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Simple Summary: Cancer is a heterogeneous disease characterized by uncontrollable abnormal cell
growth. KRAS plays a crucial role in cell proliferation and differentiation. KRAS mutations are
frequently found in many types of cancer, including non-small-cell lung cancer. However, targeting
this oncogene has been a real challenge for many years. Recent advances in KRAS targeting have
changed the current therapeutic landscape. In this review, we summarize the therapeutic strategies
for KRAS-mutated NSCLC with encouraging results and restrictions. Moreover, we present possible
combination therapies aiming to achieve individualized treatment.

Abstract: Kirsten rat sarcoma virus (KRAS) is the most frequently found oncogene in human cancers,
including non-small-cell lung cancer (NSCLC). For many years, KRAS was considered “undruggable”
due to its structure and difficult targeting. However, the discovery of the switch II region in the KRAS-
G12C-mutated protein has changed the therapeutic landscape with the design and development
of novel direct KRAS-G12C inhibitors. Sotorasib and adagrasib are FDA-approved targeted agents
for pre-treated patients with KRAS-G12C-mutated NSCLC. Despite promising results, the efficacy
of these novel inhibitors is limited by mechanisms of resistance. Ongoing studies are evaluating
combination strategies for overcoming resistance. In this review, we summarize the biology of the
KRAS protein and the characteristics of KRAS mutations. We then present current and emerging
therapeutic approaches for targeting KRAS mutation subtypes intending to provide individualized
treatment for lung cancer harboring this challenging driver mutation.

Keywords: KRAS; NSCLC; G12C mutation; undruggable; sotorasib; adagrasib; mechanisms of
resistance; emerging therapies

1. Introduction

For several decades, lung cancer has been the deadliest form of cancer worldwide.
The majority of lung cancer cases (approximately 85%) belong to the non-small-cell lung
cancer type, especially the adenocarcinoma histological subtype [1,2]. In recent years, the
introduction of targeted therapies with tyrosine kinase inhibitors (TKIs) has significantly
changed the therapeutic management of NSCLC [3,4]. Molecular characterization of the
tumor at baseline gives us the opportunity to identify those patients with oncogenic
alterations and offer them the optimal therapeutic strategy, thus improving their survival
and quality of life [5,6]. Among all the genetic alterations found in NSCLC, Kirsten rat
sarcoma virus (KRAS) is the most common oncogene that serves as a driver mutation in
approximately 30% of all cases [7,8]. For many years, the KRAS protein was considered
an “undruggable” target due to the failure of many therapeutic approaches [9]. However,
recently, promising KRAS inhibitors were designed, leading to a new era of effective KRAS-
targeting agents [10]. In this review, we provide an overview of the structure and function
of the KRAS protein and discuss the emerging therapies targeting KRAS, shedding light on
future perspectives and restrictions.
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2. KRAS Biology
2.1. Structure and Signaling Pathways

The Kirsten rat sarcoma virus (KRAS) gene was first discovered in 1982 and belongs
to the RAS gene family along with the Harvey rat sarcoma virus (HRAS) and the neuroblas-
toma rat sarcoma virus (NRAS) [11]. It is located in the short arm of chromosome 12 (12p),
and it encodes two alternative spliced variants: KRAS 4A and KRAS 4B [12,13].

Structurally, KRAS protein is composed of two main regions: the catalytic domain
(G-domain) and the C-terminal hypervariable region (HVR). The G-domain consists of the
P-loop and switch regions (I and II) and is responsible for the interaction and binding with
regulatory proteins. It enables the GTP function of the KRAS protein. HVR is required to
bind the protein to the cell membrane, a necessary step for it to be activated [14–16].

Under normal conditions, KRAS functions as a GTPase protein that relays extracellular
signals to the nucleus, leading to the activation of several intracellular pathways that
regulate proliferation, differentiation, survival, and apoptosis [17,18]. GTP and GDP
molecules are required for the activation and inactivation of KRAS. It acts like a molecular
switch that is “turned on” (activated) when bound to GTP and “turned off” (inactivated)
when bound to GDP [17,19]. The alteration between the two function states of KRAS is
mediated by regulatory proteins. Guanine nucleotide-exchange factors (GEFs), including
Son of Sevenless (SOS 1), promote the GTP-bound form of KRAS by the release of GDP and
GTPase-activating proteins (GAPs), such as neurofibromin 1 (NF1), hydrolyze GTP to GDP,
thus deactivating the protein [20–22]. In basal conditions, KRAS remains bound to the GDP
in an inactivated form. When extracellular stimuli bind and activate the receptor tyrosine
kinase (RTK) on the cell membrane, SOS 1 promotes the substitution of GDP to GTP with
a conformational change in the switch I and II regions [10,13,23]. The activation of KRAS
is also mediated by the SHP2 protein, which interacts with the RTK and SOS 1 [24,25].
The GTP-bound KRAS stimulates multiple downstream pathways, including the mitogen-
activated protein kinase (MARK) pathway (RAF–MEK–ERK), the phosphatidylinositol
3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) pathway and the RAS-like
(RAL) pathway [14]. When a mutation in KRAS occurs, it becomes an oncogene. GAP is
hindered from binding to KRAS, blocking GTP hydrolysis and maintaining the protein in
an active state. The constitutive stimulation of the downstream signaling cascades leads to
oncogenic cell proliferation and tumorigenesis [26,27].

2.2. Cooperation of KRAS and WNT Pathways

According to studies, KRAS and WNT/β-catenin pathways share a significant connec-
tion leading to cancer development and progression, especially colorectal cancer (CRC).
Gene mutations such as APC and KRAS mutations are frequently detected in CRC, and
their interactions promote tumorigenesis. The loss of APC causes the stabilization of
β-catenin and KRAS. The cooperation of WNT/β-catenin and KRAS-ERK pathways is
associated with tumor growth and treatment resistance. Consequently, this intriguing
crosstalk stands as a potential therapeutic avenue for cancer treatment [28–31].

2.3. Mutations

KRAS is the most common driver mutation in NSCLC, discovered in approximately
30% of all cases [11]. The majority of alterations are located in codon 12 (90%), followed by
codons 13 and 61. The KRAS-G12C mutation, characterized as a replacement of glycine
with cysteine at codon 12, is the prevailing KRAS mutation (40% of KRAS mutations) found
in 13% of all NSCLC cases [8,32]. Substitution of glycine with valine (KRAS G12V) and
substitution of glycine with aspartic acid (KRAS G12D) are less frequent alterations [33].
KRAS mutations have been associated with characteristics such as the female sex, adeno-
carcinoma histology, and smoking habits [34,35]. However, this depends on the specific
KRAS mutation subtype. So, among smokers, it is more likely to discover the G12C or
G12V mutations, whereas G12D is usually found in patients who do not smoke [32]. More-
over, the incidence of KRAS alterations is higher in Western countries compared with
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Asian countries [36,37]. Although the prognostic role of KRAS mutations remains a matter
of debate, some studies have associated patients harboring these mutations with lower
progression-free survival (PFS) and overall survival (OS) [38,39]. However, these survival
outcomes need to be confirmed in clinical trials.

2.4. Comutations

KRAS mutations may be mutually exclusive with oncogenic drivers such as EGFR
and ALK, but they often coexist with mutations in other genes [40,41]. The most common
concurrent molecular alterations are TP53, STK11, and KEAP1. KRAS and its comutations
are categorized into three clusters: (1) KRAS with TP53 mutation (KP group), (2) KRAS
with STK11/LKB1 mutation including the KEAP1 mutation (KL group), and (3) KRAS
with inactivation of CDKN2A/B (KC group) [42]. According to studies, STK11 and KEAP1
mutations are negative prognostic factors and forecast impaired OS [43]. Furthermore, some
comutations have been associated with an altered immunogenic profile. Skoulidis et al.
elucidated the lower expression of PD-L1 and deficient tumor microenvironment when
the STK11 comutation is present and the higher levels of tumor-infiltrating lymphocytes
(TILs) and PD-L1 when the TP53 mutation coexists [42,44,45]. All the above data propose
the key role of concomitant mutations on the heterogeneity of KRAS-mutated tumors and
their impact on different therapeutic strategies [46].

2.5. Why Was the KRAS Mutation Undruggable?

For many years, all efforts of therapeutic targeting KRAS mutations had been un-
successful, leading to its characterization as an “undruggable” target. The main reasons
making this process difficult were the structure and complexity of KRAS pathways [47,48].
KRAS protein consists of a highly smooth surface and a unique GTP binding site. The
absence of available binding pockets, along with the protein’s high affinity for GTP, have
made the development of effective targeted agents a challenge [49]. However, the discovery
of the switch II pocket on the KRAS-G12C-mutated protein by Shokat lab in 2013 paved
the way for the design of agents that selectively bind to the cysteine residues [50]. Even
though many molecules have been developed since then, only two of them, sotorasib
(AMG510) and adagrasib (MRTX849), have demonstrated clinical efficacy and received
FDA approval [10,13].

3. Direct Targeting of KRAS
3.1. Sotorasib (AMG510)

Sotorasib is the first clinically effective selective inhibitor of KRAS-G12C mutation that
gained FDA approval [51]. Lumakras (Sotorasib) is an oral small molecule that covalently
binds to the cysteine in the switch II pocket, blocking the interaction between KRAS and SOS
1 and locking KRAS in its inactive GDP-bound state [50]. CodeBreak 100 was a phase I/II
study that evaluated the safety, pharmacokinetics, and efficacy of sotorasib in patients with
locally advanced or metastatic KRAS-G12C tumors who had already received previous lines
of therapy [52,53]. In the phase I trial, safety was the primary endpoint. After 11.7 months
of median follow-up, the median PFS was 6.3 months. The dose of 960 mg daily was
set as the dose for the expansion cohort. The most frequently reported treatment-related
adverse events (TRAEs) were diarrhea, fatigue, nausea, vomiting, and abnormal levels of
aminotransferases [52]. In phase II of the CodeBreak 100 trial, the patients enrolled had
progressed after platinum-based chemotherapy and immunotherapy alone or combined.
After 15.3 months of follow-up, the median PFS and OS were identified as 6.8 months and
12.5 months, respectively. The TRAEs reported were similar to the ones in the phase I trial
and included gastrointestinal AEs and fatigue. In an exploratory analysis of the phase II trial,
Skoulidis et al. investigated the relation between comutation subgroups and the efficacy of
sotorasib treatment. Patients with STK11 mutations and wild-type KEAP1 demonstrated
better response (50%) in comparison with mutated KEAP1 and wild-type STK11 (14%) [53].
Moreover, according to a post hoc analysis, Lumakras showed intracranial efficacy in brain
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metastases [54,55]. Based on the promising results of CodeBreak 100, sotorasib received
accelerated approval from the FDA in May 2021 for patients with KRAS-G12C-mutated
NSCLC who had been treated with at least one prior line of anticancer therapy [56].

Additional studies were designed to evaluate sotorasib as monotherapy or in combi-
nation with other targeted agents, immunotherapy, and chemotherapy. CodeBreak 200 is
a global, randomized, open-label phase III trial aiming to assess the activity of sotorasib
versus docetaxel in the second line for patients with advanced KRAS-mutated NSCLC.
Preliminary data were published at ESMO 2022. The KRAS-G12C inhibitor was associated
with a better PFS and safety profile compared to docetaxel but showed no difference in
terms of OS [57–59].

In another phase II study, known as CodeBreak 201 (NCT04933695), sotorasib is being
evaluated as a first-line therapy in patients with KRAS-mutant NSCLC with the following
criteria: (1). stage IV, (2). PD-L1 TPS score < 1%, and/or (3). comutated STK11 [52]. Finally,
CodeBreak 101 (NCT041185883) is an ongoing phase Ib/II study testing the efficacy and
safety of sotorasib in combination with targeted molecules, such as EGFR, SHP2, mTOR,
and CDK inhibitors, but also with chemotherapy and immune checkpoint inhibitors (ICIs)
in advanced KRAS-G12C-mutated lung cancer [60].

3.2. Adagrasib (MRTX849)

Adagrasib is the second direct KRAS-G12C inhibitor that demonstrated sufficient
clinical activity. The mechanism of action is similar to sotorasib and is based on the
irreversible bind to the protein, trapping it in its inactive GDP-bound state. Interestingly,
adagrasib has shown superiority in terms of pharmacokinetic properties such as long half-
life (approximately 24 h), elevated oral bioavailability, and extensive tissue distribution. In
addition, adagrasib remains efficient even at low concentrations and is highly selective for
the KRAS-G12C mutation [61].

KRYSTAL-1 was the phase I/Ib study that evaluated the safety and efficacy of adagra-
sib in patients with KRAS-G12C-mutated NSCLC [62–64]. After 19.6 months of follow-up,
the median PFS was 11.1 months. The recommended dose for phase II (RP2D) was iden-
tified as 600 mg twice daily. The most commonly experienced treatment-related adverse
(TRAEs) were nausea, diarrhea, vomiting, and fatigue [62]. In the phase II expansion cohort
of KRYSTAL-1, the patients enrolled were already treated with chemotherapy and/or im-
munotherapy in previous lines. They received 600 mg of adagrasib per os twice a day, and
after follow-up, the reported mPFS and mOS were 6.5 months and 12.6 months, respectively.
The safety profile included gastrointestinal AEs (diarrhea, nausea, vomiting), fatigue, and
increased levels of aminotransferases (ALT and AST). Moreover, in patients with stable,
previously treated brain metastases, the intracranial confirmed response rate (ORR) was
33.3%. As for comutations, KEAP1 was associated with worse responses [65,66]. Based on
the aforementioned results, adagrasib obtained FDA approval for patients with previously
treated KRAS-G12C mutation [67].

Ongoing clinical trials aim to investigate novel treatment approaches with the combi-
nation of adagrasib with other anticancer drugs. The KRYSTAL-12 (NCT04685135) phase
III trial tests the clinical activity of adagrasib versus docetaxel in pretreated patients [68,69].
Another phase II/III study (KRYSTAL-7) uses adagrasib with pembrolizumab in the first
line and evaluates the efficacy in three subgroups: 1. PD-L1 TPS < 1%—combination,
2. PD-L1 TPS < 1%—adagrasib monotherapy, and 3. PD-L1 TPS > 1%—combination
(NCT04613596) [70]. Finally, the associations between the KRAS inhibitor and other agents,
including BI 1701963 (SOS inhibitor), TNO155 (SHP2 inhibitor), and palbociclib (CDK4/6
inhibitor), are being investigated in the studies KRYSTAL-14 (NCT04975256), KRYSTAL-2
(NCT04330664), and KRYSTAL-16 (NCT05178888), respectively.

3.3. Novel Direct Inhibitors of KRAS G12C

Many phase I/II clinical trials are ongoing for the evaluation of newly designed
KRAS-G12C inhibitors.
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GDC-6036 is a novel drug that is being tested in a phase I trial (NCT04449874)
as monotherapy or in combination with other molecules, including bevacizumab, ate-
zolizumab, and cetuximab in patients with KRAS-mutated tumors. According to the
preliminary results presented at the 2022 World Congress on Lung Cancer (WCLC), the
ORR was 46%. As for treatment-related adverse events (TRAEs), the most commonly
reported were nausea, diarrhea, vomiting, fatigue, elevated liver enzymes (ALT and AST),
and reduced appetite [71,72].

Another novel molecule that selectively inhibits KRAS-G12C mutation is D-1553. In
the phase I study (NCT04585035), where pretreated patients were enrolled, it demonstrated
an ORR of 40.4% [73].

Moreover, JDQ443 is currently being tested in a phase I/II trial (NCT04699188) as
monotherapy and in combination with TNO155 (SHP2 inhibitor) or tislelizumab (antiPD1
antibody). Finally, JAB-21822, LY3537982 (NCT04956640), RMC6291 (NCT05462717), and
multiple novel agents have entered clinical trials and are currently under investigation
(Table 1).

Table 1. Direct KRAS-G12C inhibitors.

Trial Phase KRAS
Inhibitor Combinations Status/Outcomes References

CodeBreak 100
NCT03600883 I/II sotorasib monotherapy

mPFS 6.8 months
mOS 12.5 months

FDA Approval
[52,53,56]

CodeBreak 200
NCT04303780 III sotorasib monotherapy vs. docetaxel

mPFS 5.6 months
vs. 4.5 months

(HR 0.66)
[57–59]

CodeBreak 201
NCT04933695 II sotorasib monotherapy first line

(st. IV, TPS <1% and/or comut. STK11) ongoing [52]

CodeBreak 101
NCT04185883 Ib/II sotorasib

EGFR inh, SHP2 inh, mTOR inh, CDK
inh.

Chemotherapy, ICIs, etc.
Ongoing [60]

KRYSTAL-1
NCT03785249 I/II adagrasib monotherapy/afatinib,

pembrolizumab, cetuximab

mPFS 6.5 months
mOS 12.6 months

FDA Approval
[62–64,67]

KRYSTAL-12
NCT04685135 III adagrasib monotherapy vs. docetaxel ongoing [68,69]

KRYSTAL-7
NCT04613596 II/III adagrasib

pembrolizumab/pembrolizumab +
adagrasib vs. pembrolizumab +

chemotherapy (first line)
ongoing [70]

KRYSTAL-14
NCT04975256 I/Ib adagrasib BI 1701963 (SOS inhibitor) completed

KRYSTAL-2
NCT04330664 I/II adagrasib TNO155

(SHP2 inhibitor) ongoing

KRYSTAL-16
NCT05178888 I/Ib adagrasib palbociclib

(CDK4/6 inh.) ongoing

NCT04449874 I GDC-6036

monotherapy/
bevacizumab,
atezolizumab,

cetuximab, erlotinib, etc.

ongoing [71,72]

NCT04585035 I/II D-1553 monotherapy/other agents ongoing [73]

KontRASt-01
NCT04699188 I/II JDQ443 monotherapy/

TNO155, tislelizumab ongoing

NCT05009329 I/II JAB-21822 monotherapy ongoing

NCT04956640 I LY3537982
monotherapy/

abemaciclib, cetuximab,
pembrolizumab, chemotherapy, etc.

ongoing

NCT05462717 I/Ib RMC-6291 monotherapy ongoing
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4. Resistance to KRAS-G12C Inhibitors

Despite the aforementioned encouraging clinical outcomes that highlight the efficacy of
novel KRAS-G12C inhibitors, the possibility of patients demonstrating disease progression
is high. This can be attributed to a variety of resistance mechanisms that are divided into
two types: intrinsic and acquired mechanisms of resistance.

Regarding intrinsic resistance, one of the main reasons for the limited response to
KRAS inhibitors is the low dependence on KRAS signaling. The RAS protein regulates
multiple downstream pathways that, in some cases, can be activated even after KRAS
knockdown [74,75]. Specifically, the PI3K pathway can be stimulated even in the presence
of KRAS inhibitors [76]. Moreover, secondary KRAS mutations at baseline result in a
heterogeneous response to direct inhibitors of KRAS-G12C mutation [77].

As for the acquired type of resistance, two mechanisms have been identified: on-target
and off-target [78]. The on-target mutations impact the switch II region, which is essential
for successful drug binding. KRAS G12D/R/V and other secondary mutations have been
reported in accordance with the inhibitor that was used for treatment. KRAS G13D has been
associated with sotorasib-induced resistance, and KRAS Q99L with adagrasib-induced
resistance. Y96D has been observed after exposure to either one of them [79,80]. RM-
018 is a novel inhibitor of the KRAS GTP-bound (active) form, effective in overcoming
the secondary KRAS-G12C/Y96D mutations [81]. Furthermore, resistance to KRAS-G12C
inhibition can arise due to off-target mechanisms. Multiple bypass signaling pathways have
been identified to date, including MET amplification; mutations activating NRAS, BRAF,
MAP2K1, and RET; fusions of ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function of
PTEN and NF1 [82]. Another way for acquiring resistance is epithelial-to-mesenchymal
transformation (EMT) induced by the activation of the PI3K pathway [40]. In some cases,
a histological transformation of lung adenocarcinoma to squamous cell carcinoma can
be observed [82]. In addition, senescence resulting from the activation of aurora kinase
signaling can induce resistance [10].

Moreover, the inhibition of KRAS and, subsequently, the block of the MAPK pathway
can cause the synthesis of a novel KRAS-G12C protein, which remains active by the receptor
tyrosine kinase (RTK), even if an inhibitor is present [83].

Finally, the activation of wild-type RAS (HRAS and NRAS) mediated by RTKs is
supposed to be another mechanism of resistance to direct KRAS inhibitors (Figure 1) [75,84].
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In conclusion, an abundance of intrinsic and acquired mechanisms are responsible
for the progression of disease in patients harboring KRAS-G12C mutation and treated
with direct inhibitors. However, many studies still need to be conducted in order for us
to understand those mechanisms fully and develop the optimal treatment strategies to
overcome them. For this purpose, efforts to combine KRAS inhibitors with targeted agents
depending on the type of resistance are currently being made, and results are eagerly
expected [85,86].

5. Indirect Inhibition of KRAS

As mentioned before, the development of resistance has overshadowed the encourag-
ing clinical efficacy of novel direct KRAS-G12C inhibitors. The combination of inhibitors
with targeted agents of the upstream, downstream, or other important signaling pathways
is a promising therapeutic approach and a potential solution to this predicament [85,86].

5.1. Inhibitors of the Upstream Signaling Pathway

• EGFR inhibitors

RTKs, such as EGFR, can induce the rebound activation of KRAS and its downstream
pathways as a result of the inhibition of KRAS. EGFR inhibitors, in combination with
KRAS-G12C inhibitors, can possibly overcome the resistance mechanism [61].

Combinations are already being tested in studies, including CodeBreak 101 (sotorasib
with a pan-ErbB inhibitor) and a phase I trial (GDC-6036 with erlotinib—NCT04449874).

• SHP2 and SOS1 inhibitors

Other promising target proteins for the indirect inhibition of KRAS are SHP2 and
SOS1. These molecules are essential for the activation of KRAS as part of the upstream
pathway [87]. SHP2 inhibitors, including RMC-4630 and TN0155, have been designed and
are being evaluated in studies as monotherapy or in combination with KRAS inhibitors
(NCT03634982, NCT03114319, NCT04185883). Similarly, BI 1701963 is a pan-KRAS SOS1
inhibitor under investigation in a phase I trial as a single agent or in association with
trametinib (MEK inhibitor) (NCT04111458).

5.2. Inhibitors of the Downstream Signaling Pathway

• MAPK pathway (RAF/MEK/ERK)

Regarding the MAPK pathway, the GTP-bound KRAS protein activates RAF, which
stimulates the phosphorylation of MEK and then ERK, leading to the activation of transcrip-
tion factors [88–91]. RAF inhibitors (belvarafenib) and MEK inhibitors (binimetinib, cobime-
tinib) are being tested for the indirect inhibition of KRAS (NCT03284502, NCT01859026,
NCT01986166). Also, RAF–MEK inhibitor VS-6766 is being used as monotherapy or in
combination with defactinib (FAK inhibitor) [92], sotorasib, or adagrasib (KRAS-G12C
inhibitors) in ongoing trials (NCT05074810, NCT05375994). The resistance induced by the
treatment with RAF or MEK inhibitors led to the development and evaluation of ERK
inhibitors (JSI-1187-01) (NCT04418167). The combination of a RAF/MEK inhibitor with a
FAK inhibitor and the combinations of MEK and PI3K/mTOR/AKT inhibitors are potent
therapeutic strategies targeting the downstream signaling pathway of KRAS [93].

• PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR is another well-known downstream pathway activated by
KRAS, which contains potential targets for effective inhibition. PI3K inhibitors (BKM120,
serabelisib—NCT04073680, XL147), an AKT inhibitor (TAS0612—NCT04586270), and an
mTOR inhibitor (A2D2014—NCT02583542) were designed and are being investigated in
phase I/II studies [94–96]. In addition, the combination of PI3K inhibitors with ARS1620
(second-generation KRAS-G12C inhibitor) has demonstrated efficacy in preclinical stud-
ies [97].
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5.3. FAK Inhibitors

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that can cause KRAS
mutant cell death if inhibited [98]. The FAK inhibitor defactinib was evaluated in a phase II
study (NCT01951690) in previously treated patients showing average clinical activity [99].

5.4. DDR1 Inhibitors

Discoidin domain receptor 1 is being evaluated as a novel biomarker and therapeutic
target in KRAS mutant NSCLC. DDR1 is a receptor tyrosine kinase with a significant role in
cell proliferation and differentiation. According to studies, the upregulation of DDR1 in lung
cancer is associated with lymph node metastasis, increased invasiveness, and poor prognosis.
Moreover, the DDR1–BCR–ABL axis is strongly correlated with the KRAS PI3K–AKT–mTOR
axis. The combinational targeting of DDR1, BCR-ABL, and EGFR-ERBB2 is a promising
therapeutic approach with future perspectives [28,100,101].

5.5. YB-1 Inhibitors

Y-box-binding protein 1 (YB-1) serves as an oncoprotein that plays a crucial role in can-
cer cell proliferation, stemness, DNA repair, and chemotherapy resistance. YB-1 is activated
by the PI3K/AKT and MAPK/ERK pathways, with phosphorylation at S102 mediated by
the p90 ribosomal S6 kinase (RSK). RSK inhibitors, such as LJI308, were designed; however,
their long-term use leads to AKT reactivation. As a result, the combination of AKT and
RSK inhibitors can be a possible solution and an effective therapeutic strategy [102,103].

5.6. HSP90 Inhibitors

Heat shock protein 90 (HSP90) is a chaperone responsible for protein stabilization,
adjustment to heat, and cell proliferation [104]. Ganetespib, an HSP90 inhibitor, was
efficient in blocking tumorigenesis in a phase II study [105]; however, its clinical activity
was inadequate in the phase III study (GALAXY II) with docetaxel in KRAS-mutated
NSCLC [106]. A novel HSP90 inhibitor, SNX-5422, was associated with promising results
in a phase I study with chemotherapy (Table 2) [107].

Table 2. Indirect KRAS-G12C inhibitors.

Trial Phase KRAS Inhibitor Combinations Status/
Outcomes References

NCT03634982 I RMC-4630
(SHP2 Inhibitor) monotherapy completed [87]

NCT03114319 I TNO155
(SHP2 Inhibitor) monotherapy ongoing [87]

NCT04111458 I BI 1701963 (SOS1 Inhibitor) monotherapy/
trametinib (MEK Inh.) ongoing [87]

NCT03284502 I belvarafenib (RAF Inh.) cobimetinib,
cetuximab ongoing [88–91]

NCT01859026 I binimetinib (MEK Inh.) erlotinib completed [88–91]

NCT01986166 I cobimetinib (MEK Inh.) duligotuzumab
(EGFR/HER3 Inh.) completed [88–91]

RAMP203
NCT05074810 I/II

Avutometinib
[VS-6766]

(RAF–MEK Inhibitor)
sotorasib ongoing [92]

RAMP204
NCT05375994 I/II

Avutometinib
[VS-6766]

(RAF–MEK Inhibitor)
adagrasib ongoing [92]



Cancers 2024, 16, 1447 9 of 19

Table 2. Cont.

Trial Phase KRAS Inhibitor Combinations Status/
Outcomes References

NCT04418167 I JSI-1187-01
(ERK Inhibitor)

monotherapy/
dabrafenib (BRAF Inh.) ongoing

NCT04073680 I/II serabelisib
(PI3K Inhibitor) canagliflozin (SGLT2 Inh.) completed [94–96]

NCT04586270 I TAS0612
(AKT Inhibitor) monotherapy ongoing [94–96]

TORCMEK
NCT02583542 I/II AZD2014

(mTOR Inhibitor) selumetinib (MEK Inh.) completed [94–96]

NCT01951690 II defactinib
(FAK Inhibitor) monotherapy completed [99]

GALAXY 2
NCT01798485 III ganetespib

(HSP90 Inhibitor) docetaxel vs. docetaxel alone terminated
(futility) [106]

NCT01892046 I SNX-5422
(HSP90 Inhibitor) chemotherapy completed [107]

5.7. CDK 4/6 Inhibitors

Cyclin-dependent kinases (CDKs) 4/6 are regulatory agents of the cell cycle, and their
activation is connected with the KRAS pathway [108]. Although monotherapy abemaci-
clib or palbociclib in KRAS-mutant NSCLC was ineffective [109,110], the combination of
CDK 4/6 inhibitors with KRAS direct inhibitors seems promising according to preclini-
cal data [74]. Clinical trials are ongoing (CodeBreak 101—sotorasib with palbociclib and
KRYSTAL 16—adagrasib with palbociclib—NCT04185883).

6. Platinum-Based Chemotherapy in KRAS-Mutated NSCLC

Despite the tremendous progression made in targeting the KRAS mutation in recent
years, platinum-based chemotherapy remains the standard of care for patients with KRAS-
mutant NSCLC. But how does the KRAS oncogene influence the response to platinum-
based chemotherapy? The data are scarce. However, several studies conclude that KRAS
mutation is associated with shorter PFS or OS when patients are treated with traditional
chemotherapy. Moreover, among KRAS mutation subtypes, the KRAS G12V is associated
with the worst PFS. As a result, KRAS oncogene is a negative predictive factor of PFS
in patients who receive first-line platinum-based chemotherapy, but treatment responses
differ among KRAS mutation subtypes [111,112].

7. Immunotherapy in KRAS-Mutated NSCLC

In recent years, the advent of immune checkpoint inhibitors (ICIs) has significantly
altered the therapeutic approach of NSCLC [113–116]. According to preclinical data,
patients harboring the KRAS mutation can benefit from monoclonal antibodies targeting
PD1 and PD-L1. KRAS-mutated lung cancer has been associated with smoking habits and,
consequently, an inflammatory tumor microenvironment (TME) and high tumor mutation
burden (TMB) [117,118]. Moreover, CD8+ tumor-infiltrating lymphocytes (TILS) and PD-L1
expression are increased when the KRAS mutation is present [119–122].

The efficacy of immunotherapy in KRAS-mutated NSCLC is also evident in clinical trials.
In the CheckMate 057 trial, the KRAS mutation was linked with higher OS when comparing
nivolumab (anti-PD-1 antibody) with chemotherapy (HR 0.52, 95% CI: 0.29–0.95) [113]. In
addition, in the phase III OAK study, the benefit of atezolizumab was observed in KRAS-
mutated patients (mOS: HR = 0.71 [95% CI: 0.38–1.35]) [115]. Similarly, based on the results
of the KEYNOTE-042 study (mOS KRASm vs. wt: 21.1 vs. 13.6 months, p = 0.03) and the
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IMMUNOTARGET study (mPFS: 3.2 months and mOS 13.5 months), immunotherapy can
be therapeutically exploited in KRAS mutations [123,124].

However, it is under consideration whether KRAS point mutations or co-occurring
mutations influence the efficacy of ICIs. KRAS-G12D-mutated tumors have been associated
with decreased levels of PD-L1, CD8+ TILS, and TMB. These characteristics suggest a lower
response to immunotherapy in KRAS-G12D mutation [125,126]. On the contrary, other
studies do not verify different results between KRAS mutations [122]. Furthermore, as
mentioned before, STK11 or KEAP1 comutations have been linked with decreased PD-L1
and TILS levels, resulting in impaired activity of ICIs [44,127,128]. On the other hand,
tumors harboring TP53 comutation benefit more from immunotherapy due to increased
expression of PD-L1 [128–130]. More studies need to be conducted in order to evaluate the
aforementioned outcomes. Among the novel therapeutic approaches targeting the KRAS
mutation, the combination of KRAS-G12C inhibitors with immunotherapy seems promising.
In preclinical studies, sotorasib induced an inflammatory tumor microenvironment and
enhanced the immune system [74]. Similar results were observed in tumors treated with
adagrasib [131]. The synergistic effect of KRAS-G12C inhibitors and ICIs is currently being
evaluated in phase I/II studies, including the CodeBreak 100 and 101 trials (sotorasib
with PD-1/PD-L1 monoclonal antibodies) [132] and the KRYSTAL-7 study (adagrasib with
pembrolizumab) [133].

8. KRAS-G12V and -G12D Mutations

KRAS-G12V mutation, where glycine is substituted with valine at position 12, is ob-
served in 21% of patients with KRAS-mutated tumors in the lung, especially smokers [134].
This mutation has been associated with impaired OS and increased recurrence rate [135].
Regarding the treatment strategies, chemotherapeutic agents with higher efficacy in KRAS-
G12V mutation are taxanes and cisplatin [136,137]. In addition, immunotherapy is another
potential approach due to the increased expression of PD-L1 [138]. Emerging therapies with
KRAS-G12V inhibitors, including JAB23000, are currently under investigation [87,139].

KRAS-G12D mutation, where glycine is replaced with aspartic acid at position 12, has
been reported in 15% of KRAS-mutated cases and is usually observed in nonsmokers [134].
As mentioned before, KRAS G12D has been linked with a lower level of PD-L1 protein
and immune suppression, resulting in decreased activity of ICIs [140]. As for the direct
inhibition of the G12D allele, MRTX1133 is a novel molecule targeting both active and
inactive states of the protein and has shown promising activity in preclinical studies.
Recently, the US FDA approved the initiation of a phase I study for the evaluation of this
first-in-class inhibitor [141].

9. Other Emerging Therapies

Except for the conventional inhibitors directly targeting the KRAS-G12C protein
or molecules of the upstream or downstream KRAS pathways, there is a need for new
treatment strategies, including PROTACs, pan-KRAS inhibitors, and agents targeting
metabolic rewiring processes and regulatory molecules of the immune system. Proteolysis-
targeting chimeras (PROTACs) are emerging targeted agents that degrade the protein of
interest using cellular proteasomal degradation mechanisms [142]. KRAS-G12C PROTACs,
such as LC-2, have been designed to exploit KRAS inhibitors (MRTX849 in the case of LC-2)
for the degradation of KRAS-G12C protein [143].

Another novel therapeutic approach targeting multiple KRAS mutations (G12D, G12V,
G13D, and G12C) is an mRNA-based cancer vaccine. V941 is being tested in a phase I study
(NCT03948763) as a single agent or in combination with pembrolizumab in three different
types of cancer, including KRAS-mutated NSCLC [144].

Regarding the metabolic rewiring of cancer cells, autophagy plays a crucial role in cell
homeostasis. Autophagy inhibition is a potential therapeutic strategy aiming to achieve
cancer cell death [145]. Hydroxychloroquine is an autophagy inhibitor that is currently
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being evaluated in a study along with MEK-inhibitor binimetinib for the treatment of
patients with KRAS-mutated lung cancer (NCT04735068).

Moreover, the KRAS oncogene influences metabolism and especially upregulates the
expression of fatty acid synthase (FASN), the enzyme of de novo lipogenesis, in order
to prevent lipid peroxidation and, consequently, ferroptosis. Ferroptosis is an oxidative-
stress-dependent type of programmed cell death. According to these data, the induction of
ferroptosis could be an effective antitumor strategy. TVB-2640 is a FASN inhibitor that is
being studied in a phase II trial (NCT03808558) with promising results [146].

Furthermore, the intriguing relationship between KRAS and miRNA needs to be
explored. Physiologically, miRNAs are responsible for post-transcriptional gene regulation
through interaction with target mRNAs. However, KRAS mutations tend to misregulate the
miRNA regulatory pathway in multiple ways, including miRNA biosynthesis, expression,
and function. As a result, the miRNA machinery can be therapeutically exploited in
KRAS-mutated cancers. Studies need to be conducted in order to navigate novel strategies,
including simultaneous targeting of KRAS and miRNA pathways [147].

Finally, the remodeling of the tumor microenvironment (TME) by cancer cells is
another key to the achievement of effective targeted therapy [148]. According to stud-
ies, cytokines IL-1β and IL-6 have been associated with cancer cell proliferation due
to signal transduction through multiple pathways [149–151]. Several trials are ongo-
ing for the evaluation of interleukin inhibitors. Canakinumab is an anti-IL-1β agent
under investigation as a monotherapy (NCT03447769) or in combination with immunother-
apy (pembrolizumab—NCT03968419 and durvalumab—NCT04905316) or chemotherapy
(docetaxel—NCT03626545). Similarly, tecilizumab (IL-6 inhibitor) is being tested in associa-
tion with ICIs (atezolizumab—NCT04691817 and nivolumab/ipilimumab—NCT04940299)
for the treatment of NSCLC, including tumors harboring the KRAS mutation (Tables 3 and 4).

Table 3. Novel treatment strategies.

Trial Phase KRAS Inhibitor Combinations Status/
Outcomes References

NCT05737706 I/II MRTX1133
(KRAS-G12D Inh.) monotherapy ongoing [141]

V941-001
NCT03948763 I

V941
(mRNA cancer

vaccine)
monotherapy/pembrolizumab completed [144]

NCT04735068 II
hydroxychloroquine

(autophagy
inhibitor)

binimetinib
(MEK Inh.) ongoing [145]

CANOPY-N
NCT03968419 II canakinumab

(anti-IL-1β agent) monotherapy/pembrolizumab terminated
(low enrollment) [149–151]

CHORUS
NCT04905316 II canakinumab

(anti-IL-1β agent)
durvalumab,

chemoradiation ongoing [149–151]

CANOPY-2
NCT03626545 III canakinumab

(anti-IL-1β agent)
docetaxel vs. placebo +

docetaxel
terminated

(lack of efficacy) [149–151]

NCT04691817 I/II tecilizumab (IL-6
Inhibitor) atezolizumab ongoing [149–151]

NCT04940299 II tecilizumab
(IL-6 Inhibitor) nivolumab—ipilimumab ongoing [149–151]
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Table 4. Indirect actionable pathways and targets against KRAS-mutated NSCLC.

Pathway Target Inhibitor References

Upstream signaling pathway EGFR erlotinib [61]

SHP2 RMC-4630
TNO-155 [87]

SOS 1 BI 1701963 [87]

Downstream signaling pathway
MAPK pathway

(RAF–MEK–ERK)
RAF belvarafenib [88–91]

MEK

RAF–MEK

binimetinib
cobimetinib

VS-6766

[88–91]

[92]

ERK JSI-1187-01

Downstream signaling pathway
PI3K–AKT–mTOR pathway PI3K

BKM120
serabelisib

XL147
[94–96]

AKT TAS0612 [94–96]

mTOR AZD2014 [94–96]

Other pathways FAK defactinib [99]

HSP90 ganetespib
SNX-5422

[105,106]
[107]

CDK 4/6 palbociclib [74,108–110]

DDR1

YB-1—RSK LJI308

Immune system ICIs nivolumab
atezolizumab

[113]
[115]

Metabolic rewiring autophagy hydroxychloroquine [145]

FASN TVB-2640 [146]

Tumor microenvironment
(TME)

IL-1β
IL-6

canakinumab
tecilizumab [148–151]

10. Conclusions

The thought of KRAS as “undruggable” for many years multiplied the efforts for the
development of effective targeted therapies. Sotorasib and adagrasib were the first ap-
proved direct KRAS-G12C inhibitors, altering the therapeutic landscape of KRAS. However,
the emergence of intrinsic or acquired resistance mechanisms limits the duration of activity
and efficacy of the novel KRAS-G12C inhibitors. Many ongoing studies are evaluating
combination approaches in order to overcome resistance. Moreover, the heterogeneity
and complexity of KRAS-mutated tumors are the main reasons why they exhibit different
sensitivity to different therapies. According to studies, KRAS mutation subtypes, as well
as comutations, have a significant impact on the efficacy of immunotherapy. Molecular
profiling of tumors at baseline is an emerging need in order to determine the optimal
therapeutic regimen and potential sequencing of therapies. In addition, results of novel
strategies, including cancer vaccines, PROTACs, and pan-KRAS inhibitors, are eagerly
awaited so as to be introduced in clinical practice. In conclusion, KRAS remains one of the
most attractive target mutations in NSCLC, and personalized therapy seems to be the key
to the achievement of successful and durable treatment in the future.
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