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Simple Summary: Cancer remains one of the leading causes of death worldwide due to widespread
metastasis. Circulating tumor cells (CTCs) were first detected in 1886 and have been thought of as
seeds of metastasis. However, emerging evidence has shown that CTCs can be used for early disease
detection and as predictors of disease prognosis and treatment response. This review discusses recent
findings regarding the detection and characterization of CTCs. Integrating these findings into routine
clinical workflows promises to revolutionize the diagnosis and treatment of cancer.

Abstract: Circulating tumor cells (CTCs) are cells released from the primary and metastatic tumor
and intravasate into the blood or lymphatic vessels, where they are transported to distant sites and act
as seeds that initiate cancer metastases or the development of further lesions. Recent advances in CTC
research have shown their relevance as prognostic markers for early and metastatic disease detection,
predictive biomarkers for relapse, and response to medical intervention or therapy. The rapidly
evolving landscape of CTC biology has opened new avenues for understanding cancer progression,
metastasis, and treatment response. Additionally, translating these findings into clinical applications
holds promise for improving cancer diagnostics, prognosis, and personalized therapeutic strategies.
This review discusses the significance of CTCs in cancer research and their associated challenges. We
explore recent developments in the detection and characterization of CTCs and their implications in
cancer research and clinical practice.

Keywords: circulating tumor cells; liquid biopsy; cancer research; metastasis; personalized medicine;
single-cell sequencing; biomarkers

1. Introduction

In the United States (US), cancer remains the second leading cause of death, affecting
individuals of all ages and ethnic groups [1]. The estimated number of all cancer-related deaths
in the US is over 609,000, which is about 18% of all US deaths [1]. Cancer mortality is due to poor
treatment response, metastasis, and the lack of early detection methods [2–4]. Liquid biopsies
are gaining popularity as noninvasive techniques for early disease detection [5,6]. These
liquid biopsies contain circulating tumor cells (CTCs) that are released into the blood by a
tumor and travel through the bloodstream to other areas of the body to form metastatic
niches (Figure 1) [7].

CTCs are proving to be essential biomarkers that can be used for early disease detec-
tion, monitoring metastasis and cancer progression, and determining genetic heterogeneity
in tumors [8–10]. Compared to traditional tumor biopsies, obtaining CTCs from liquid
biopsies is non-invasive and real-time [11]. This can be more acceptable to patients, paving
the way for more personalized cancer medicine.
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Figure 1. Biology of CTCs in cancer. CTCs detach from their primary tumors, intravasate into the 
bloodstream, and extravasate from the bloodstream to colonize secondary tumors or metastatic 
sites. CTCs can be detected following noninvasive collection procedures and serve as biomarkers 
for monitoring multiple disease aspects. The image was created using BioRender.com. 
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tion, monitoring metastasis and cancer progression, and determining genetic heterogene-
ity in tumors [8–10]. Compared to traditional tumor biopsies, obtaining CTCs from liquid 
biopsies is non-invasive and real-time [11]. This can be more acceptable to patients, paving 
the way for more personalized cancer medicine. 

However, several challenges currently affect CTC research. One of the main issues is 
that they are rare and heterogeneous [12,13]. CTCs are present in very small numbers, 
about 1–100 per 109 white blood cells [14]. These scarcely populated cells are characterized 
by varying morphology, phenotypical characteristics, and genetic makeup, making isola-
tion and characterization difficult [15,16]. Moreover, standardizing isolation techniques 
and establishing their clinical relevance presents ongoing challenges [17,18]. Ethical con-
siderations and the need for more extensive clinical trials also pose significant obstacles to 
advancing CTC research [19]. Available techniques for detecting CTCs, like flow cytome-
try-based and microscopy-based detection methods, need refinements to improve accu-
racy and sensitivity [20]. 

Current approaches to the isolation and analysis of CTC biology involve using mi-
crofluidic devices, single-cell sequencing, and the integration of multi-omics data to de-
termine the molecular and functional heterogeneity of CTCs [21–23]. Machine learning 
tools trained to interpret complex CTC data are also being developed to aid in identifying 
biomarkers and potential therapeutic targets [24,25]. These methods hold promise for im-
proved detection, monitoring, and uncovering treatment-resistant or metastatic CTC sub-
populations. This review discusses the significance of CTCs in cancer research, current 
challenges, and new approaches to characterizing CTC tumor cell biology. Additionally, 
we preview the latest findings in CTC research and their clinical implementations in can-
cer. 

  

Figure 1. Biology of CTCs in cancer. CTCs detach from their primary tumors, intravasate into the
bloodstream, and extravasate from the bloodstream to colonize secondary tumors or metastatic
sites. CTCs can be detected following noninvasive collection procedures and serve as biomarkers for
monitoring multiple disease aspects. The image was created using BioRender.com.

However, several challenges currently affect CTC research. One of the main issues is
that they are rare and heterogeneous [12,13]. CTCs are present in very small numbers, about
1–100 per 109 white blood cells [14]. These scarcely populated cells are characterized by
varying morphology, phenotypical characteristics, and genetic makeup, making isolation
and characterization difficult [15,16]. Moreover, standardizing isolation techniques and
establishing their clinical relevance presents ongoing challenges [17,18]. Ethical consid-
erations and the need for more extensive clinical trials also pose significant obstacles to
advancing CTC research [19]. Available techniques for detecting CTCs, like flow cytometry-
based and microscopy-based detection methods, need refinements to improve accuracy
and sensitivity [20].

Current approaches to the isolation and analysis of CTC biology involve using mi-
crofluidic devices, single-cell sequencing, and the integration of multi-omics data to de-
termine the molecular and functional heterogeneity of CTCs [21–23]. Machine learning
tools trained to interpret complex CTC data are also being developed to aid in identifying
biomarkers and potential therapeutic targets [24,25]. These methods hold promise for
improved detection, monitoring, and uncovering treatment-resistant or metastatic CTC
subpopulations. This review discusses the significance of CTCs in cancer research, current
challenges, and new approaches to characterizing CTC tumor cell biology. Additionally,
we preview the latest findings in CTC research and their clinical implementations in cancer.

2. Significance of CTCs in Cancer and Clinical Implications

Circulating tumor cells hold immense significance in cancer research and clinical
applications due to their potential to offer valuable insights into various aspects of cancer
biology and patient care. Recent discoveries in CTC research have significantly advanced
our understanding of their roles in cancer progression, metastasis, treatment response, and
personalized medicine. These new developments hold significant clinical implications,
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potentially revolutionizing various aspects of cancer. Below, we discuss recent insights
into early cancer detection, metastatic potential, prognosis, treatment monitoring, and
personalized therapy based on CTC characterization and their potential clinical impacts.

2.1. Early Cancer Detection

Early detection of cancer is crucial for effective treatment and disease management
to reduce cancer-related deaths and improve patient outcomes. CTCs offer the potential
for liquid biopsy-based screening, allowing the identification of cancers at an earlier, more
treatable stage [26]. CTCs were first detected in cancer in the eighteenth century [27].
However, the process of local invasion and extravasation of CTCs has recently been shown
to occur within a short span of time [28], suggesting that CTCs can be detected in the
bloodstream at early stages of cancer, potentially allowing for early diagnosis before tumors
become clinically evident [29,30]. A study involving 667 participants, of whom 235 were
healthy individuals and 432 were patients with either colorectal cancer (CRC) or adenomas,
showed that CTCs can be used to distinguish healthy individuals from patients with CRC
or adenomas with a detection sensitivity of up to 95.2%, even before colonoscopy [31].
Another study evaluating patients with chronic obstructive pulmonary disease (COPD)
without clinically diagnosed lung cancer revealed that five out of 168 patients had de-
tectable CTCs. Notably, all five individuals with detectable CTCs developed lung nodules
within 1–4 years [32]. A third study involving patients with suspected prostate cancer
based on high serum prostate-specific antigen (PSA) levels also revealed a high positive
CTC-predicted biopsy outcome and prostate cancer aggressiveness [33]. Thus, the impor-
tance of using CTCs to predict disease occurrence cannot be underestimated. Additionally,
capturing and analyzing CTCs using liquid biopsy techniques offer a non-invasive alterna-
tive to traditional tissue biopsies, providing a real-time snapshot of the tumor’s genetic
and phenotypic characteristics.

2.2. Prognostic Indicators

The presence of CTCs in the bloodstream provides valuable prognostic information,
aiding in predicting disease outcomes and guiding treatment decisions [34–36]. Studies
have shown that higher CTC counts and the presence of CTC clusters are associated
with poorer outcomes across various cancer types [37,38]. In clinical settings, CTCs are
commonly used as a liquid biopsy method to screen for tumors, monitor disease, and
predict patients’ prognoses [39]. A CTC count cutoff value of ≥3 CTCs/7.5 mL blood is
considered unfavorable for metastatic colorectal cancer [40]. In a study involving hormone
receptor-positive (HR+) metastatic breast cancer patients, the overall survival (OS) and
progression-free survival (PFS) of patients with CTC counts ≥ 5 per 7.5 mL blood after
treatment was significantly worse than those of patients with <5 CTCs [41]. Also, CTC
counts ≥ 10 per 5 mL blood in small-cell lung cancer (SCLC) patients were closely associated
with advanced stage (high lymph node metastasis and distant metastasis), indicating a more
unfavorable prognosis [42]. These recent investigations have refined our understanding of
CTCs as robust prognostic indicators, guiding clinicians in predicting disease outcomes
and tailoring treatment strategies. Multiple detection methods have been developed to
comprehensively characterize CTCs, providing valuable insights into the likely cause of
disease [39,43]. CTC enumeration is increasingly being incorporated into clinical practice
as a predictive tool, and CTC counts are being used to stratify patients, helping tailor
treatment plans based on individual prognoses [44].

2.3. Tumor Heterogeneity

Tumor cells obtained from liquid biopsies exhibit genetic and phenotypic diversity,
reflecting heterogeneity within the primary tumor [13,45]. Numerous studies have dis-
covered the presence of different CTC subpopulations in cancers [13,46–48]. For instance,
Freed and colleagues identified two CTC subpopulations expressing epithelial cell adhesion
molecule, EpCAM (CTCEpCAM), or fibroblast activation protein-alpha, FAPα (CTCFAPα),



Cancers 2024, 16, 1213 4 of 23

in pancreatic ductal adenocarcinoma (PDAC) patients. Using the ratios of CTCFAPα to
CTCEpCAM, they were able to stratify patients as responders versus non-responders to
niraparib treatment [46]. In a non-small cell lung cancer (NSCLC) study, the authors were
able to detect different gene signatures related to therapy resistance (MET and HER3) and
the initiation of metastasis (ALHD1) using CTCs [49]. The spectrum of cancer heterogeneity
has long been under scrutiny as a factor allowing the tumor to adapt to different microen-
vironmental stressors with different subpopulations that may evolve to increase disease
aggressiveness and decrease therapeutic response [50]. The study of CTCs, therefore, allows
researchers to understand and monitor tumor heterogeneity, providing crucial information
for devising effective and personalized treatment strategies.

2.4. Metastasis and Disease Progression

Metastasis accounts for more than 90% of cancer-related mortalities [51–53]. This is
because treatment options available for patients with metastatic solid tumors are rarely
curative [54,55]. Metastatic events in cancer involve the spread of tumor cells from the
primary to secondary sites, following a phenotypic transition from epithelial to mesenchy-
mal phenotype, cancer cell invasion into circulation, dormancy, and colonization at distant
sites [56,57]. CTCs can be released by aggressive and metastatic tumors into circulation,
where they extravasate to other remote sites for continuous colonization, leading to the
growth of further lesions [58]. Nonetheless, research suggests that CTCs can be shed from
primary tumors at early stages of cancer, challenging the traditional view that metastasis
occurs primarily in advanced disease [6]. This early dissemination contributes to the under-
standing of metastatic potential and the dynamics of cancer progression [6,59]. Following
the injection of pancreatic cancer cells expressing fluorescent proteins into the earlobes of
mice to form solid tumors, the presence of CTCs with fluorescent proteins was detected in
the bloodstream of the mice at different stages of development [60]. Using quantum dots,
the researchers identified cells with high metastatic potential; those expressing clusters
of differentiation, CD24+ and CD133+ [60]. The development of metastatic niches often
signifies a significant progression in the tumor stage, and studies have linked CTC charac-
teristics, such as the presence of CTC clusters, to increased metastatic potential, aiding in the
identification of patients at higher risk [61–63]. In metastatic breast cancer, a CTC count ≥ 5
in 7.5 mL of blood correlates with worse overall survival and progression-free survival [40].
Indeed, a CTC count of less than five in patients with stage IV breast cancer is used to
classify the tumor as stage IV indolent, whereas a CTC count greater than five classifies
the tumor as stage IV aggressive [40]. CTC clusters exhibit stemness characteristics and
can evade the immune system by recruiting immunosuppressive cells [64]. This attribute
helps prevent CTCs from being attacked by antitumor immune cells like natural killer
(NK) cells, thereby increasing their metastatic potential [64–66]. In circulation, CTCs are
protected from shear forces and shielded from immune detection through interactions with
platelets [67]. Other blood cells, like macrophages, are able to interact directly with CTCs to
protect them from being phagocytosed [67]. Szczerba et al. also identified and associated
CTC–neutrophil interactions with cell cycle progression, leading to more efficient metasta-
sis formation [68]. Using a mass spectrometry-based untargeted metabolomics approach,
human colorectal cancer CTC-derived cells were shown to have low or high metastatic
potential based on metabolic features [69]. A combination of metabolites, such as glutamic
acid, malic acid, lactic acid, and aspartic acid, along with higher CTC counts, positively
predicted the metastatic risk in patients, providing evidence of the influence of metabolic
phenotype on the metastatic potential of cells [69]. Recently, CTCs were shown to have un-
expectedly high levels of OXPHOS compared to glycolytic signatures [70]. This metabolic
reprogramming was the opposite of the common “Warburg Effect” seen in metastatic
cancer cells, suggesting an additional layer of regulative complexities in cancer metasta-
sis [70]. Metabolic reprogramming of CTCs enables them to survive harsh conditions in
the bloodstream and enhances their ability to establish a favorable microenvironment for
metastasis, known as metastatic niches [71]. The molecular mechanisms by which CTCs
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influence the pre-metastatic niche (PMN), prepare distant organs for colonization, and
contribute to the metastatic process are yet to be fully understood. However, CTCs acquire
enhanced migratory and invasive capabilities when undergoing epithelial–mesenchymal
transition (EMT) [72]. Recent discoveries have elucidated the dynamic nature of EMT in
CTCs, identifying hybrid epithelial/mesenchymal states that may contribute to metastatic
progression [38]. For instance, the presence of both epithelial and mesenchymal markers
indicates the occurrence of intrahepatic metastasis, while the presence of mesenchymal
phenotypes prompts the development of extrahepatic metastasis [38]. Expression of mes-
enchymal markers like N-cadherin, vimentin, snail, and slug have also been detected in
CTCs, highlighting their use in metastasis prediction [73,74]. Using CTC-based information
to assess the risk of metastasis will help implement more aggressive treatment strategies
for patients with a higher likelihood of developing metastatic disease.

2.5. Treatment Response Monitoring

Changes in CTC counts and characteristics during treatment can indicate treatment
response or resistance [41]. Real-time monitoring of CTC dynamics will allow for timely ad-
justments to therapeutic strategies. To monitor patient response to therapy, longitudinal tis-
sue biopsies must be collected. However, this procedure is often invasive and complicated
by the location and size of tumors [75]. Therefore, CTCs can serve as dynamic biomarkers
for monitoring treatment response and assessing the efficacy of therapies. Indeed, CTCs
from patients with either chemosensitive or chemorefractory SCLC were tumorigenic in
immune-compromised mice, and their resultant CTC-derived explants mirrored the donor
patients’ response to platinum and etoposide chemotherapy [76]. Molecular alterations that
affect a tumor cell’s response to specific drugs can also be determined through molecular
profiling of CTCs. For example, the expression level of cyclin D1 (CCND1) was shown to
be significantly reduced in patients with head and neck squamous cell carcinoma (HNSCC)
following nivolumab treatment [77]. In contrast, the expression of NANOG increased
significantly [77]. Changes in CTC count or specific genetic alterations can, thus, indi-
cate whether a treatment effectively targets the tumor, enabling timely adjustments to the
therapeutic approach.

2.6. Minimal Residual Disease Monitoring

CTCs can be used to monitor minimal residual disease (MRD) after surgery or other
treatments, helping identify potential disease recurrence early. Li and colleagues used pre-
operative CTC concentration to predict postoperative recurrence or metastasis in patients
with NSCLC [78]. Detection of CTCs pre- and post-adjuvant chemotherapy can also serve
as prognostic indicators of early relapse [34]. These indicators allow for investigations
into novel therapeutic approaches to curb relapse and drug resistance. CTC-based MRD
monitoring has also been explored as a valuable tool in post-treatment surveillance, offering
insights into the effectiveness of interventions and informing decisions regarding additional
therapies [79]. CTCs can enter a state of dormancy, temporarily evading the immune system
and therapeutic interventions [80,81]. Recent studies have shed light on the mechanisms
governing CTC dormancy and the factors that lead to their reactivation, contributing to a
deeper understanding of cancer relapse [82–84]. Molecular characterization of CTCs can
also help identify and analyze drug-tolerant clones within the tumor microenvironment
(TME) [85].

2.7. Personalized Medicine

Precision oncology aims to treat patients according to the molecular characteristics
of their tumors, adjusting these treatment strategies as the tumors evolve [86]. Molecular
characterization of CTCs contributes to identifying actionable mutations and potential
therapeutic targets. Whole exome sequencing (WES) of patient CTC samples has been
shown to reflect the genomic characteristics of their corresponding solid tumors more
accurately [87–89]. This genomic information can be crucial in developing personalized
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treatment plans. Functional mutations in driver genes like EGFR, KRAS, and TP53 can
be determined quickly and used to stratify patients for therapy [89]. Mutational charac-
terization of CTCs can also help physicians decipher if and when a patient is developing
resistance to a particular chemotherapeutic agent, thereby allowing for proactive treat-
ment decisions [90]. In this regard, CTC-based liquid biopsies facilitate the development
of personalized treatment plans, allowing for the selection of targeted therapies based
on the specific genetic profile of the tumor. Furthermore, CTC-based liquid biopsies are
increasingly integrated into clinical trials and treatment decision-making.

2.8. Clinical Trials and Drug Development

CTCs offer a tool for assessing drug response in preclinical and clinical trials, aiding
in developing novel cancer therapeutics. Current CTC-based clinical trials aim to use CTC
positivity and dynamics to predict clinical outcomes and therapy responses in patients [19].
Following the STIC CTC randomized clinical trial (NCT0170605), researchers determined
that CTC count was a reliable biomarker for choosing between chemotherapy and a single-
agent endocrine therapy as a first-line treatment in hormone receptor-positive ERBB2-
negative metastatic breast cancer [91]. Data from clinical trials can also be used to model
the prognostic impact of a tumor and the design of specific targeting agents [92]. Therefore,
CTC-based studies provide a platform for evaluating the effectiveness of new treatments
and understanding drug resistance mechanisms.

In summary, CTCs have a significant role in cancer research and clinical applications.
They act as dynamic biomarkers, providing insights into the complex nature of cancer.
With technological advancements, CTC-based approaches can be integrated into regu-
lar clinical practice. This can potentially revolutionize cancer diagnosis, treatment, and
patient outcomes.

3. Challenges of Using CTCs in Research and Clinical Applications

Studying circulating tumor cells presents several challenges, primarily stemming from
their rarity in the bloodstream and the technical complexities associated with their isolation
and characterization. Despite all the limitations associated with CTCs, rapidly evolving
technology is paving the way for cutting-edge detection and characterization methods.
Table 1 outlines some key challenges related to the use of CTCs.

Table 1. Challenges associated with detection, isolation, and characterization of CTCs.

Challenges Description/Effects Ref.

Low Frequency in Bloodstream
- Extremely rare compared to other circulating cells (e.g., blood cells)
- Ranges from a few to a few hundred CTCs per milliliter of blood
- Low frequency makes detection and isolation difficult

[93,94]

Heterogeneity

- Exhibits both genetic and phenotypic variabilities
- Reflects cellular diversity within the primary tumor
- Heterogeneity complicates efforts to capture a representative

sample of CTCs for analysis

[95–97]

Cell Viability

- CTCs are fragile and can be damaged during isolation processes
- Isolation and analysis of viable CTCs are crucial for meaningful

downstream studies
- Lack of viable cells may affect subsequent functional assays

[98]

Dynamic Changes in CTC Numbers

- Number of CTCs in the bloodstream vary over time
- Number of CTCs is affected by tumor size, treatment effects, and

stage of the disease
- Variable CTC numbers add complexity to studying

CTCs longitudinally

[14,99]
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Table 1. Cont.

Challenges Description/Effects Ref.

Contamination from Normal Cells

- Isolation of CTCs can be complicated by contamination from
normal blood cells, such as leukocytes

- Presence of other cells reduces the purity of CTC samples
- Contaminating cells can interfere with downstream analyses

[100]

Technical Limitations

- Traditional methods for CTC isolation, such as density gradient
centrifugation, do not efficiently capture CTCs due to their similar
size and density compared to other blood cells

- Newer technologies, like microfluidic devices and
immunomagnetic separation, need refinements to achieve high
purity and recovery rates

[101,102]

Lack of Standardization

- Lack of standardized protocols for CTC isolation and
characterization

- Different isolation methods and technologies may yield
varying results

- Lack of standardization makes it challenging to compare data
across studies, leading to potential discrepancies in the
interpretation of findings

[26,103,104]

Ethical and Consent Issues

- Obtaining blood samples for CTC analysis requires
informed consent

- Collecting longitudinal samples to monitor disease progression
may have psychological impacts on patients

[105]

Clinical Relevance

- Establishing the clinical relevance of CTCs and their role as
prognostic or predictive biomarkers requires large-scale
clinical validation

- Research findings are not integrated with routine
clinical applications

[106,107]

Cost and Accessibility

- Advanced technologies for CTC isolation and analysis
are expensive

- The cost associated with isolation and analysis methods limit their
widespread implementation and use

- Advanced technologies needed are not readily accessible in all
healthcare settings

[108,109]

4. Circulating Tumor Cell Detection Strategies—Pros and Cons

The study of CTCs presents an opportunity to gain valuable insights in advancing
cancer research and improving patient care. However, addressing the challenges with CTC
research starts with effectively detecting CTCs in liquid biopsies. As such, there is a need
to refine existing techniques and develop standardized protocols while making the process
cost-effective and accessible to patients [110]. Admittedly, the methodologies used to detect
or isolate CTCs have evolved significantly, becoming progressively sophisticated and sensi-
tive [111–114]. Current CTC detecting methods can be categorized into label-dependent
(affinity-based) and label-independent [12]. The latter involves traditional methods that
separate cells based on size, deformability, and other biophysical properties [115,116].
These methods range from density gradient centrifugation, inertia focusing, filtration, and
dielectrophoresis [117,118]. The challenge is that these methods lack the sensitivity and
specificity needed to isolate CTCs efficiently [101].

Label-dependent methods detect cells based on the expression of specific markers
like EpCAM, vimentin, and N-cadherin (positive selection), or the lack thereof of markers
like CD45 (negative selection) and the binding affinity to specific antigens, RNA, and
DNA sequences [101,119,120]. Such methods include EpCAM enrichment, immunomag-
netic separation, and microfluidic devices [121–123]. By far, the cell surface adhesion
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molecule, EpCAM, is the most common marker used for CTC enrichment (increasing
CTC concentration for their subsequent detection) [124]. Recent studies have focused on
improving CTC enrichment through highly engineered microfluidic devices and selective
CTC markers [112,124]. To date, label-dependent methods offer improved sensitivity and
specificity, enabling the capture of rare CTCs while minimizing contamination from normal
blood cells [125–127]. Nonetheless, the lack of universal markers for detecting heteroge-
neous CTCs coupled with the unavailability of validated and standardized approaches
means that most of these approaches need to be validated and standardized in the pre-
analytical, analytical, and post-analytical phases [128]. Table 2 displays some methods and
their principles for detecting CTCs and their advantages and disadvantages.

Table 2. CTC isolation methods—advantages and disadvantages.

Method Principle Pros Cons Refs.

Density Gradient
Centrifugation

Differential centrifugation
separates blood components
based on their density,
allowing for the isolation
of CTCs

Simple,
cost-effective

- Limited specificity
- Contamination from

normal blood cells
[129]

Filtration
Techniques

Filters with defined pore sizes
are used to physically separate
CTCs from blood cells based
on size

Simple,
cost-effective

- Risk of clogging
- Loss of smaller CTCs

[130–132]

Epithelial Cell Adhesion
Molecule (EpCAM)
Enrichment

EpCAM, a cell surface marker
often expressed in epithelial
cancers, is targeted for CTC
enrichment

Commonly used,
FDA-approved
platforms

- EpCAM-negative CTCs
may be missed

- Loss of CTC heterogeneity
[120]

Immunomagnetic
Separation

Antibodies specific to tumor-
associated antigens are used to
capture CTCs by attaching to
magnetic beads

High specificity,
potential for enrichment of
viable CTCs

- Limited by the availability
of specific antigens

- Loss of CTC viability
[133,134]

Microfluidic
Devices

Microscale devices use various
mechanisms, such as
size-based
filtration or antibody-coated
surfaces, to isolate CTCs
from blood

High throughput, potential
for single-cell analysis, and
minimal sample processing

- Requires efficient capture
to avoid CTC damage

- Requires standardization
of devices

[125,135]

Fluorescent-
Activated Cell Sorting (FACS)

Fluorescently tagged cells are
separated by flow cytometry

High specificity and
throughput for
CTC enrichment

- Requires a high number of
input cells

[136,137]

Notes: Density gradient centrifugation and filtration techniques are label-independent. EpCAM enrichment,
immunomagnetic separation, and FACS are label-dependent. Microfluidic devices can be either label-dependent
or label-independent.

Commercialized single-cell isolation strategies such as fluorescence-activated cell
sorting and droplet-based systems isolate single cells randomly, making isolating rare single
cells difficult [16]. The Food and Drugs Authority (FDA) has approved CELLSEARCH
for the enumeration of CTCs of epithelial origin (EpCAM+, CD45−, and cytokeratins 8,
18+, and/or 19+) in whole blood [138]. Other systems such as DEPArray [139], RareCytes
CyterFinder [140], ALS Collector [141], and VyCap Puncher [142] can isolate rare single cells
but lack the capacity for single-cell enrichment. A study by Yoshino and colleagues showed
that target cells could be encapsulated by confocal laser-scanning microscopy following the
introduction of a photopolymerized hydrogel, polyethylene glycol diacrylate (PEGDA), into
cell entrapped on a microcavity array (MCA) [143]. In another study utilizing the MCA/gel-
based cell manipulation (GCM), a size-selective CTC enrichment and a surface-independent
CTC detection method (based on CellTracker Green-positive and CD45-negative) showed
increased recovery and effective detection of gastric cancer CTCs [144]. This GCM-based
single-cell manipulation method is advantageous for extremely low-volume reactions
due to the minimal water composition of hydrogel-encapsulated single cells [144]. These
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efforts are necessary to decrease cell loss during sample handling, decrease white blood
cell contamination, and increase the recovery of CTCs in cancer.

5. Advancements in Characterizing CTC Biology and Clinical Implications

The study of CTCs is inherently challenging due to their rarity in the bloodstream. To
overcome this challenge and make the most use of CTCs as valuable biomarkers, advanced
technologies are essential for their efficient capture and precise analysis. Herein, we discuss
recent progress that has been made in characterizing CTC biology.

5.1. Polymerase Chain Reaction (PCR)

Liquid biopsies contain CTCs and other tumor-derived materials shed into the blood-
stream, such as circulating tumor nucleic acids, including DNA (ctDNA), RNA (ctRNA),
exosomes, and other microvesicles [145–147]. ctDNA, derived from apoptotic or necrotic
tumor cells and CTCs, can be used to predict changes to therapeutic response [148]. The
FDA approved the Cobas EGFR mutational test for the management of therapy in lung
cancer [149]. This was a result of the detection and mutational testing (Cobas EGFR mu-
tation test) of ctDNA from NSCLC patients, which showed the importance of ctDNA
as a biomarker in cancer diagnosis and prognosis [150,151]. Different types of PCR
methods have been developed with the aim of detecting and characterizing CTCs and
ctDNA [152–155]. These methods continue to be improved to increase sensitivity and
allow for accurate and quantitative analyses of CTCs [111]. The development of droplet
digital PCR (ddPCR) has allowed for the partitioning of a sample into many “droplets”,
enabling the amplification of rare mutations [153,156]. The ddPCR method offers several
advantages over conventional quantitative and real-time PCR [157–160]. It has improved
sensitivity [158], is less susceptible to PCR inhibitors [157], and allows for absolute quantifi-
cation without the need for an external calibration curve [160]. CTCs can also be quantified
independently of nucleic acid extraction using real-time quantitative PCR (Q-PCR) [155].
In the article by Mei and colleagues, CTCs were isolated using tag-DNA-modified CK19
antibody and magnetic beads conjugated with EpCAM antibody. They reported a detection
rate of 92.3% in the clinical tumor blood samples, and by quantifying the tag-DNA that had
immobilized on the tumor cells, they showed a correlation between CTC counts and tumor
stage/status [155]. As PCR methods improve, single-cell and next-generation sequencing
can be integrated to enhance CTC characterization and their roles in cancer.

5.2. Single-Cell Analysis

Genomic and phenotypic characteristics of cells differ within a patient’s tumor (intratu-
mor heterogeneity) and between tumors of the same type (intertumor heterogeneity) [161].
These heterogeneous differences contribute to treatment failure and disease recurrence,
as there is no one-size-fits-all treatment approach [85]. Evidence has shown that CTCs
detected in patients represent an array of cell states with varying genetic and pheno-
typic profiles [97,162]. Therefore, advanced technologies like single-cell RNA sequencing
(scRNA-seq), single-cell protein analysis, and imaging techniques are needed [163]. These
techniques allow for detailed molecular and phenotypic characterization with the potential
to reveal deep insights into intratumor heterogeneity and cellular plasticity and help iden-
tify pathways activated in different cell states, details often masked by profiling pooled
cells [163]. Traditional methods of CTC analyses have targeted the use of epithelial biomark-
ers, whose expression may not be universal across all tumors [120]. Recent improvements
in single-cell analysis have focused on enhancing sensitivity, reducing technical variabil-
ities, increasing throughput, and upgrading data analysis tools [164–166]. Upgrades in
single-cell analysis packages, such as Seurat and Uniform Manifold Approximation and
Projection (UMAP), have enabled better clustering analysis and classification of CTCs into
multiple subtypes [167,168]. Single-cell sequencing analysis of CTCs from SCLC patients
showed a global increase in intratumoral heterogeneity (ITH), including heterogeneous ex-
pression of potential therapeutic resistance pathways, like EMT, between different cellular
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subpopulations following treatment resistance [48]. Indeed, serial profiling of the CTCs
post-relapse confirmed increased ITH, suggesting that treatment resistance was character-
ized by coexisting subpopulations of cells with heterogeneous gene expression, leading
to multiple concurrent resistance mechanisms [48]. This finding effectively highlights the
need for clinical efforts targeted at developing combination therapies for treatment-naïve
SCLC tumors in order to increase initial response and counteract the emergence of ITH and
diverse resistance mechanisms [48]. Another analysis of prostate CTCs revealed hetero-
geneity in signaling pathways like non-canonical Wnt signaling that could contribute to
treatment failure or therapeutic resistance (antiandrogen resistance) [169]. By integrating
single-cell and batch RNA sequencing, Zhang et al. found gene markers associated with
CD8+ T cell infiltration (LGR5, CCR7, STC2, DEFB1, TYK2, SCARB1, AICDA, and ULBP2)
in HNSCC, which can serve as predictors of disease prognosis and clinical treatment indica-
tors [170]. These findings may change the way cancer patients are staged and risk-stratified
and provide new prognostic approaches for the identification of targeted therapy and
resistance mechanisms.

5.3. Next-Generation Sequencing (NGS)

High-throughput sequencing of CTC-derived DNA or RNA can allow for a comprehen-
sive genomic and transcriptomic analysis to detect heterogeneous and shared mutational
signatures within and between different cancer types [171,172]. This could provide better
insight into a patient’s genetic makeup, which in turn can guide clinicians for better disease
management. The challenges in sequencing the CTC genome and transcriptome include
low abundance in the bloodstream, making their isolation difficult [173], significant genetic
heterogeneity compared to the primary tumor, which can affect the capture of the full
spectrum of mutations present [15], and the need for sophisticated bioinformatics tools
and computational resources for data analysis and interpretation [174]. However, improve-
ments in the isolation and capture of CTCs, the ease of use of different analytical tools, and
the removal of biases introduced during sample and sequencing library preparation are
increasing the possibility of detecting rare mutations in CTCs [175,176]. By targeting muta-
tional hotspots, a combination of whole-genome amplification, PCR, and Sanger sequencing
was used to examine point mutations in the KRAS, BRAF, and PIK3CA genes in CTCs of
patients with CRC. The authors detected single-cell mutations in the genes. Interestingly,
these mutations were not found in the corresponding tumors [177]. Gkountela and col-
leagues conducted a comparative analysis of the methylation landscape of single CTCs and
CTC clusters from breast cancer patients and mouse models to reveal similarity patterns
to embryonic stem cells and identified pharmacological agents that can target clustering,
blunt metastasis spreading, and suppress stemness [61]. They observed hypomethylation
in the binding sites for OCT4, NANOG, SOX2, and SIN3A of CTC clusters, similar to em-
bryonic stem cells, and identified an FDA-approved Na+/P+ ATPase inhibitor that enabled
the dissociation of CTC clusters into single cells. Thus, they established a link between
specific DNA methylation changes and the promotion of cancer stemness and metastasis
and pointed to cluster-targeting compounds to suppress the spread of cancer [61]. In a
study investigating somatic mutations present in CTCs from colorectal cancer patients, the
frequencies of somatic mutations present in the CTCs correlated with prognostic markers
and resembled mutational signatures present in the primary tumor [178]. These findings
have resulted from significant improvements in the isolation and enrichment of CTCs and
efficient whole-genome amplification (WGA) and NGS workflows that reduce bias with
improving coverage, sensitivity, and specificity [179,180]. As more targeted cancer panels
become increasingly available, the possibility of detecting more actionable mutations will
increase, with lower costs and minimal requirements for specialized equipment [181].

5.4. In Situ Analysis

Techniques that enable in situ analysis of CTCs directly within the bloodstream or
in patient-derived samples provide a real-time understanding of their behavior. The
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advantage of in situ analysis is that challenges with traditional CTC isolation methods,
which compromise CTC integrity, are avoided. These approaches also eliminate potential
biases introduced by ex vivo isolation and culture, offering a more accurate representation
of CTC biology. CellCollector CANCER01 (DC01) is an approach developed for the in vivo
isolation of CTCs from the peripheral blood of cancer patients [182]. The DC01 device
enables in vivo isolation and enumeration of CTCs by capturing EpCAM-positive CTCs
through a detector placed in the peripheral vein of cancer patients via a cannula [183].
This device has been shown to be tolerated for 30 min in vivo by patients without any
side effects [184]. In a study evaluating the feasibility of CTC detection and monitoring
in high-risk non-metastatic prostate cancer (PCa) patients undergoing radiotherapy, the
authors show that CTCs could be detected before and after radiotherapy using the DC01
device in vivo [184]. Figure 2a below shows images of the captured CTCs. The CTCs were
positive for pan-cytokeratin (pan-CK; green) and negative for CD45-red (Figure 2a). This
study used the human prostate cancer cell line LNCAP as a positive control (Figure 2b),
with non-specific binding lymphocytes as an internal negative control (Figure 2b,c). Three
CTC clusters, each containing 2–3 CTCs, were detected in samples from two patients, with
total CTC counts of 10 and 15, respectively (Figure 2d).
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detected from three patients; CTCs were defined as being positive for nucleic staining and pan-CK
(pan-cytokeratin) and negative for CD45 by immunofluorescence staining (DNA (blue) and pan-CK
(green)). Scale bar: 20 µm. (b) Images of control samples for CTC staining panel, upper panel: LNCaP
cells captured on DC01 as positive controls for the CTC staining panel by immunofluorescence
staining (DNA (blue) and pan-CK (green)); lower panel: leukocytes attached to DC01 served as
negative controls for the CTC staining panel by immunofluorescence staining (DNA (blue) and
CD45 (red)). Scale bar: 20 µm. (c) Scanning electron microscope image showing the surface of DC01
and blood components, including unspecific binding of leucocytes onto DC01. Scale bar (from left
to right): 90 µm, 30 µm, and 9 µm. (d) Three CTC clusters on DC01 detected from two patients;
CTC clusters were found as a cluster of CTCs being positive for nucleic staining and pan-CK and
negative for CD45 by immunofluorescence staining (DNA (blue) and pan-CK (green)). All CTCs
were negative for PSA, so this channel is not shown. Exposure time for each channel: nucleus DNA,
800~1000 ms; pan-CK, 3000 ms; CD45, 6000 ms. Scale bar: 20 µm. Source: Reprinted from [184] under
an open-access Creative Commons CC BY 4.0 license.

In the medical community, simple, easy, and sensitive methods to monitor tumor
growth are essential for patient care [185]. These may come in the form of improvements or
modifications to existing technology, allowing for economical and effective characterization
of CTCs. For instance, confocal line scanning, which can be implemented in any confocal
microscope system, helped detect CTCs and CTC clusters in vivo in the blood vessels of
live mice [186]. Kuo and colleagues also used multi-photon microscopy and antibody-
conjugated quantum dots to image CTCs in real-time in living animals [60]. They detected
different subpopulations of CTCs, especially those with high metastatic potential—CD24+

and CD133+ CTCs [60]. These simple and direct noninvasive strategies are needed to
detect and investigate the mechanistic underpinnings of tumor metastasis and functionally
characterize CTCs.

5.5. Functional Assays

Ex vivo culture of CTCs and CTC-derived animal models are gaining increasing
popularity as tools to study functional properties, such as drug response and metastatic
potential [14,187,188]. These models provide insights into CTC behavior beyond molec-
ular characterization [102]. Additionally, functional characterization of CTCs provides
insights into potential treatment options [188]. However, there is a lack of standardized
protocols for culturing CTCs of different cancer cell types, and optimal conditions are
undefined [189,190]. Current culture conditions involve a cocktail of growth factors, like
epidermal growth factor (EGF) and fibroblast growth factors (FGF2 and FGF10), cytokines,
hormones, tissue organ extracts, and insulin/insulin-like growth factor 1 (IGF-1) [191,192].
In a recent study optimizing cell culture conditions using a model of primary ovarian
cells, Cobalt(II) chloride (CoCl2) was used as a hypoxia-mimicking agent [14]. A CoCl2
concentration between 100 and 150 µM in culture media was shown to lead to a significant
increase in cell counts, demonstrative of a sustainable proliferative activity. However,
when the concentration of CoCl2 was increased to 200 µM, there was a significant cell
cycle arrest at G0/G1 [14]. Efforts like this highlight the importance of refining cell culture
conditions to ensure optimal cell growth. Regardless, once successful cultures have been
established, the cells can be characterized to provide insight into their biology. Figure 3
shows a phenotypic characterization of CTCs after ~2 weeks in culture [187]. Expression of
epithelial markers was observed in 18.18% of samples (number of samples, n = 22), while
47% were vimentin-positive (n = 17) [187]. These findings corroborate existing knowledge
on the loss of epithelial features and the gain of mesenchymal properties following cell
culture [193–195].
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Figure 3. Representative images by confocal microscopy of immunofluorescence characterization
of circulating tumor cells (CTCs) after culture. Immunofluorescent staining was performed using
a combination of anti-human Epithelial markers (Epith: EpCAM, E-Cadh, and PanCK) (in green),
anti-Vimentin (VM, in yellow), and anti-CD45 (in red). Scale bar represents 25 µm. Source: [187]
under an open-access Creative Commons CC BY 4.0 license.

Expansion of CTCs ex vivo via cell cultures also provides avenues for drug sensitivity
testing and allows for functional assays like proliferation, migration, invasion, and apop-
tosis to be performed. In a study performing drug sensitivity profiling of cultured CTCs
(treatment-naïve) from patients with SCLC, the authors reported concordance between
the response to standard-care chemotherapy (cisplatin and etoposide) administered to
the patients and the sensitivities of corresponding cultured CTCs treated with cisplatin
and etoposide [188]. Following treatment, response to chemotherapy can also assessed.
CTCs can be evaluated for features of viability, early apoptosis, and late-stage apopto-
sis/necrosis [196]. In breast cancer, CTCs with features of early apoptosis are prognostic of
metastasis-free survival and correlate with neoadjuvant chemotherapy response, while the
presence of late-stage apoptotic CTCs is associated with a poor response to neoadjuvant
chemotherapy and metastasis-free survival [196]. Such findings support the feasibility of
predicting treatment outcomes in patients using CTCs. Table 3 summarizes the different
methods for characterizing CTC biology, their advantages, and disadvantages.

Table 3. Summary of methods used in characterizing CTC biology.

Method Advantages Disadvantages

Polymerase chain reaction - Detect specific DNA sequences
- High sensitivity and specificity

- Does not provide any information about
genetic heterogeneity

- Improvements needed to detect
rare mutations

Single-cell analysis

- Allows for the analysis of individual
CTCs to understand heterogeneity

- Provides insights into genetic and
phenotypic diversity

- Requires specialized techniques and
analysis tools

- Analysis can be time-consuming
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Table 3. Cont.

Method Advantages Disadvantages

Next-generation sequencing

- Allows for high-throughput sequencing
of CTC genomes

- Provides comprehensive genomic
information and detects rare mutations

- Expensive, complex data analysis
- May require high DNA input

In situ analysis
- Examines CTCs directly in the blood
- Offers spatial information and preserves

CTC integrity

- Requires specialized imaging techniques
- Not suitable for high-throughput analysis

Functional assays

- Evaluates CTCs’ functional properties,
like proliferation, migration, and
drug response

- Involves ex vivo culture of CTCs

- Assay conditions may not fully represent
in vivo conditions

- Lack of standardized culture protocols
- Variable results

6. Future Perspectives

CTCs are present in very low numbers compared to other blood cells, making their
isolation akin to finding a needle in a haystack. Therefore, advanced technologies with high
sensitivity are required to capture and detect these rare cells efficiently. Real-time monitor-
ing of CTC dynamics, capturing changes in CTC numbers and characteristics over time, is
crucial for understanding the temporal aspects of cancer progression, treatment response,
and the emergence of resistance. The development of new high-throughput technologies
allows for the rapid and automated processing of large volumes of blood, enhancing the
efficiency of CTC isolation. This is particularly important for clinical applications where
timely results are essential. Integrating CTC research findings into routine clinical practice,
however, requires standardization, validation, and collaboration between researchers and
healthcare professionals. These initiatives should be focused on the validation of CTC-
based assays, ensuring their reliability and reproducibility. Additionally, making CTC
analysis clinically relevant requires the adaptability of existing or new technologies to
routine clinical practice. Accordingly, user-friendly platforms need to be integrated with
existing diagnostic workflows and point-of-care systems. The integration of advanced
analytical platforms, such as single-cell sequencing and next-generation sequencing, will
enable comprehensive profiling of CTCs and increase accessibility while significantly de-
creasing time and associated costs. Thus, the use of CTCs in cancer diagnosis, prognosis,
and monitoring treatment outcomes has the potential to revolutionize our approach to
cancer detection and treatment.

7. Conclusions

Recent advances in CTC research have deepened our understanding of their multi-
faceted roles in cancer progression, metastasis, and treatment resistance, contributing to the
development of more effective diagnostic and therapeutic strategies. These breakthroughs
are translating into practical applications with direct benefits for cancer patients. As these
findings become more integrated into routine clinical practice, the promise of CTC-based
approaches lies in improving cancer diagnosis, prognosis, and treatment outcomes for
individuals across diverse cancer types.
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