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Simple Summary: We evaluate the downstream effects of the Epithelial-to-Mesenchymal Transition
(EMT) transcription factors, ZEB1 and SNAI1, and analyze their potential significance as biomarkers
for increased aggressiveness and immune response in prostate cancer (PCa). We used two commercial
expression profiling panels to examine a primary PCa cohort (n = 51) and identified changes in gene
expression linked to downstream pathways associated with biochemical recurrence and increased
clinical risk. Genes such as COL1A1, COL1A2, and COL3A1, which are implicated in the tumor mi-
croenvironment, and immune-related genes, such as THY1, IRF5, and HLA-DRA, exhibited significant
expression level changes. Enrichment analysis identified pathways associated with angiogenesis,
TGF-beta, EMT, and UV response in PCa progression. Confirmatory analyses conducted using
public domain data demonstrated the downstream impacts of ZEB1 and SNAI1 on pathways and
immune responses, highlighting their potential influence on immune modulation in PCa. Future
treatment strategies aimed at modulating EMT may enhance immune cell infiltration toward an
anti-tumorigenic phenotype.

Abstract: Prostate cancer (PCa) is an immunologically cold tumor and the molecular processes
that underlie this behavior are poorly understood. In this study, we investigated a primary cohort
of intermediate-risk PCa (n = 51) using two NanoString profiling panels designed to study cancer
progression and immune response. We identified differentially expressed genes (DEGs) and pathways
associated with biochemical recurrence (BCR) and clinical risk. Confirmatory analysis was performed
using the TCGA-PRAD cohort. Noteworthy DEGs included collagens such as COL1A1, COL1A2,
and COL3A1. Changes in the distribution of collagens may influence the immune activity in the
tumor microenvironment (TME). In addition, immune-related DEGs such as THY1, IRF5, and HLA-
DRA were also identified. Enrichment analysis highlighted pathways such as those associated with
angiogenesis, TGF-beta, UV response, and EMT. Among the 39 significant DEGs, 11 (28%) were
identified as EMT target genes for ZEB1 using the Harmonizome database. Elevated ZEB1 expression
correlated with reduced BCR risk. Immune landscape analysis revealed that ZEB1 was associated
with increased immunosuppressive cell types in the TME, such as naïve B cells and M2 macrophages.
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Increased expression of both ZEB1 and SNAI1 was associated with elevated immune checkpoint
expression. In the future, modulation of EMT could be beneficial for overcoming immunotherapy
resistance in a cold tumor, such as PCa.

Keywords: biomarkers; immune evasion; bioinformatics; gene signatures; immunotherapy; extracel-
lular matrix; transcriptomics; collagens; immune checkpoint proteins; digital flow cytometry

1. Introduction

Prostate cancer (PCa) is the second most common cancer in men and the fifth cause
of cancer-related deaths worldwide [1,2]. The disease course is often favorable, but unfor-
tunately, 20–30% of patients with localized disease will eventually progress and develop
advanced disease and metastasis [3]. Once resistance to androgen deprivation therapy
develops, there are limited chemotherapy choices available to control the progression [4],
but recently there has been increasing interest in the use of immunotherapy in the ad-
vanced setting.

The effect of checkpoint blockade therapy in metastatic PCa has been disappointing,
with just 5–10% of patients responding [5,6]. These poor results are primarily thought to be
because PCa is an immunologically cold or excluded tumor [7,8]. In various solid tumors,
the presence of immune infiltration within the tumor microenvironment (TME) has been
associated with improved immune control and a better prognosis [9].

The TME is the cellular ecosystem that surrounds a tumor, and it includes immune cells,
the extracellular matrix (ECM), blood vessels, and other cells, such as cancer-associated
fibroblasts (CAFs) that may modulate the composition of the TME. Studies of the immune
content in PCa have resulted in inconsistent findings, with some indicating that elevated
T cell levels within the TME correlate with improved prognosis [10], while others suggest
the opposite effect [11]. The variation in immune infiltration likely contributes to the
observed differences in anti-cancer immune responses in PCa [12,13].

Epithelial–mesenchymal transition (EMT) mechanisms can profoundly influence the
TME [14]. The EMT is a molecular mechanism associated with tumor progression and
acquisition of heterogeneity in advanced cancers [15]. EMT-inducing transcriptional regu-
lators, such as TWIST, SNAI1, SNAI2, ZEB1, and ZEB2, exert their phenotypic changes in
tumors by modulating the expression of epithelial markers and activating the expression
of mesenchymal markers [14]. These downstream regulatory changes in gene expression
occur through their direct binding to the promoters of target genes involved in cell adhe-
sion and polarity, leading to loss of cell–cell adhesion, remodeling of the cytoskeleton, and
acquisition of migratory and invasive properties characteristic of mesenchymal cells [16].

Zinc finger E-box binding homeobox 1 (ZEB1) is an established EMT transcription
factor whose expression in PCa is associated with more aggressive disease and chemoresis-
tance [17]. Similarly, Snail family transcriptional repressor 1 (SNAI1) is the main promoter
of EMT in PCa [18], and its expression is associated with a higher Gleason score [19] and
increased cell migration [20].

EMT-driven alterations to the TME can lead to resistance to immunotherapy [21,22].
TGF-β signaling is integral to the epithelial phenotype and downstream effects induce
changes in the stromal environment to facilitate tumor progression [23]. The expression of
TGF-β interacts with both the Snail and ZEB1 proteins to influence cancer–TME crosstalk
related to immune evasion [24–26].

The prognostic role of downstream EMT transcriptomics derived from PCa primary
intermediate-risk tumors has not previously been investigated in the context of the immune
landscape of the TME. In this study, we analyzed the influence of altered ZEB1 and SNAI1
expression levels on cancer progression using a retrospective cohort of 51 intermediate-risk
PCa tumors from FMRP-USP, Brazil. We determined how downstream changes in gene
expression related to each transcription factor could lead to PCa progression changes and
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immune pathway activities. We used two NanoString mRNA panels (PanCancer Pathway
and Immune Profiling) to quantify gene expression levels across the cohort to identify
differentially expressed genes (DEGs) and pathways linked to the EMT and progression in
intermediate-risk PCa. Our findings indicate that changes in ZEB1 and SNAI1 expression
in PCa are associated with the induction of DEGs and downstream pathways that influence
the TME and may facilitate immune evasion during tumor progression.

2. Materials and Methods
2.1. Tumor Cohort

The Faculty of Medicine at the Ribeirão Preto (FMRP) cohort comprised 51 primary
prostate cancer samples obtained via radical prostatectomy, in accordance with the National
Comprehensive Cancer Network (NCCN) clinical practice guidelines [27], at the Urology
Division of the Department of Surgery and Anatomy, FMRP-USP, Brazil, between 2007 and
2015 (Table S1). Transcriptomic data derived from this cohort were recently included in
another publication by our group [28]. Smaller prostates were submitted for pathological
assessment in their entirety according to the guidelines of the American College of Pathology.
In cases where larger glands were partially sampled, we followed the protocol by submitting
the entire tumor if grossly visible, along with the tumor, surrounding periprostatic tissue, and
margins, including the entire apical and bladder neck margins. Additionally, we included
the junction of each seminal vesicle with the prostate proper. If there was no grossly visible
tumor, a systematic sampling strategy was used. This involved taking slices from the posterior
aspect of each transverse section, along with a mid-anterior block from each side. Additionally,
we submitted samples including the entire apical and bladder neck margins, as well as the
junction of each seminal vesicle with the prostate. Biochemical recurrence (BCR) was defined
as PSA > 0.2 ng/mL within six months post radical prostatectomy. To assess the likelihood of
prostate cancer recurrence after initial surgery, we utilized the Cancer of The Prostate Risk
Assessment Score (CAPRA-S) [29]. This scoring system incorporates various clinical and
pathological factors, such as pre-treatment PSA level, pathological Gleason score, surgical
margin, extracapsular extension, seminal vesicle invasion, and lymph node invasion. CAPRA-
S provides a relative risk assessment for biochemical progression, ranging from 1 to 12. For this
study, patients with low CAPRA-S scores were those with values between 0 and 2, those with
intermediate scores had CAPRA-S scores ranging from 3 to 5, and those with high scores had
CAPRA-S scores between 6 and 12. Patient outcome data were collected to the last follow-up
date. This retrospective study was approved by the Ethics Committee in Research of Hospital
of Ribeirão Preto, São Paulo, Brazil (HCRP), numbers CAAE 60032122.8.0000.5440 and CAAE
43277221.0.0000.5440, and the Ethics Board of the University of Toronto (Protocol 00043323).

2.2. RNA Isolation

RNA extraction was performed on tissues containing tumor-rich areas, which were
previously identified and marked by a pathologist (FPS) to represent the highest Gleason
pattern. Serial 5 µm formalin-fixed paraffin-embedded (FFPE) tissue was processed at the
Ontario Institute for Cancer Research, Toronto, Canada (OICR), using extraction methods
described in previous studies [30,31].

2.3. Transcription Analysis

RNA profiling was performed using both the NanoString PanCancer and the Immune
Profiling Panels (NanoString Technologies Inc., Seattle, WA, USA) [32] according to the
manufacturer’s instructions. Briefly, RNA profiling using the NanoString methodology
relies on digital molecular barcoding and direct hybridization to quantify gene expression
levels across multiple genes simultaneously. This methodology has been shown to offer
high sensitivity, specificity, and the ability to analyze gene expression patterns from small
amounts of RNA, as described previously [33]. The NanoString PanCancer panel comprises
730 genes involved in the cancer progression processes, such as angiogenesis, extracellular
matrix remodeling (ECM), EMT, and metastasis. The Immune Profiling Panel comprises
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730 immune response genes specifically optimized for immuno-oncology investigative
research. There are 130 endogenous genes common between the 2 transcriptional pan-
els, yielding 1200 unique transcripts available for interrogation. Raw expression data
from both panels were loaded in nSolver software v4.0 (NanoString Technologies) to per-
form the quality control (QC) analysis and to build the transcript matrix for downstream
analysis. Pearson correlation analysis was performed for the 160 genes in common be-
tween the panels and was used to assess reproducibility and identify any potential panel
bias. The majority of the 160 genes common to both panels showed a consistent positive
correlation between the panels, indicating that gene expression analyses by each panel
were reproducible (Supplementary Figure S1). For initial differential expression, we used
DESeq2 v1.34.0 with BCR and risk factor as the design factors [34]. We conducted over-
representation enrichment analysis (ORA) and Gene Set Enrichment Analysis (GSEA) on
the differential expressed genes utilizing the clusterprofiler v4.0 with Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways [35]. Additionally, we categorized the expression
levels of ZEB1 and SNAI1 into quartiles for each gene. These categorical data allowed us
to classify patient gene expressions as either “low” (below Q3) or “high” (above Q3) for
ZEB1 and SNAI1 [28]. We then used the classification status of ZEB1 and SNAI1 as the
design factor for the transcriptome analysis as described earlier. For validation purposes,
we utilized RNA-seq data from the prostate adenocarcinoma cohort in The Cancer Genome
Atlas (PRAD-TCGA, n = 420) [36]. We compared the effects of dichotomized expression
levels of ZEB1 and SNAI1 in this public domain cohort.

2.4. Digital Cytometry Analysis

To quantify the immune cell composition in the TME of tumors having a high expres-
sion of ZEB1 and SNAI1, we used expression data from TCGA-PRAD [36] analyzed using
the digital cytometry resource CIBERSORTx [37]. This algorithm estimates the relative
immune abundance in the TME using a “signature matrix” containing validated leukocyte
expression data from 22 human hematopoietic cell phenotypes (LM22).

2.5. Statistical Analysis

The data processing and downstream analysis for transcriptome data were completed in
Rstudio software (R Foundation for Statistical Computing, R v4.1.2 “Bird Hippie”). Multiple
unpaired t-tests were assessed to calculate the statistical significance using the GraphPad
Prism 9.3.0 software for CIBERSORT data. Genes were considered differentially expressed
when log2 fold change > 0.5 for the NanoString PanCancer and Immune Profiling Panels, and a
more rigorous threshold of >0.58 was used for validation comparisons with the TCGA-PRAD,
with p-adjusted (FDR) < 0.05. For the enrichment analysis, we used a cutoff value of 0.05
to consider the ORA of Molecular Signatures Database (MsigDB) Hallmarks. Kaplan–Meier
estimates of BCR-free survival were computed using the survival package v3.4.0. Figure S1
illustrates the general workflow of this work (Supplementary Figure S2).

3. Results
3.1. Identification of DEGs and Pathways Associated with BCR and Clinical Risk

The NanoString PanCancer and the Immune Profiling Panel were developed to cover
cancer-related biological functions and features related to adaptative and innate immune
response genes. Using both panels, we examined the DEGs (log2 fold change > 0.5) to
determine the impact of downstream changes in gene expression on PCa progression
through outcome and immune evasion pathways.

In the first phase of our transcriptomic analysis, we investigated DEGs within the
FMRP cohort stratified by CAPRA-S and BCR status. Patients with either a CAPRA-S
intermediate or a CAPRA-S high relative risk were grouped together as “High”, while the
remaining patients identified as low-risk CAPRA-S, were defined by the “Low” group.

Tables 1 and 2 summarize the significantly associated DEGs with BCR and CAPRA-S
determined using the PanCancer panel and Immune Panel, respectively. Many of the DEGs
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identified in this analysis have been previously reported as prognostic biomarkers in PCa
or have been published as potential markers of immune response in various cancers.

Table 1. Ranked list of the DEGs associated with BCR and CAPRA-S based on the PanCancer Panel
using the FMRP cohort. The roles of each of the top-ranking DEGs in the cancer progression and
PCa literature are shown with specific citations (if available). Adjusted p-value < 0.05 and a log2 fold
change > 0.5.

Gene Log2 FC padj Protein Role in Progression and
Biology of PCa Citations

BC
R

COL1A1 0.876 >0.001 collagen type I alpha
1 chain

Collagens contribute to the
ECM, which are the major

structural components of the
TME. COL1A1, COL1A2, and
COL3A1 expression in CAFs

have been associated with the
EMT. COL1A1 expression is
upregulated in PCa stromal

cells and was associated with
a worse prognosis in PCa.

[38,39]

COL3A1 0.879 >0.001 collagen type III alpha
1 chain

COL3A1 interacts with
fibronectin. Increased

expression of COL3A1 in PCa
activates other

pro-tumorigenic genes and
pathways, such as the

Wnt/beta-catenin. COL3A1
expression is associated with
higher Gleason scores, higher

PSA levels, and a higher
likelihood of lymph
node involvement.

[38]

COL1A2 0.596 >0.001 collagen type I alpha
2 chain

COL1A2 expression is
associated with higher

Gleason scores.
[40]

COL5A2 0.479 >0.001 collagen type V alpha
2 chain

COL5A2 expression has been
associated with increased
tumor cell invasion and
resistance to androgen
deprivation therapy.

[40]

SFRP2 0.761 0.004
secreted

frizzled-related
protein 2

SFRP2 affects TME by
regulating Wnt signaling and

influencing
tumor angiogenesis.

[41,42]

THBS4 0.852 0.007 thrombospondin 4

THBS4 affects cancer stem
cell-like properties in PCa by

its regulation of the
PI3K/Akt pathway.

[43]

INHBA 0.766 0.008 inhibin beta
A subunit

INHBA (Activin A) activates
NF-κB and is associated with
a higher Gleason score PCa.

[44,45]

WNT2B 0.567 0.02 Wnt family
member 2B

WNT2B is regulated by
lncRNAs to influence the EMT

in PCa.
[46]

SFRP4 0.7349 0.03
secreted

frizzled-related
protein 4

SFRP4 predicts BCR in PCa
and is associated with

the EMT.
[47]
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Table 1. Cont.

Gene Log2 FC padj Protein Role in Progression and
Biology of PCa Citations

C
A

PR
A

-S

NOTCH3 0.6882 >0.001 notch 3

NOTCH1-4 expression was
associated with disease

progression, prognosis, and
immune cell infiltration.

[48]

BMP8A 0.8167 0.006 bone morphogenetic
protein 8a

BMPs are members of the
TGF-beta family and are

thought to be involved in PCa
bone metastasis.

[49]

CHEK1 0.8851 0.01 checkpoint kinase 1
CHEK1 (CHK1) is associated
with DNA damage response

and AR signaling. [50]

COL3A1 0.8822 0.01 collagen type III alpha
1 chain see above

NTRK1 −1.045 0.01 neurotrophic receptor
tyrosine kinase 1

NTRK1 downregulation is
associated with reduced TILs

in the TME of PCa and
poor prognosis.

[51]

FN1 0.686 0.01 fibronectin 1

FN1 is a key component of the
ECM, and the TME is

associated with collagens
and CAFs.

[52]

JAG1 0.697 0.02 jagged 1

JAG1 upregulation results in
increased inflammatory foci in

the TME of tumors in
Pten-deficient mice.

[53]

INHBA 0.905 0.02 inhibin beta A
subunit See above.

CD14 0.592 0.04 CD14 molecule CD14 is mostly expressed
in macrophages. --

GAS1 −0.606 0.04 growth
arrest-specific 1

GAS1RR (an immune-related
enhancer RNA) represses

GAS1 and is associated with
BR-free survival in PCa.

[54]

SOX17 −0.561 0.04 SRY-box 17
SOX17 and Notch’s axis

associated with enzalutamide
resistance in CRPC models.

[55]

Table 2. Ranked list of the DEGs associated with BCR and CAPRA-S based on the Immune Profiling
Panel using the FMRP. The roles of each of the top-ranking DEGs in immune oncology and the PCa
literature are shown with specific citations (if available). Adjusted p-value < 0.05 and a log2 fold
change > 0.5.

Gene Log2 FC padj Protein Role in Immune
Oncology and PCa Citations

BC
R

COL3A1 1.027 >0.001 collagen type III
alpha 1 chain See Table 1.

ENG 0.556 0.001 endoglin
Endoglin (sCD105) in

plasma associated with
aggressive PCa.

[56]

CXCL14 1.291 0.002
C-X-C motif
chemokine
ligand 14

CXAL14 expression
associated with outcome

in PCa.
[57]
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Table 2. Cont.

Gene Log2 FC padj Protein Role in Immune
Oncology and PCa Citations

SH2D1A −0.045 0.005 SH2 domain
containing 1A

Stimulation factor for T
and B cells. --

IRF5 0.478 0.01 interferon
regulatory factor 5

IRF5 expression used for
BCR prediction in PCa. [58]

SYK 0.506 0.02 spleen associated
tyrosine kinase

Associated with
metastatic PCa. [59]

ICOS 0.231 0.03 inducible T cell
costimulator

ICOS + Treg cells exert im-
munosuppressive effects. --

C
A

PR
A

-S

CXCL10 1.549 0.003
C-X-C motif

chemokine ligand
10

CXCL10 co-expression
with CXCR3 is a predictor
of metastatic recurrence.

[60]

FCGR2A 0.669 0.003 Fc fragment of IgG
receptor IIa

Expressed in macrophages,
neutrophils, and other

immune cells.
--

MSR1 0.804 0.003
macrophage

scavenger receptor
1

Helpful as an additional
diagnostic biomarker

for PCa.
[61]

CD84 0.618 0.004 CD84 molecule Expressed in numerous
immune cell types. --

KIR Activating
Subgroup 1 −0.98 0.01

killer cell
immunoglobulin-

like receptors

KIRs expressed in NK and
T cells. [62]

THY1 0.631 0.01 Thy-1 cell surface
antigen

THY1 overexpressed in
PCa-associated fibroblasts. [63]

SIGIRR 0.459 0.02 single Ig and TIR
domain containing

TLR4 and IL-1R-mediated
NF-kB activation

associated with BCR.
[64]

HLA-DRA 0.636 0.02

major
histocompatibility
complex, class II,

DR alpha

Antigen presentation in
the TME. [65]

NRP1 0.534 0.02 neuropilin 1
Androgen-repressed gene

upregulated by ADT in
advanced PCa.

[66]

COL3A1 0.865 0.03 collagen type III
alpha 1 chain See Table 1.

IFNL1 −0.66 0.04 interferon lambda 1
Interferon lambda 1 is
involved in antiviral

immune defense.
--

CD14 0.528 0.04 CD14 molecule CD14 is mostly expressed
in macrophages. --

FN1 0.570 0.04 fibronectin 1 See Table 1.

Volcano plot analysis of the significantly altered DEGs associated with BCR included the
overexpression of SFRP2, THBS4, INHBA, WNT2B, and SFRP4 (Figure 1A), as well as ENG,
CXCL14, and SYK (Figure 1B) amongst the “Low” CAPRA-S group. Similarly, the “High”
CAPRA-S group exhibited a substantial number of DEGs (Figure 1C,D). Association with
CAPRA-S showed increased expression of BMP8A, CHEK1, FN1, COL3A1, JAG1, CD14, INHBA,
and PDGFRB (PanCancer) and FCGR2A, CD84, MSR1, CXCL10, THY1, HLA-DRA, COL3A1,
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NRP1, CD14, and FN1 (Immune Panel). Reduced expression of NTRK1, GAS1, and SOX17
(PanCancer) and KIR_Activating_Subgroup 1 and IFNL1 (Immune Panel) was also identified.
Amongst the overlapping genes between panels, increased expression of CD14, FN1, and
COL3A1 were independently detected and associated with high CAPRA-S (Figure 1E,F).

The last part of our investigation was to identify pathways based on ORA and GSEA
analyses of the DEGs identified. Enrichment analysis revealed pathways related to an-
giogenesis, and TGF-beta, EMT, and UV response were associated with progression and
immune response in the FMRP cohort (Supplementary Table S2). Underscoring the impor-
tance of the EMT in PCa progression, 11 (28%) of the 39 DEGs (Figure 1F) associated with
BCR or CAPRA-S in our cohort were identified as target genes for the EMT transcription
factor ZEB1 [67].

Thus, our initial analyses revealed DEGs associated with immune responses and
progression, some of which are regulated by the EMT driver ZEB1. Additionally, genes
implicated in the remodeling of the TME, including members of the collagen family (COL1A,
COL1A2, COL3A1, COL5A2) [38], fibronectin (FN1) [52], and SFRP4 [47], were identified
as putative markers of PCa progression. These findings, in conjunction with existing
published data (as reviewed in [68]), highlight the potential impact of EMT mechanisms on
modulating the immune TME during the progression of PCa.
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Figure 1. NanoString profile of primary prostate cancer patients. (A–D) Volcano plots of the DEGs
stratified by BCR and CAPRA-S status for both transcriptome panels. (E,F) Venn diagrams represent
the intersection of the DEGs from BCR and CAPRA-S for both transcriptome panels. The list of
39 significantly associated DEGs from both comparisons is displayed on the right side of both panels.
Eleven of these DEGs (COL1A1, WNT2B, BMP8A, NTRK1, JAG1, DNMT1, CD14, GAS1, SIGIRR, IRF5,
and SYK) marked with * were identified as target genes for the EMT transcription factor ZEB1 using
the ENCODE transcription factor dataset that has all 8646 target genes of ZEB1 based on ChIP-seq [67].
Both clinical comparisons used no BCR and low CAPRA-S scores as references from the FMRP cohort.
Adjusted p-value < 0.05 and a log2 fold change > 0.5. Data were plotted using ggplot2 and Venny
(https://bioinfogp.cnb.csic.es/tools/venny/index.htm, accessed on 5 December 2023).

3.2. Downstream Effects of ZEB1 and SNAI1 Expression

The dichotomization of ZEB1 and SNAI1 gene expression levels was based on quartile
(Q) values, with patients classified as “low” defined as below Q3 compared to those
classified as “high” being above Q3. Our objective was to establish a classification system
for the DEG patterns linked to the transcriptional activity of these two EMT drivers and
the potential impact on downstream pathways involved in PCa progression. DEGs derived
from the analysis of both panels classified by ZEB1 and SNAI1 expression levels are shown
in Supplementary Table S3.

Using an unsupervised approach, potential relationships amongst samples based on
ZEB1 expression profiles were performed and summarized in Figure 2A,B (PanCancer)
and Figure 2C,D (Immune Profiling). A distinct cluster of DEGs associated with high ZEB1
expression was revealed in the PanCancer panel (Figure 2A), identified by a significantly
increased expression of LEFTY2, LTBP1, WNT2B, SFRP2, PDGFRB, COL5A1, JAG1, SMO,
HHIP, and LEF1 (Figure 2B), as well as several under-expressed genes, including EFNA2,
NODAL, UTY, IL8, IL13, IL24, and IL11. Across the genes in the Immune Panel (Figure 2C),
a large cluster of DEGs associated with high ZEB1 expression was observed, including an
increased expression of CKCLF, PSEN2, JAK1, PDGFRB, LRP1, CD58, PECAM1, IFITM1,
SPACA3, MEFV, HLA-DPA1, FUT7, LY86, CXCL10, LY96, CD84, HLA-DPB1, and HLA-DRA
(Figure 2D). Similarly, an under-expressed cluster of genes included IL8, TNFSF11, CXCR1,
and IL11 (Figure 2D). Pathway analysis of the up- and downregulated DEGs was performed
using ORA. ZEB1 expression was associated with allograft rejection, inflammatory response,
interferon-alpha and interferon-gamma response, EMT, IL-2/STAT5, IL-6/JAK/STAT3,
WNT/beta-catenin (Supplementary Table S4).

https://bioinfogp.cnb.csic.es/tools/venny/index.htm
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the FMRP cohort (n = 51). Because the display software is limited by the area available for visualizing
the top genes, not all significantly expressed DEGs are depicted in the Volcano plots. (E) The Kaplan–
Meier plot shows that a low level of ZEB1 expression is associated with a reduced recurrence-free
interval (log-rank test, p = 0.04). Adjusted p-value < 0.05 and a log2 fold change > 0.5. Data were
plotted using pheatmap and ggplot2.

The elevated ZEB1 expression demonstrated a statistically significant association with a
reduced risk of BCR for our cohort of intermediate-risk PCa, as determined by Kaplan–Meier
analysis, (log-rank test p = 0.04) (Figure 2E). This observation aligns with previous findings in
which reduced ZEB1 expression was associated with aggressive disease in PCa [69].

Transcriptome analysis based on the dichotomization of SNAI1 uncovered several
DEGs illustrated in Figure 3A,B (PanCancer) and Figure 3C,D (Immune Profiling). Results
from the PanCancer panel demonstrated clustering associated with high SNAI1 expres-
sion, revealing a reduced expression of HOXA11, GRIN1, SOST, CALML5, and NODAL
(Figure 3A,B). Significantly overexpressed genes include RUNX1, ETS2, IL1B, LIF, and IL8.
Similarly, DEGs related to SNAI1 expression from the Immune Profiling Panel included the
overexpression of CD274 (PDL1), IL1B, and TNFRSF9 (Figure 3C,D).

Enrichment analysis of DEGs identified pathways, including TNF-alpha via NF-kB, hypoxia,
p53, and PI3K/AKT/mTOR, in addition to those identified in our analysis linked with ZEB1
expression, including IL-2/STAT5, IL-6/JAK/STAT3, EMT, and interferon-alpha and interferon-
gamma response (Table 3). Kaplan–Meier analysis revealed no significant association between
SNAI1 and BCR-free survival (SNAI1 high vs. low expression, log-rank test, p = 0.85) (Figure 3E).
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Figure 3. Impact of SNAI1 expression on primary prostate cancer patients. (A–D) Unsupervised
heatmaps and Volcano plots showing the top 50 DEGs for patients expressing high levels of SNAI1
in the FMRP cohort (n = 51). (E) The Kaplan–Meier plot shows that the recurrence interval is not
affected by levels of SNAI1 (log-rank test, p = 0.85) in the FMRP cohort. Adjusted p-value < 0.05 and a
log2 fold change > 0.5. Data were plotted using pheatmap.

Table 3. Enrichment analysis from DEGs associated with SNAI1 High expression in the HC-FMRP
cohort. List of ORA enriched pathways using MSigDb Hallmark’s terms for DEGs associated with
high expression of SNAI1. The analysis used patients with low expression of SNAI1 as a reference.

Term Adjusted p-Value Genes

Immune Profiling

TNF-alpha Signaling via NF-kB >0.001

EGR2; CDKN1A; CSF1; CD80; TNFRSF9;
LIF; PLAUR; TNFAIP3; NFKB1; ICAM1;
NFKB2; RELB; NFKBIA; BCL6; PLAU;

IL1B; REL; CCL2; ICOSLG; CD44

Inflammatory Response >0.001

CDKN1A; IL4R; CSF1; TNFRSF9; IL10RA;
LIF; PLAUR; ICAM4; TNFRSF1B; NFKB1;
ICAM1; NFKBIA; MARCO; IRAK2; AXL;

IL1B; IRF7; CCL2; ITGA5; ICOSLG

Allograft Rejection >0.001

CD86; CCR1; IL11; IL4R; CSF1; CD80; LIF;
GZMB; ETS1; ICAM1; NCR1; CD8A; IL1B;

IL9; CD7; IRF7; STAT4; CCL2;
IL12A; ICOSLG

Interferon-Gamma Response >0.001
CD86; CD274; CDKN1A; IL4R; VCAM1;

IL10RA; TNFAIP3; NFKB1; ICAM1;
NFKBIA; IRF7; STAT4; TXNIP; CCL2

IL-2/STAT5 Signaling >0.001
CD86; IL4R; CSF1; TNFRSF9; IL10RA; LIF;

ITGAE; TNFRSF1B; MAPKAPK2;
TNFSF11; CTLA4; ICOS; CD44

IL-6/JAK/STAT3 Signaling >0.001 CCR1; IL4R; CSF1; TNFRSF12A; IL1B;
TNFRSF1B; CD44; TNFRSF1A

KRAS Signaling Up >0.001 PLAU; ITGA2; IL1B; IL10RA; LIF; PLAUR;
TNFAIP3; TNFRSF1B; ETS1



Cancers 2024, 16, 1480 13 of 21

Table 3. Cont.

Term Adjusted p-Value Genes

Coagulation >0.001 THBD; C8G; PLAU; ITGA2; C8A;
THBS1; SH2B2

Epithelial–Mesenchymal Transition >0.001 VCAM1; TNFRSF12A; ITGA2; PLAUR;
TNFAIP3; ITGA5; THBS1; CD44

Apical Junction >0.001 CD86; CD274; VCAM1; ITGA2; ICAM4;
CD34; ICAM1

Apoptosis 0.005 CDKN1A; TNFRSF12A; IL1B;
TXNIP; CD44

Interferon-Alpha Response 0.005 IL4R; CSF1; IRF7; TXNIP

PanCancer

TNF-alpha Signaling via NF-kB >0.001
DUSP5; CDKN1A; GADD45A; LIF;

TNFAIP3; ETS2; FOSL1; NR4A3; PLAU;
CLCF1; ID2; IL1B; MAP3K8

Epithelial–Mesenchymal Transition >0.001 GADD45A; ITGA2; ID2; MMP3; TNFAIP3;
LAMC2; THBS1; DKK1

KRAS Signaling Up >0.001 PLAU; ITGA2; ID2; IL1B; LIF; TNFAIP3;
PLAT; NGF

Coagulation >0.001 PLAU; ITGA2; MMP3; PLAT; THBS1
Apoptosis >0.001 CDKN1A; WEE1; GADD45A; IL1B; PLAT

Complement >0.001 DUSP5; PIM1; TNFAIP3; GZMB; PLAT

p53 Pathway >0.001 CDKN1A; GADD45A; LIF; SFN; EPHA2

IL-6/JAK/STAT3 Signaling 0.002 IL1B; PIM1; MAP3K8

IL-2/STAT5 Signaling 0.002 SPRY4; PIM1; LIF; MAP3K8

Inflammatory Response 0.002 CDKN1A; IL1B; LIF; OSM

Allograft Rejection 0.002 IL11; IL1B; LIF; GZMB

PI3K/AKT/mTOR Signaling 0.003 CDKN1A; SFN; NGF

TGF-beta Signaling 0.01 ID2; THBS1

Hypoxia 0.01 CDKN1A; PIM1; TNFAIP3

Estrogen Response Late 0.01 ID2; LAMC2; SFN

Interferon-Gamma Response 0.01 CDKN1A; PIM1; TNFAIP3

E2F Targets 0.01 CDKN1A; WEE1; HMGA1

Xenobiotic Metabolism 0.01 ID2; ETS2; EPHA2

3.3. Impact of ZEB1 and SNAI1 Expression on the Immune TME

To investigate whether tumors expressing high ZEB1 and SNAI1 levels affect the variation
in immune cell composition in PCa, we investigated the relative abundance of immune cells
using TCGA-PRAD public domain transcriptomic data. CIBERSORTx analysis was used
to determine the impact of “high” vs. “low” expression levels of ZEB1 and SNAI1 on TILs
and the immune content of the TME. Our results showed that ZEB1’s high expression was
associated with an increased abundance of naïve B cells, resting memory CD4+ T cells, and
M2 macrophages, and a decreased abundance of memory B cells, CD8 T cells, follicular T
helper cells, monocytes, and M0 macrophages (Figure 4A), whilst SNAI1’s high expression
showed an increased presence of dendritic and B cells (Figure 4B).
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Figure 4. Effects of a high and low expression of EMT transcription factors on the relative abundance
of immune cells in the TME of the PRAD-TCGA cohort. Deconvolution-based digital cytometry
shows that expression levels of EMT transcription factors influence the relative abundance of immune
cell content in the TME. (A) The high ZEB1 group showed an increased abundance of naïve B cells,
resting memory CD4+ T cells, and M2 macrophages, and a decreased abundance of memory B
cells, CD8 T cells, follicular T helper cells, monocytes, and M0 macrophages. (B) SNAI1 shows
an increased abundance of naïve B cells, resting dendritic cells, and activated mast cells, and a
decreased abundance of resting mast cells. Results derived from public domain data (TCGA-PRAD).
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001 by Mann–Whitney test.

The changes in the immune response in the TME associated with the altered expression
of ZEB1 and SNAI1 suggested that these EMT-related transcription factors may directly or
indirectly alter the expression of immune modulatory molecules. For example, we found
that the expression of the checkpoint gene CD274 (PD-L1) was associated with SNAI1’s high
expression in our retrospective cohort analysis (Figure 3C,D). We, therefore, investigated
whether the expression of ZEB1 and SNAI1 was also associated with changes in the expression
of specific immune checkpoints and immune evasion-related markers in the TCGA-PRAD
cohort. Our analysis showed that a high expression of the EMT transcription factors ZEB1
and SNAI1 is associated with an elevated expression of CTLA-4, PD-L1, HAVCR2 (TIM-3),
DCR3, and IL10, and IL10RA (Supplementary Figures S3 and S4), suggesting a pattern of
the upregulation of immunomodulatory genes resulting in an increase in the composition of
immune cells of the TME. Also, these findings collectively highlight the role of the TME in
shaping the gene expression signature and outcome in PCa.

4. Discussion

An important hallmark of cancer is understanding how tumors manage to evade the
host immune system [70]. This is a crucial adaptive advantage for survival, maintenance,
and the evolution of cancer, especially after the emerging success of different types of
immunotherapies. PCa is a tumor considered immunologically cold, that is, a type of
tumor that is successful in immune evasion and, consequently, does not respond well to
immunotherapy [7,8].

The dynamic and reversible nature of the EMT program impacts not only the tumor
cells but also the surrounding ECM by accumulating immune suppressive cells in the TME
and upregulating immunomodulatory molecules [22]. In PCa, EMT pathways have already
been shown to be strongly related to characteristics of progression and aggressiveness,
such as migration, invasion, and increased metastatic potential [14,18]. There is growing
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evidence suggesting that a partial EMT phenotype, in which cells can simultaneously
maintain both epithelial and mesenchymal characteristics, may lead to more aggressive
disease than a complete EMT [69]. This observation is consistent with our finding that
higher ZEB1 expression was associated with a reduced risk of BCR.

Proteins in the collagen family play critical roles in diverse cellular processes, including
cell adhesion, migration, differentiation, and proliferation. Collagens in the ECM can
engage integrins on tumor cells, impede T cell infiltration, interact with CAFs, and facilitate
invasion and metastasis [71]. Of the thirty-nine DEGs in our cohort significantly associated
with BCR or CAPRA-S, we identified an increased expression of four collagen genes
(COL1A1, COL1A2, COL3A1, and COL5A2). Of these, COL3A1 (collagen type III alpha 1) is
the most common DEG in our series, and it is an established biomarker of poor outcome
in PCa [38,72]. Its expression also appears to promote immune infiltration in a wide
variety of different cancers [73]. COL3A1 interacts with fibronectin (FN1), which was also
found to be significantly overexpressed. A crucial component of the ECM, FN1, is also
intricately associated with collagens and CAFs [52]. Similarly, increased expression of
INHBA (inhibin β A) was also observed from our results and is associated with enhanced
collagen expression, including both COL3A1 and COL5A2 [74]. An increased expression of
COL3A1 in PCa activates other pro-tumorigenic genes and pathways, such as the Wnt/beta-
catenin [38]. COL3A1 expression is associated with higher Gleason scores, higher PSA levels,
and a higher likelihood of lymph node involvement. Additionally, COL5A2 expression
correlated with increased tumor cell invasion and resistance to androgen deprivation
therapy [40]. SFRP2 was identified as a regulator of the TME through its impact on Wnt
signaling and tumor angiogenesis [41,42], while THBS4 influenced cancer stem cell-like
properties in PCa via the PI3K/Akt pathway [43]. Several other DEGs have been previously
associated with higher Gleason scores, including COL1A2 and INHBA (subunit of Activin
A) [44,45]. WNT2B is regulated by long non-coding RNAs (lncRNAs) and has been shown
to play a role in influencing the EMT in PCa [46], while SFRP4 emerged as a predictor of
BCR in PCa, and its expression is also linked to the EMT [47].

Analysis of the immune-related components identified several DEGs that could be
involved in shaping the immune landscape of PCa that were also associated with disease
progression defined by CAPRA-S and BCR status (Table 2). The expression of Interferon
Regulatory Factor 5 (IRF5) was associated with BCR, suggesting that this immune response
modulator may also influence prognosis [58]. Similarly, the observation that THY1 is
overexpressed in PCa-associated fibroblasts may also be involved in antigen presentation
in the stromal components of the TME of PCa [63]. The identification of HLA-DRA in our
analysis offers the possibility that dysregulation may affect antigen presentation within the
TME and influence the immune response [65]. NRP has been reported to be upregulated by
androgen deprivation therapy (ADT) in advanced PCa [66], and its expression is thought
to lead to increased vascularization and facilitate tumor progression. The co-expression of
the immune cytokines CXCL10 with CXCR3 has been previously associated with metastatic
recurrence [60].

It is noteworthy that of our 39 high-risk significantly associated DEGs, ENG, INHBA,
COL1A1, COL3A1, COL5A2, SFRP4, THY1, and CXCL14 were also identified as prognostic
biomarkers in a recently published transcriptional signature predictive of recurrence [75].
COL3A1, FN1, and THBS4 were found to be associated with high infiltration of Tregs in
bone metastatic PCa [72]. Similarly, a recent patent identified COL1A1, FN1, COL3A1,
INHBA, and SFRP4 as stromal response genes that can be used to test for PCa outcome [76].

Eleven of the thirty-nine significant DEGs were identified as ZEB1 target genes using
the Harmonizome database [67]. Nine of the eleven ZEB1 target genes were associated
with high CAPRA-S. The proteins encoded by these 11 DEGs, COL1A1, WNT2B, IRF5,
SYK, BMP8A, NTRK1, JAG1, DNMT1, CD14, GAS1, and SIGIRR, collectively present a set
of functional properties that may be integral in limiting the immune response within the
TME of PCa when an EMT transcriptional program is regulated by ZEB1. For example,
collagen production by COL1A1 may physically impede immune cell infiltration [77], while



Cancers 2024, 16, 1480 16 of 21

WNT2B signaling is associated with immunosuppression [46]. IRF5, involved in immune
regulation, and SYK, have been implicated in immune cell functions [59]. Additionally,
BMP8A, NTRK1, JAG1, and GAS1 each bring unique contributions that can influence the
immunosuppressive characteristics of the TME [49,51,53,54]. Furthermore, DNMT1 and
CD14, through epigenetic regulation and immune cell activation, respectively, contribute
to the overall immune evasion [78]. Lastly, SIGIRR’s role as a negative regulator of Toll-like
receptor signaling suggests its potential involvement in immune suppression [64].

Validation using the PRAD TCGA public cohort showed that both EMT drivers ZEB1
and SNAI1 are associated with the expression of the immunological evasion markers
CTLA-4, PD-L1, TIM3, DCR3, and IL10. The expression of these markers leads not only to
an inactivation of T cells but also to a generalized immune suppression in the TME [79].
Checkpoint proteins like CTLA-4 and PD-L1 inhibit T cell activation by delivering inhibitory
signals to T cells upon engagement with their respective ligands. This inhibition prevents
the full activation of T cells, leading to a state of quiescence where T cells remain inactive
and are unable to mount an effective immune response against tumors [80].

Analysis of the relative abundance of immune cells in the TME of the PRAD TCGA
cohort showed that ZEB1 expression was associated with an increase in M2 polarization
macrophages, which are known to be involved in the suppression of immunological
activity [81]. Decreases in memory B cells, CD8+ T cells, follicular T helper cells, monocytes,
and M0 macrophages further support ZEB1 expression and may influence anti-tumor
immunity in the TME and recruitment of TILs. In contrast, digital cytometric analysis of the
effects of high SNAI1 expression on the TME correlated with increased abundance of naïve
B cells, resting dendritic cells, and activated mast cells, while showing decreased levels
of resting mast cells. Interestingly, mast cell infiltration in PCa has been associated with
chemotherapy resistance through the activation of p38/p53/p21 signaling [82]. Collectively,
these data suggest that downstream changes activated by EMT transcription factors not
only influence the aggressive behavior of tumors but also lead to changes in the immune
activity of the TME.

5. Conclusions

In summary, these data suggest that the differential expression of collagen genes,
such as COL3A1 and various immune response genes observed in our study, are part of
the EMT program, leading to cellular alterations that impact immune cell functions in
the microenvironment of PCa. Collagen-related signals can modulate T cell activation,
proliferation, and cytokine production. Moreover, the density and organization of collagen
fibers could affect the spatial distribution and activation levels of immune cells within the
tumor, influencing their ability to recognize and eliminate cancer cells. Understanding
the interplay between the spatial effects of collagen and immune cells in the TME has
therapeutic implications. This study has some limitations. The CAPRA-S score, which
was used to classify the groups according to tumor progression relies on pathological
factors, like the Gleason score and tumor stage. While these are important, they may
not fully capture the complexity of prostate cancer biology and its interaction with the
host environment. Furthermore, our sample size of 51 cases, while limited, was aimed
at providing pilot data to establish a connection between the EMT and the immune TME
in prostate cancer, thereby providing a basis for future clinical investigations with larger
cohorts. This study suggests that future treatment strategies aimed at modulating the
EMT [14,83] may enhance immune cell infiltration toward an anti-tumorigenic phenotype,
which could be beneficial for countering immunotherapy resistance in a cold tumor, such
as PCa.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers16081480/s1, Table S1: Prostate cancer tissue samples and
validation cohort. BCR, biochemical recurrence; CAPRA-S, Cancer of the Prostate Risk Assessment
Score; pGS, pathologic Gleason score; ISUP, International Society of Urological Pathology Score;
TNM, Classification of Malignant Tumors. * For validation comparisons, we used RNA-seq data from
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the prostate adenocarcinoma cohort from The Cancer Genome Atlas (PRAD-TCGA, n = 420) [36].
Table S2: Enrichment analysis from the DEGs associated with BCR and CAPRA-S in the FMRP
cohort. List of ORA enriched analysis using MSigDb Hallmark’s terms for DEGs associated with
BCR and CAPRA-S using both the Immune Profile and PanCancer panels. Both comparisons used
no BCR and low CAPRA-S scores as references from the FMRP cohort. Table S3: DEGs based on
ZEB1 and SNAI1. List of DEGs from Immune Profiling and PanCaner panels for patients classified
according to ZEB1 and SNAI1 expression. The genes were considered DE when log2 FC > 0.5
and p-adjusted (FDR) < 0.05. Table S4: Enrichment analysis from DEGs associated with a high
ZEB1 expression in the FMRP cohort. List of ORA-enriched pathways using MSigDb Hallmark’s
terms for DEGs associated with a high expression of ZEB1. The analysis used patients with a low
expression of ZEB1 as a reference. Figure S1: Correlation plots of common genes between Immune
Profiling and PanCancer panels. Pearson correlation was used in normalized expression levels of each
gene. The heatmap shows the Pearson correlation coefficient. Non-significant results are displayed
in white and significant correlations are colored (p < 0.01). Figure S2: Summary workflow. We
conducted NanoString panel profiling using RNA extracted from formalin-fixed paraffin-embedded
(FFPE) tissues from the Faculty of Medicine of Ribeirao Preto (FMRP) cohort (n = 51). DEGs and
pathway and downstream analyses of ZEB1 and SNAI1 were performed using our in-house pipeline
(see methods). Figure S3: Effects of a high and low ZEB1 expression on the relative expression
of checkpoint genes. Analysis of the expression of known immunomodulatory markers shows an
increased relative expression of CTLA-4, PD-L1, HAVCR2 (TIM-3), IDO1, DCR3, IL10, and IL10RA in
the high ZEB1 group (n = 366) compared to the low group (n = 122) in the TCGA cohort. * p < 0.05,
Mann–Whitney test. Figure S4: Effects of a high and low SNAI1 expression on the relative expression
of checkpoint genes. Analysis of the expression of known immunomodulatory markers shows an
increased relative expression of CTLA-4, PD-L1, HAVCR2 (TIM-3), IDO1, DCR3, IL10, and IL10RA in
the high SNAI1 group (n = 366) compared to the low group (n = 122) in the TCGA cohort. * p < 0.05,
Mann–Whitney test.
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