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Simple Summary: Cardiovascular disease and cancer are two major causes of morbidity and mor-
tality worldwide. The significant overlap between cardiovascular medicine and oncology led to
the emergence of the cardio-oncology field. Understanding the pathophysiological basis of the
interconnected relationship between cardiovascular disease and cancer is fundamental to improv-
ing patient care and clinical outcomes. Several cardiovascular therapies have proven beneficial in
the oncologic field, and thus, may need to be incorporated into the therapeutic armamentarium
against cancer.

Abstract: Cancer and cardiovascular disease are the two most common causes of death worldwide.
As the fields of cardiovascular medicine and oncology continue to expand, the area of overlap is
becoming more prominent demanding dedicated attention and individualized patient care. We
have come to realize that both fields are inextricably intertwined in several aspects, so much so that
the mere presence of one, with its resultant downstream implications, has an impact on the other.
Nonetheless, cardiovascular disease and cancer are generally approached independently. The focus
that is granted to the predominant pathological entity (either cardiovascular disease or cancer), does
not allow for optimal medical care for the other. As a result, ample opportunities for improvement
in overall health care are being overlooked. Herein, we hope to shed light on the interconnected
relationship between cardiovascular disease and cancer and uncover some of the unintentionally
neglected intricacies of common cardiovascular therapeutics from an oncologic standpoint.

Keywords: cardiovascular disease; cancer; cardio-oncology; repurposed pharmacotherapeutics

1. Introduction
1.1. Burden and Epidemiology of Cardiovascular Disease and Cancer

In spite of the remarkable improvement in cardiovascular outcomes over the last
several years, cardiovascular disease (CVD) continues to be the number one cause of
morbidity and mortality worldwide [1,2]. Additionally, cancer is also a leading cause of
death globally, with a significant economic impact [3]. The most recent report from the
Centers for Disease Control and Prevention (CDC) showed that in 2019, CVD and cancer
were the leading causes of death in the United States, with 659,041 and 599,601 deaths,
respectively [4]. The World Health Organization (WHO) estimates that 17.9 million people
die every year from CVD and nearly 9–10 million die from cancer [5,6]. While the disease
processes are an independent cause of increased mortality, recent evidence suggests that
they are intertwined and therefore, mitigation of risk factors from one (such as CVD)
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can protect patients from the other (such as cancer) [7]. In this review, we highlight the
significant points of intersection between CVD and cancer and discuss the major clinical
implications in regard to prevention and management.

1.2. Significance of Co-Occurrence of Cardiovascular Disease and Cancer

CVDs including coronary artery disease, carotid artery disease, peripheral vascular
disease, cerebrovascular disease, and heart failure co-exist in more than 40% of patients with
lung cancer, 30% with hematologic malignancies, 35% with renal cancer, 25% with head and
neck cancers, 25% with colon cancer, 15% with breast cancer [8]. As cancer survivorship
continues to improve with the advent of new therapies, an increasing number of cancer
survivors are being followed by general practitioners [9]. As will be discussed in this review,
these patients have a higher risk of cardiovascular complications and diseases, apart from
the cumulative risk and increased prevalence of cardiovascular disease with aging, which in
turn affects their long-term prognosis, and may even encumber their candidacy for cancer
therapies. The realization of this association calls for a multidisciplinary approach with the
incorporation of cardiovascular healthcare into the management and follow-up of cancer
patients [10]. The aim of the cardio-oncology field is to ensure comprehensive medical care
for the cancer patient, with an emphasis on risk stratification, complication prevention,
and cardiovascular health optimization, which may collectively dictate eligibility for and
response to various cancer therapies, and thus, overall outcome and survival [11].

The occurrence of CVD in cancer patients, not only affects long-term survival, but
may also increase the susceptibility to cardiotoxic effects of certain therapies necessitating
suboptimal dosage administration, or even worse, premature treatment cessation [12,13].
This has important ramifications as an analysis published by Copeland-Halperin et al. in
2020 showed that holding trastuzumab for 6 weeks or longer -owing to cardiotoxicity-
increases the risk of invasive breast cancer recurrence or death, with an adjusted hazard
ratio (HR) of 1.56% (95% CI, 1.10–2.21), in patients with early-stage human epidermal
growth factor receptor 2 (ERBB2)-positive breast cancer [14]. It is clear that CVDs and
their risk factors are pivotal predictors of cardiotoxicity associated with cancer therapy.
More recent studies have shown that CAD, hypertension, and diabetes are considered
strong predictors of left ventricular dysfunction among patients receiving anthracycline
chemotherapy, whereas CAD, obesity, and hypertension, increase the risk of left ventricular
dysfunction in breast cancer patients receiving trastuzumab [15,16]. Similarly, pre-existing
hypertension was shown to be the strongest predictor of resistant hypertension requiring
interruption of cancer therapy in patients receiving anti-angiogenic targeted agents [17].
This transcends into newer therapies also as more evidence emerge that therapies such as
immune checkpoint inhibitors can cause myocarditis, valvulitis, and increases incidence of
atherosclerotic disease [18–20].

1.3. Shared Risk Factors and Pathophysiological Processes

Even though CVD and cancer may appear to be two distinct entities, there are multiple
areas of intersection. The two conditions tend to overlap, not only in regard to risk factors,
but also in some underlying pathophysiological processes (Figure 1). In a recent large
retrospective cohort study evaluating the effect of presence of CVD on cancer incidence, it
was found that CVD, particularly atherosclerotic disease, was associated with an increased
occurrence of specific cancer subtypes compared with those without CVD [21]. Interestingly,
the risk of malignancy in patients with CVD was noted to be cancer-specific, with higher risk
of lung, bladder, liver, colon, and other hematologic cancers. However, those patients were
also found to have a lower risk of other cancer subtypes like breast, ovarian, and uterine
cancers. There is a growing level of evidence that suggests shared etiologic mechanisms,
of which inflammation stands out as a pivotal contributor to the manifestation of both
conditions [22]. Nonetheless, other notable factors may contribute to the relationship
between both disease processes.
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Figure 1. Illustration of shared pathophysiological pathways in cancer and cardiovascular disease
(CVD) Cancer-related therapeutics include chemotherapy, radiotherapy, and immune checkpoint
inhibitors.

The role of inflammation in CVD pathogenesis is well-established, and many of the
known CVD risk factors such as hypertension, smoking, dyslipidemia, obesity, and insulin
resistance, can trigger atherosclerosis and lead to CVD events by inducing inflammation
via various pathways [23]. This includes a heightened expression of pro-inflammatory
cytokines, which leads to intensified oxidative stress due to increased production of reactive
oxygen species and lipid peroxidation [23,24].

On the other hand, our understanding of the interaction between the immune system,
inflammation, and cancer development is expanding, as many tumors have been shown
to arise from sites of infection, chronic irritation, and inflammation [23,25,26]. Whether
promoted by viral infections, smoking, or carcinogenic chemicals, inflammation can lead
to cancer formation via complex pathways that include, whether directly or indirectly,
enhanced cellular proliferation, dysregulated inflammatory response, amplified release of
various cytokines, recruitment of inflammatory cells, or increased production of reactive
oxygen species, which eventually can culminate in oxidative DNA damage, and disruption
of DNA repair [23,27].

Other mechanisms that may explain the shared risk factors of cancer and CVD include
hormonal-mediated disturbances seen obesity, diabetes mellitus, and physical inactiv-
ity [28]. In obesity, there is an increased expression of proinflammatory cytokines and
hormones that are produced within adipose tissue, such as interleukin-6 (IL-6), tumor necro-
sis factor-alpha (TNFa), leptin, angiotensinogen, resistin, and C-reactive protein [29,30].
These molecules are believed to promote a steady state of low-grade inflammation and
oxidative stress through formation of reaction oxygen species, which in turn may lead to
DNA disruption, and eventually a higher risk of cancer development [31–33]. Additionally,
leptin, which is secreted by adipose tissue, plays a major role in obesity-r,elated CVD [34].
IL-6 and TNFa can also induce hypertension and atherosclerosis, both of which play pivotal
role in heart failure with preserved ejection fraction pathogenesis [35,36]. In this context,
the CANTOS trial, which was randomized double-blinded study, investigated the effects of
canakinumab, monoclonal antibody to proinflammatory cytokine IL-1β, in patients with
prior myocardial infarction and elevated serum level of high high-sensitivity C-reactive
protein (≥2 mg/dL) [37]. It was found that patients treated with canakinumab had a signif-
icantly lower rate of recurrent cardiovascular events compared to placebo group. But more
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interestingly, canakinumab was associated with a lower incidence of lung cancer, which
further support the central role of inflammation in cancer and CVD pathogenesis [38].

Numerous studies have linked diabetes to cancer risk and its progression [39]. In
diabetes, insulin resistance triggers atherosclerosis through oxidative stress, glycosylation,
and high triglyceride levels, leading to endothelial damage in the vascular beds and thus
atheroma formation [40,41]. Similarly, diabetes promotes a pro-inflammatory state that
can mediate and increase the risk for cancer development and progression [29,42,43].
Additionally, sex hormone disturbances, which may result from hyperinsulinemia in the
setting of disturbed glycemic homeostasis, are implicated in the carcinogenesis of some
tumors such as breast and endometrial cancers [42,44–46]. Moreover, insulin-like growth
factors, which are multifunctional peptides that regulate cell proliferation, differentiation,
and apoptosis, are increased in the setting of impaired glycemic regulation and insulin
resistance. This in turn can, not only enhance tumorigenesis and promote the development
of some cancers, but also mediate smooth muscle proliferation in blood vessels with
resultant atherosclerosis [39,47–50]. Correlation exists at the molecular level also as recent
studies showed that potency of immune checkpoint inhibitors are greatly enhanced by
PCSK9 inhibitors [51].

Furthermore, several studies have showed that metabolic reprogramming play a
significant role in both heart failure and cancer molecular pathogenesis [52]. This metabolic
shift at a cellular level occurs in tumors cells and failing cardiomyocytes in response to
various stressors. Specifically, healthy myocardium mainly relies on beta oxidation of
fatty acids for ATP synthesis [53]; however, metabolic source of energy in cardiomyocytes
switches away from fatty acid utilization to glucose, ketone bodies, and amino acids
(such as glutamine) under stress like pressure overload conditions [54,55]. This metabolic
switch in failing cardiomyocytes leads to production of metabolites that are essential for
biosynthesis as well as ventricular hypertrophy and contributes to calcium mishandling
and ultimately cardiac dysfunction [42,56]. A similar shift in metabolic dependency is seen
in cancerous cells to meet the catabolic and anabolic needs of growing tumors where the
source of energy of proliferating cells shifts to glucose consumption “Warburg effect” along
with preferential production of lactate, even in the presence of adequate tissue supply of
oxygen, unlike healthy tissues that depends mainly on fatty acid oxidation for its energy
expenditure [57,58]. This metabolic alteration in cancer cells is thought to support de novo
synthesis of nucleotides, lipids, and proteins that are needed for tumor growth. [57] It
is important to understand that the effects of these metabolic alteration in cancers and
failing hearts extend beyond just altering source of energy but also have pleiotropic effects
mediated by the byproducts of the metabolic changes and are also directly linked to
organ dysfunction [59] In addition, certain oncometabolites produced by cancers, such
D-2-hydroxyglutarate and succinate, have been directly implicated in development of
cardiomyopathy in animal studies [60,61].

2. Cardiovascular Health in Cancer Patients
2.1. Role of Cardiovascular Disease Screening

The importance of primary prevention to reduce the overall burden of cardiovascular
disease cannot be overemphasized. The first message of the 2019 American College of
Cardiology/American Heart Association (ACC/AHA) Task Force on Clinical Practice
Guidelines Report states that promotion of healthy lifestyle is the most important measure
to reduce and prevent cardiovascular disease [62]. Additionally, the report lays out de-
tailed recommendations to determine an individual’s risk for cardiovascular disease and to
facilitate decisions in regards to preventive strategies and therapies. Several measures have
been adopted to estimate such a risk, utilizing clinical tools and data such as the 10-year
atherosclerotic cardiovascular disease (ASCVD) risk, the SCORE (Systematic COronary
Risk Evaluation) project, among others [63–68]. The ultimate goal is to identify patients
who are at a high risk of cardiovascular disease to a point where the benefit of a preventive
intervention such as statin prescription surpasses the risks of possible adverse effects. As
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discussed, cancer patients represent a vulnerable population with an elevated risk of cardio-
vascular disease given the inherent properties of the risk factors that are shared among both
conditions [28,69]. In various types of cancer, cardiovascular disease and mortality were
shown to be greater in cancer survivors compared to age-matched controls [70–73]. There-
fore, additional emphasis should be placed on risk assessment and reduction in this patient
population. This may not only improve the overall cardiovascular health and outcome, but
may also prove beneficial from an oncologic perspective. The development of cardiotoxicity
has been reported to adversely affect outcomes of patients with cancer, and its prevention
may be beneficial to overall patient survival [74–76]. Thus, it is fundamental to involve a
cardiologist in the care of cancer patients, not only to detect early cardiovascular side effects
of cancer therapy, but also to optimize the overall cardiovascular care of cancer patients
from the initial cancer diagnosis to survivorship.

2.2. Cardiovascular Disease Screening in Cancer Patients. Where We Stand, and What Are
the Implications?

While it has become more evident that cardiovascular disease and cancer share sev-
eral risk factors, and therefore tend to commonly coexist, preventive measures have not
converged as the two conditions are generally approached independently. The Ameri-
can Society of Clinical Oncology (ASCO) advocates for early implementation of routine
cardiovascular surveillance in high-risk cancer patients, along with cardiovascular risk
factor screening and modification [77]. Similarly, the American Heart Association (AHA)
delineated a significant interrelation between cardiovascular disease and breast cancer, and
provided a comprehensive review of the substantial areas of overlap [78]. The diagnosis
of cancer often leads to mental stress, anxiety, and significantly impacts patients’ lifestyle.
The influence of cancer detection affects medical providers as well. The focus granted to
cancer management and prognosis often shifts the attention away from cardiovascular
health promotion, and therefore, the opportunity for risk factor screening and modifica-
tion is inadvertently missed [79]. The untoward sequelae of this cognitive distraction are
expected to become more substantial as advancements in cancer detection and therapies
have improved cancer survival rates [80]. This in turn is expected to increase the burden of
cardiovascular disease, either as a complication from cancer therapy or from the cumulative
effect of risk factors with increased longevity [78]. Previous studies have shown that cancer
survivors may have poor overall control of their traditional cardiovascular risk factors [81].
There are also significant numbers of cancer patients with established CVD diagnosis who
do not get referred to cardiologists, and are thus suboptimally managed [8]. Even if prompt
action is undertaken to estimate the cardiovascular disease risk, the commonly used clinical
assessment tools tend to underestimate the risk in patients with cancer, whether active or in
remission [82]. As an example, a study of 561 breast cancer patients assessed the coronary
artery calcium score derived from computed tomography (CT) scans that were performed
for radiotherapy planning, and found that one third of patients who demonstrated a high
coronary artery calcium score lacked other cardiovascular risk factors [83]. As such, these
patients would not have been classified in the appropriate risk category group by clinical
risk assessment tools. The implication of a heightened cardiovascular disease risk translates
into higher rates of cardiovascular mortality in cancer patients compared to the general
population [84]. An observational population-based study scrutinized the rates of cardio-
vascular mortality among 28 cancer types in cancer survivors from 1973 to 2012. Results
showed that 11.3% of deaths were attributable to cardiovascular disease. Interestingly, the
risk of cardiovascular mortality exceeded that of cancer mortality in eight types of cancer
in at least one calendar year [84].

3. Cardiovascular Interventions in the Armamentarium of Cancer Therapy

Given the similarities and significant overlap between cardiovascular disease and
cancer as discussed above, it is not surprising that cardiovascular interventions may provide
a benefit and be useful in the oncologic field. Significant observations were noted in the



Cancers 2024, 16, 1450 6 of 23

past, in regards to a beneficial effect on the natural history of cancer, from cardiovascular
medications. This favorable role encompasses a range of effects, from providing a protective
effect against cancer development and progression, to augmenting the antitumor actions
of cancer therapeutics. Below is a brief overview of commonly prescribed cardiovascular
medications from an oncologic perspective, which is also summarized in Table 1.

Table 1. Potential desirable oncologic effects of commonly prescribed cardiovascular medications.

Medication Potential Cancer Targets Cancer Outcomes

Aspirin
CRC, esophageal, pancreatic,
brain, lung, stomach, and
prostate cancers

– Prevention of early neoplastic transformation and possible
anti-metastatic effect

– Mitigation of morbidity and mortality of some cancers

Angiotensin converting
enzyme inhibitors (ACEi)
Angiotensin receptor
blockers (ARB)

Non-small-cell lung cancer
Esophageal, pancreatic, and
colon, prostate cancers and
melanoma

– Reduction of incidence of some cancers and mitigation of
metastatic burden

– Enhance anticancer response prior to chemotherapy
– Some observational data showed increased risk of lung cancer

Beta blockers (βB) Breast, prostate, and ovarian
cancers

– Prevention of certain types of cancers
– Tumor growth reduction

Calcium channel blockers
(CCB)

Breast, brain, colorectal,
gastric, ovarian, and prostate
tumors as well as leukemia

– Possible antiproliferative effects in preclinical studies

Statin CRC, gastric, prostate and
breast cancers

– Prevention of certain cancers.
– Improvement of biochemical recurrence in prostate cancer

Proprotein convertase
subtilisin kexin type 9
inhibitors (PCSK9-i)

Non-small-cell lung cancer,
breast and colon cancers

– Improvement of anti-tumor immune response to cancer cells
– Prevention of certain type of cancers
– Tumor growth reduction and improved survival in

certain cancers

3.1. Aspirin

Aspirin is an irreversible inhibitor of cyclooxygenase-1 (COX-1) enzyme that produces
precursors for prostaglandins and thromboxanes [85]. This results in dose- and time-
dependent inhibition of thromboxane A2 (TXA2) formation, an important mediator in
platelet recruitment and aggregation [86].

Aspirin is generally considered the mainstay antiplatelet therapy for the treatment
of acute coronary syndromes as well as the secondary prevention of atherothrombotic
events in patients with various atherosclerotic diseases [87]. A metanalysis of sixteen
secondary prevention trials showed that treatment with low-dose aspirin is effective in
preventing approximately one-fifth of atherothrombotic vascular complications in patients
with previous myocardial infarction, stroke, or transient cerebral ischemia [88]. Nonetheless,
aspirin use for primary prevention of cardiovascular diseases is still controversial with
uncertain balance between cardiovascular benefits and bleeding risk [89].

In the last few decades, compelling data have emerged suggesting an association
between the regular use of COX inhibitors, including aspirin and other nonsteroidal anti-
inflammatory drugs, and reduced risk of colorectal cancers [90]. The protective effects
of aspirin against cancer are believed to be related to the prevention of early neoplastic
transformation in addition to an anti-metastatic action [91]. It is evident that platelets play
a pivotal role in neoplastic transformation via enhanced biosynthesis of prostaglandin
E2 (PGE2), among several lipid mediators that are synthesized and released by activated
platelets. PGE2 influences the adhesive, migratory, and invasive behavior of cells and create
an environment that facilitates tumor formation and progression [90].

Hence, multiple randomized controlled trials (RCTs) were designed to study the
chemo-preventive effects of COX inhibitors, given the data that have suggested an impor-
tant role of COX enzymes, particularly COX-2, in gastrointestinal carcinogenesis [92,93].
Nonetheless, some of these trials that were designed to evaluate these chemo-preventive



Cancers 2024, 16, 1450 7 of 23

effects of selective COX-2 inhibitors, such as celecoxib and rofecoxib, showed an increased
risk of major adverse cardiovascular events and were halted [94,95]. On contrast to selective
COX-2 inhibitors, RCTs, observational case-control and meta-analysis studies have demon-
strated a chemo-preventive effect of aspirin against colorectal cancers [96–101]. Other
studies have also demonstrated that aspirin reduced the risk of death from several non-
colonic solid cancers including esophageal, pancreatic, brain, lung, stomach, and prostate
cancer in patients with Lynch syndrome [101,102]. However, it is unclear whether there is
a chemoprotective benefits against malignancies other than colorectal cancer in patients
without Lynch syndrome. Nonetheless, the evidence of use of aspirin and its mitigating
effect on colorectal cancer morbidity and mortality has been identified [103–105].

3.2. Angiotensin Converting Enzyme Inhibitors (ACEi) and Angiotensin Receptor Blockers (ARB)

Angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers
(ARB) are widely used in the management of hypertension and heart failure [106,107]. In
addition, they have renal protective effects in patients with diabetes [108]. It is evident
that the renin–angiotensin–aldosterone system (RAAS), including angiotensin II and an-
giotensin II type 2 (AT2) receptor subtypes, regulates blood pressure homeostasis and
electrolyte balance [109,110]. The functions of RAAS extend not only to the cardiovascular
system but also involve multiple organ systems such as the kidney, brain, pituitary, adrenal,
gonad and adipose [111,112]. Previous research and human studies have demonstrated
RAAS signaling within various organs and tissues, indicating its essential role in several
biological processes with involvement in different pathophysiological mechanisms, includ-
ing inflammation [113–115]. Additionally, other studies have shown that angiotensin II
functions as a paracrine and/or autocrine signal in some cancers and mediates recruitment
of inflammatory cells. This leads to an enhanced secretion of cytokines that accelerate cell
proliferation and tumor angiogenesis, such as up-regulating vascular endothelial growth
factor (VEGF) expression [113,116,117]. Furthermore, the RAAS may modulate cancer
growth and progression at different levels, including sustained angiogenesis, evasion of
apoptosis, self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue
invasion and metastases, and limitless replicative potential [117]. In preclinical models,
RAAS inhibitors have shown efficacy in reducing metastases, whereas AT1 R expression
frequently correlates with the degree of cancer invasiveness. In two separate lung metas-
tases models, the treatment of mice with candesartan (ARB) significantly reduced lung
metastatic burden [118,119]. whereas captopril (ACEi) significantly reduced cancer size
and was associated with a decreased lymph node metastases in a non-small-cell lung cancer
xenograft model [120]. Wherein human retrospective studies, they have provided some
evidence that long-term use of RAAS inhibitors might modulate cancer growth and pro-
gression [121–123]. One of the first studies that assessed the risk of cancer in hypertensive
patients who received ACE inhibitors over a 15-year period, showed that the relative risk of
incident and fatal cancer among 1559 patients receiving ACE inhibitors was significantly re-
duced in comparison with control subjects, most markedly for female-specific cancers [124].
In three other retrospective case–controlled studies, ACE inhibitor use was associated with
reduction in the incidence of esophageal, pancreatic, and colon cancer [117,125,126]. Other
studies showed that the use of RAAS antagonism has also been associated with a reduced
risk of melanomas and a lower risk of developing prostate cancer [121,122]. These retro-
spective studies suggested that dysregulation of RAAS components plays a role in a broad
range of human malignancies and may correlate with disease outcome. More importantly,
these studies present a large body of evidence that RAAS inhibitors play an important
prognostic indicator and novel molecular target for a wide range of cancers. Other retro-
spective studies have reported that losartan (ARB) use prior to chemotherapy potentiates
the anticancer response by improving chemotherapy delivery to cancer cells [127–129]. A
more recent large meta-analysis of nine studies (n = 1362) that evaluated the effects of beta
blockers, ACEi, and ARBs on cardiotoxicity of trastuzumab and anthracycline reported
the those therapies were associated with the preservation of LVEF [130]. Although the
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link between RAAS, cancer angiogenesis and invasion arguably represent a therapeutic
opportunity for clinical intervention, few clinical trials have been initiated to investigate
the efficacy of RAAS modulators in cancer. This may be attributed mainly to the complex
nature of RAAS signaling, making the response to RAAS inhibitors, either individually
or in combination with other drugs, difficult to predict [117]. On the other hand, some
observational studies have shown that the use of some RAAS inhibitors was associated
with an increased risk of lung cancer [131].

3.3. Beta Blockers (βB)

Beta (β)-adrenoceptors are broadly distributed in various tissues and regulate wide
range of important physiological functions and disease states [132]. β-adrenergic receptor
blockers have been widely used for the treatment of hypertension, ischemic heart disease,
and congestive heart failure [133,134]. Several studies have shown that catecholamines
can significantly enhance the ability of tumor cells to invade the surrounding extracellular
matrix via beta adrenergic system, thereby enhancing tumor growth through activation
of invasive ability and stimulating VEGF secretion [135–137]. It has been evident that the
β-adrenergic system plays pivotal roles in cancer development and progression and is
involved in almost every step of cancer development, including stimulation of continuous
proliferation along with evasion of growth suppressors, resistance to apoptosis, enhance-
ment of invasion and metastasis, and induction of angiogenesis [137]. A translational study
showed that norepinephrine and the β-adrenergic agonist isoproterenol can enhance the
production of a proangiogenic cytokine, vascular endothelial growth factor, by ovarian
cancer cells [138]. Interestingly, these effects were completely blocked by propranolol (βB),
suggesting that β-adrenergic receptors mediate production of proangiogenic factors and
thereby facilitation tumor metastasis [138]. Hence, the potential benefits of βB to alleviate
the deleterious progression of cancers influenced by β-adrenergic system have been further
investigated. A number of studies have evaluated the effect of βB use on cancer, but they
have had conflicting or inconsistent findings. First, a large retrospective case-control study
of prostate cancer patients, which investigated the effect of different classes of antihyper-
tensives on cancer (including βB, ACEi, calcium channel blockers, alpha-blockers), showed
that only βB use was associated with a significant reduction in prostate cancer risk [139].
In another observational study that looked at outcomes of patients with cardiovascular
disease on a 10-year-follow up, it was noted that βB use was associated with a significant
reduction in cancer incidence [140]. Other studies did not show or support protective bene-
fits for βB against cancers [141,142]. Several prospective clinical trials that are assessing
propranolol use in patients with ovarian (NCT01504126, NCT01308944), colorectal can-
cer (NCT00888797), breast (NCT01847001, NCT00502684, NCT02596867), and melanoma
(NCT01988831) are under investigation. The result of these trials would illuminate the
potential chemoprotective effects of βB against some cancers.

3.4. Calcium Channel Blockers (CCB)

Calcium channel blockers (CCBs) are one of the first-line treatments for hypertension
that function by blocking T-type calcium channels [143]. These channels regulate calcium
homeostasis that controls various cellular processes, including those relevant to tumorigen-
esis, such as proliferation, apoptosis, gene transcription and angiogenesis [144]. Thus, it is
evident that increased T-type calcium channel expression and function have an important
role in the abnormal proliferation of cells in many types of cancers [145]. Interestingly, it
has been suggested that the expression of T-type calcium channels in cancer cells may vary
depending on the rate of cellular proliferation. [145,146]. Calcium has the ability to function
both as a promoter of cellular proliferation, and as an inducer of cell death, depending on
the amplitude of the increase in the intracellular calcium concentration, and the duration
of this change. Consequently, both activators and inhibitors of calcium channels may
have potential anti-cancerous effects [146]. The role of T-type calcium channels in cellular
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proliferation has been described in breast, brain, colorectal, gastric, ovarian, and prostate
tumors as well as leukemia [146–150].

3.5. Statins (β-Hydroxy β-Methylglutaryl-CoA (HMG-CoA) Reductase Inhibitors)

Statins are considered a first-line treatment for hypercholesterolemia and a corner-
stone therapy for atherosclerotic diseases [151]. Statins suppress cholesterol synthesis
via inhibition of 3-hydroxy-3-methyl-glutarylcoenzyme A reductase, a pivotal enzyme in
cholesterol synthesis [152]. Some cholesterol precursor molecules, which are also inhibited
by statin therapy, are essential components of other critical cellular functions including
cell membrane integrity [153]. Therefore, suppression of these molecules may interfere
with cellular growth and development of cancers. In addition to their effects on choles-
terol, multiple in-vivo and in-vitro studies have shown antiproliferative effects on various
types of cancers [154–159]. Most data on the potential effects of statins on cancers are
derived from observational studies. Multiple studies and metanalysis have described a
decreased risk of prostate cancer in association with statins use [160–163]. Nevertheless,
there were conflicting data on effect of statins on prostate cancer progression with some
studies showing no effect of statins on progression-free survival after radiotherapy for
prostate cancer and radical prostatectomy [164]. While other retrospective cohort studies
showed a reduced biochemical recurrence in prostate cancer patients treated with radical
prostatectomy [165,166]. Similarly, chemoprotective effects of statins on gastrointestinal
cancers were also extensively studied. For example, a large meta-analysis has reported a
protective association between statin use and gastric cancer risk among both Asian and
Western population, in a dose-dependent manner [167]. Additionally, several studies that
examined the association between statin use and colorectal cancer risk and survival have
reported conflicting results. In one case-control study, statin use was associated with lower
risk of colorectal cancer but no significant association with colorectal cancer specific mortal-
ity was found [168]. In another study, statin use was not associated with reduced risk of
colon cancer, but was associated with reduced risk of rectal cancer [169]. Moreover, studies
that have evaluated the association between statin use and risk of breast cancer reported
conflicting results. it appears that statin with lipophilic structures had more chemopro-
tective effect against breast cancers compared to hydrophilic ones [170–172]. Some data
have also suggested that statins have a favorable effect, particularly in patients with triple
negative breast cancer [173–177]. Furthermore, the effect of statins on response to systemic
anticancer therapy in patients with solid cancers was evaluated in observational studies.
In one meta-analysis, statin did not appear to improve response to cytotoxic therapy in
patients with solid tumors [178]. In a recent RCT involving patients with lymphoma who
were scheduled to receive anthracycline-based chemotherapy, the odds of cardiotoxicity
after anthracycline treatment were approximately three times greater for patients random-
ized to the placebo compared with those randomized to atorvastatin [179]. Although statin
therapy shows some benefits in several types of cancer, these chemoprotective effects need
to be further evaluated with RCTs.

3.6. Proprotein Convertase Subtilisin Kexin Type 9 Inhibitors (PCSK9-i)

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a proteolytic enzyme that
plays an important role in hepatic cholesterol homeostasis [180–182]. Among its various
functions, it is known for its role in the reduction of low-density lipoprotein (LDL) recep-
tor expression on hepatocytes’ cell surface [183–185]. Downregulation of these receptors,
which is mediated by intracellular signaling and targeting for degradation, leads to higher
LDL plasma levels with resultant hypercholesterolemia and heightened cardiovascular
disease risk [186,187]. As the understanding of PCSK9 role in the pathogenesis of hyperc-
holesterolemia evolved, efforts devoted to this unique pathway led to the development
of monoclonal antibodies against PCSK9 [188]. Two FDA-approved injectable human
monoclonal antibodies (Alirocumab and Evolucumab) are now available for use, either as
monotherapy or as an add-on to other anti-lipid therapies, in patients with familial hyperc-
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holesterolemia or in patients who have intolerance to traditional first-line therapies, i.e.,
statin therapy [189–193]. Both have shown remarkable reductions in LDL levels compared
to placebo, with a range of approximately 30–70% reduction, and up to 60% reduction in
patients who are already on statin therapy [194–203].

Similar to the effects on LDL receptors, PCSK9 has been increasingly recognized as a
regulator for other cell surface receptors, some of which are key modulators in immune
signaling and response [204]. Moreover, cholesterol was found to have inhibitory effects on
the antitumor responses of CD8+ T cells, and it is also involved in major histocompatibility
protein class I (MHC-I) recycling on cell membranes [205,206]. These pathophysiological
observations provoked the hypothesis of PCSK9 being a regulator of anti-tumor responses
and thus, a potential target to enhance immunity against tumors [51]. Eliminating the effect
of PCSK9, whether via direct inhibition or gene knock-out, was shown to attenuate tumor
growth in mice cancer cells by decreasing the barriers or checkpoints to T call signaling,
which then boosts the anti-tumor immune response to cancer cells [51]. PCSK9 deficiency
also increased the expression of MHC-I on the surface of tumor cells, exposing them to the
immune defenses and allowing greater intra-tumoral cytotoxic T cell infiltration [51]. These
anti-tumoral effects were most notable in the presence of immune checkpoint therapy with
anti-programmed cell death ligand 1 (anti-PD1) agents, where a synergistic action has been
demonstrated [51]. Furthermore, the introduction of small interfering RNA (siRNA) against
PCSK9 into human lung adenocarcinoma cells downregulated anti-apoptotic molecules and
induced mitochondrial dysfunction, which then hampered tumor activity by promoting
cell apoptosis [207]. A recent study in Japan showed that higher levels of PCSK9 antibodies
in the serum was associated with favorable postoperative prognosis in esophageal cancer
patients compared to low antibody levels [208]. In another Italian pilot study of 44 elderly
patients with advanced and pretreated non-small cell lung cancer, serum levels of PCSK9
below a certain cutoff (95 ng/mL) at the second nivolumab dose was associated with better
overall survival in comparison to higher levels [209]. In an experimental mouse models of
breast and colon cancer, anti-PCSK9 vaccine, which led to lower plasma level and activity
of PCSK9, was associated with moderate but not significant tumor growth reduction and
prolongation of lifespan [210,211]. In a prior observational Mendelian randomization study,
genetic variants that simulate PCSK9 inhibition were associated with lower breast cancer
risk [212]. This emerging data makes PCSK9 inhibitors a plausible consideration for future
trials to evaluate their clinical effect as an adjunct therapies for various cancers, especially
those in which immune therapy have proven efficacious.

3.7. Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT-2 Inhibitors)

SGLT-2 inhibitors were initially developed for diabetes treatment. They work through
inhibition of sodium-glucose co-transporter-2 that is responsible for active cellular uptake
of glucose and sodium, thereby decreasing glucose reabsorption in the proximal convoluted
tubules of the nephrons and causing glycosuria, which leads ultimately to lowering blood
glucose level [213]. However, it became evident over the past decade that the benefits
of SGLT-2 inhibitors extend beyond blood glucose control in diabetic patient as multiple
studies have shown significant beneficial cardiovascular effects in patients treated with
SGLT-2 inhibitors [214,215]. Several randomized control trials have shown cardiovascular
benefits in heart failure patients. The most recent data from DAPA-HF (Dapagliflozin
and Prevention of Adverse Outcomes in Heart Failure) [216] and EMPEROR-Reduced
(Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejec-
tion Fraction) [217] showed reduction in heart failure hospitalizations or cardiovascular
death when compared with placebo. More recently, EMPEROR-Preserved (Empagliflozin
Outcome Trial in Patients With Chronic Heart Failure With Preserved Ejection Fraction)
trial have reported that treatment with Empagliflozin in patients with heart failure and a
preserved ejection fraction is associated with a reduced combined risk of cardiovascular
death or hospitalization for heart failure in patients, regardless of the presence or absence
of diabetes [218]. Furthermore, CANVAS study (Canagliflozin and Cardiovascular and
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Renal Events in Type 2 Diabetes) that combined data from two trials including more than
ten thousands patients with type 2 diabetes and high cardiovascular risk, has showed
that canagliflozin was associated with a reduction in major adverse cardiovascular events
compared with placebo [219]. Similar results of cardiovascular benefits were replicated
in other studies [220,221]. Interestingly, the cardiovascular benefits derived from SGLT2
inhibitors were independent of diabetes status of patients, which strongly suggest alterna-
tive mechanisms for the reported cardioprotective effects [221]. Several mechanism were
proposed to explain the those cardioprotective effects such as decreased production of
leptin and reduced pericardial adipose tissue deposition as well as inflammation [222,223].
In addition, SGLT2 inhibition was found to shift metabolism toward more lipid oxidation
and ketone production along with reduced glucose oxidation [224,225]. other potential
mechanisms for cardiovascular benefits of SGLT2 inhibitors include enhanced natriuresis,
reduction in plasma volume and blood pressure as well as improvement of systemic en-
dothelial function and arterial stiffness [226,227]. In cancer context, several meta-analysis
studies have examined cancer risk in patients treated with various SGLT2 inhibitors, but
they did not show significant chemoprotective effects [228–230]. Several translational
studies have reported antiproliferative and chemoprotective effects with SGLT2 inhibition
in certain types of cancers [231–233]. As described above, cancer cells exhibit metabolic
reprogramming “Warburg effect” that promotes the survival and progression of cancers.
Data from in-vitro studies showed amelioration of metabolic reprogramming seen in some
cancers. For example, it was shown that SGLT2 inhibitor suppresses hepatocellular cancer
(HCC) in-vitro growth through blockage of glucose influx-induced β-catenin action, which
is a pro-oncogenic protein [234]. In another study, in-vitro treatment with SGLT2 inhibitors
demonstrated disruption of adhesion capacity of certain cancer cells and suppression of
oxidative phosphorylation via inhibition of mitochondrial electron transport chain in HCC,
breast, prostate, and lung cancer cells [228,235,236].

3.8. Exercise

Before we conclude our discussion on the oncologic effects of cardiovascular interven-
tions, it would be worth mentioning that exercise, which is thought of as a cardiovascular
lifestyle intervention, can also boost cancer immunity. Current epidemiological evidence
suggests that regular physical activity and exercise influence cardiovascular health in sev-
eral ways. This include antiatherogenic effects in blood vessels, including improvements
in vascular endothelial function and structural vascular adaptations, and a healthy auto-
nomic balance (regular exercise increases vagal tone to the heart and prevents malignant
arrhythmias) [237,238]. Additionally, regular exercise can also prevent fatal arrhythmias
by inducing cardiac preconditioning, which provides a cardio-protective effect against
ischemia-reperfusion injury [239–242]. Nonetheless, the cardiac preconditioning effects of
exercise is still widely under-recognized and mostly evident in preclinical studies [243].

The benefits of exercise training for cancer patients are also becoming increasingly
evident. It has been shown that aerobic exercise reduces cancer incidence and inhibits
tumor growth [244,245]. Epidemiological studies have shown that physical activity reduces
the risk of at least 13 different cancer types with an exercise-dependent reduction in the
risk of disease recurrence for certain cancers [246]. Likewise, numerous preclinical exercise
studies showed similar exercise-dependent protection against cancer [247]. Across the
vast majority of preclinical studies investigating the effect of exercise on cancer outcomes,
exercise has been shown to reduce the rate of tumor growth [244,245,247].

Additionally, exercise training not only can reduce tumor growth, but may also have
the potential to augment the potency and efficacy of traditional cancer therapies [248]. As
the efficacy of both chemotherapy and immunotherapy relies on adequate blood perfusion
to the tumor, exercise training strongly affects blood circulation and oxygen delivery to
peripheral tissues and thereby enhance delivery of the cytotoxic drugs to the interior of
tumors [245,249,250].
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4. Future Perspectives. . . Will We Be Ready to Change Our Protocols in the Near Future?

As elucidated, the interrelation between cancer and CVDs manifests through shared
risk factors and molecular mechanisms. For many years, the field of cardio-oncology has
predominantly focused on the development of CVD during or following cancer treatment.
However, contemporary investigations have unveiled the potential for cancer to instigate
or exacerbate CVDs, resulting in exacerbated prognostic outcomes.

Importantly, advancements in cancer therapeutics and increased longevity among
cancer patients have brought to the fore a concomitant rise in the prevalence of CVDs
within this demographic. Nonetheless, it is evident that even cancer patients with estab-
lished diagnoses of cardiovascular diseases are less likely to receive standard treatments
compared with those without cancer. Furthermore, many standard chemotherapy regi-
mens are associated with direct cardiotoxic effects; many of which are unpredictable and
associated with increased worse outcomes that account in part for increased mortality and
morbidity in this cohort. Additional cancer- or cancer therapy-related factors that may
complicate or undermine treatment of cardiovascular diseases including elevated risk of
bleeding, thrombosis, and hypercoagulability in certain patients. For example, coronary
artery disease in cancer patients may not be adequately treated, and they are less likely
to undergo percutaneous coronary revascularization [251–253]. This reluctance may stem
from concerns about or perceptions of an increased risk of stent thrombosis, or bleeding
with optimal antiplatelet therapy. Therefore, it is crucial to study effects and safety of
routinely used cardiovascular therapies in cancer patients, which may ultimately assist in
development of cancer-specific risk scoring system that guide clinicians for treatment of
cardiovascular diseases in cancer patients.

On management front, cardiovascular medications may be used as potential adjuvant
therapies to standard anticancer treatments that could improve anti-tumor response and
effectiveness. Although further studies are needed, repurposing cardiovascular therapies
for non-cardiovascular indications and extending these interventions to cancer patients
could be a promising therapeutic opportunity for patients with different stages of cancer
who may not respond to standard cancer therapy or even lack an effective therapeutic
treatment. Although preclinical studies have shown that these medications can demon-
strate chemoprotective effects, or improve the effectiveness of standard chemotherapy
regimens by modulating various pathways and molecular targets that are integral parts
of tumorigenesis, the exact mechanisms by which some of the cardiovascular therapies
provide beneficial effects for certain types of cancers are neither well-understood nor quite
predictable.

Therefore, randomized clinical trials involving human subjects are imperative to ascer-
taining the efficacy of repurposed therapies for specific cancers, along with determining
the optimal dosages necessary to achieve these significant therapeutic effects. Additionally,
future research endeavors should prioritize elucidating the intricate interplay between CVD
and cancer, thereby fostering the development of preventive strategies, and facilitating the
co-management of cancer and CVD. This comprehensive approach is pivotal for ensuring
successful cancer survivorship and optimizing patient outcomes in cardio-oncology.

5. Conclusions

In conclusion, the intricate nexus between CVD and cancer is increasingly acknowl-
edged as a pivotal determinant of patient prognosis and therapeutic paradigms. Emerging
evidence highlights a mutual, bidirectional relationship in which cancer and CVD distinctly
influence one another’s outcomes. It is important to note that CVD does not increase
the risk of cancer per se; rather, shared risk factors in patients with CVD may also pro-
mote cancer development. This convergence of disciplines presents formidable challenges
alongside promising avenues for augmenting patient care. Recognizing the interconnected
risk factors and molecular cascades between cancer and CVD, as well as the potential
cardiotoxic ramifications of cancer therapies, is of paramount importance. The exploration
of cardiovascular pharmacotherapeutics repurposed as adjunctive modalities in cancer
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management holds substantial potential, albeit remaining speculative and necessitating
rigorous validation through randomized clinical trials. Moreover, adopting a holistic
approach to the concurrent management of cancer and CVD is imperative for fostering
resilient cancer survivorship and optimizing patient outcomes within the burgeoning do-
main of cardio-oncology. Hence, the advancement of our understanding pertaining to this
complex interplay and the formulation of pre-emptive strategies stand as pivotal strides
towards elevating the standard of healthcare delivery for individuals confronting the dual
burden of cancer and cardiovascular disease.
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