rozadilla, C.; Alvarez-Barona, M.; Lopez-Novo, A.; Herrera-Pariente, C.; Amigo, J.; Bujanda, L.; Remedios,
D.; Dacal, A.; Cubiella, J.; et al. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023,
165, 162–172.e5. [CrossRef] [PubMed]

40. Hu, H.; Khodadadi-Jamayran, A.; Dolgalev, I.; Cho, H.; Badri, S.; Chiriboga, L.A.; Zeck, B.; de Rodas Gregorio, M.L.; Dowling,
C.M.; Labbe, K.; et al. Targeting the Atf7ip–Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity.
Cancer Immunol. Res. 2021, 9, 1298–1315. [CrossRef] [PubMed]

41. Javitt, A.; Shmueli, M.D.; Kramer, M.P.; Kolodziejczyk, A.A.; Cohen, I.J.; Radomir, L.; Sheban, D.; Kamer, I.; Litchfield, K.;
Bab-Dinitz, E.; et al. The Proteasome Regulator PSME4 Modulates Proteasome Activity and Antigen Diversity to Abrogate
Antitumor Immunity in NSCLC. Nat. Cancer 2023, 4, 629–647. [CrossRef]

42. Trevino, V. Modeling and Analysis of Site-Specific Mutations in Cancer Identifies Known plus Putative Novel Hotspots and Bias
Due to Contextual Sequences. Comput. Struct. Biotechnol. J. 2020, 18, 1664–1675. [CrossRef]

43. Gutiontov, S.I.; Turchan, W.T.; Spurr, L.F.; Rouhani, S.J.; Chervin, C.S.; Steinhardt, G.; Lager, A.M.; Wanjari, P.; Malik, R.; Connell,
P.P.; et al. CDKN2A Loss-of-Function Predicts Immunotherapy Resistance in Non-Small Cell Lung Cancer. Sci. Rep. 2021, 11,
20059. [CrossRef] [PubMed]

44. Liu, Y.; Duan, X.; Zhang, C.; Yuan, J.; Wen, J.; Zheng, C.; Shi, J.; Yuan, M. KAT6B May Be Applied as a Potential Therapeutic Target
for Glioma. J. Oncol. 2022, 2022, 2500092. [CrossRef] [PubMed]

45. Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 Mutations of CTNNB1 Drive Tumorigenesis: A Review.
Oncotarget 2018, 9, 5492–5508. [CrossRef]

46. Ruz-Caracuel, I.; López-Janeiro, Á.; Heredia-Soto, V.; Ramón-Patino, J.L.; Yébenes, L.; Berjón, A.; Hernández, A.; Gallego, A.; Ruiz,
P.; Redondo, A.; et al. Clinicopathological Features and Prognostic Significance of CTNNB1 Mutation in Low-Grade, Early-Stage
Endometrial Endometrioid Carcinoma. Virchows Arch. 2021, 479, 1167–1176. [CrossRef] [PubMed]

https://doi.org/10.1038/nature05933
https://doi.org/10.1158/0008-5472.CAN-19-0218
https://doi.org/10.1016/j.eururo.2016.12.016
https://doi.org/10.1038/nature07586
https://doi.org/10.1126/science.1096502
https://doi.org/10.1038/s41467-023-39276-w
https://www.ncbi.nlm.nih.gov/pubmed/37322026
https://doi.org/10.1158/1078-0432.CCR-21-1881
https://www.ncbi.nlm.nih.gov/pubmed/34782365
https://doi.org/10.18632/oncotarget.14372
https://www.ncbi.nlm.nih.gov/pubmed/28052007
https://doi.org/10.1038/s41598-022-08936-0
https://www.ncbi.nlm.nih.gov/pubmed/35368039
https://doi.org/10.1038/ncomms10615
https://doi.org/10.1182/bloodadvances.2019000901
https://doi.org/10.1089/dna.2006.0573
https://doi.org/10.1186/s12943-021-01364-0
https://doi.org/10.1053/j.gastro.2023.03.006
https://www.ncbi.nlm.nih.gov/pubmed/36907526
https://doi.org/10.1158/2326-6066.CIR-21-0543
https://www.ncbi.nlm.nih.gov/pubmed/34462284
https://doi.org/10.1038/s43018-023-00557-4
https://doi.org/10.1016/j.csbj.2020.06.022
https://doi.org/10.1038/s41598-021-99524-1
https://www.ncbi.nlm.nih.gov/pubmed/34625620
https://doi.org/10.1155/2022/2500092
https://www.ncbi.nlm.nih.gov/pubmed/35432536
https://doi.org/10.18632/oncotarget.23695
https://doi.org/10.1007/s00428-021-03176-5
https://www.ncbi.nlm.nih.gov/pubmed/34420090


Cancers 2024, 16, 1072 17 of 17

47. Binkley, M.S.; Jeon, Y.J.; Nesselbush, M.; Moding, E.J.; Nabet, B.Y.; Almanza, D.; Kunder, C.; Stehr, H.; Yoo, C.H.; Rhee, S.; et al.
KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition. Cancer
Discov. 2020, 10, 1826–1841. [CrossRef]
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