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Simple Summary: Breast cancer is the most common cancer in women and has been associated
with genetic and environmental factors. New developments have led to the creation of genetic risk
scores which seek to better approximate an individual’s risk of developing cancer and to be used
clinically to improve cancer screening. Previous studies have shown that these risk scores can be
used to determine an individual’s cancer risk, but replication in independent groups is limited. In
addition, certain genotyping methods utilize a process called imputation, which has the potential to
make polygenic risk scores less accurate. This work aims to validate two breast cancer polygenic risk
scores and to interrogate the impact imputation has on their values to improve their clinical utility.

Abstract: Breast cancer (BC) is a complex disease affecting one in eight women in the USA. Advances
in population genomics have led to the development of polygenic risk scores (PRSs) with the potential
to augment current risk models, but replication is often limited. We evaluated 2 robust PRSs with 313
and 3820 SNPs and the effects of multiple genotype imputation replications in BC cases and control
populations. Biological samples from BC cases and cancer-free controls were drawn from three
European ancestry cohorts. Genotyping on the Illumina Global Screening Array was followed by
stringent quality control measures and 20 genotype imputation replications. A total of 468 unrelated
cases and 4337 controls were scored, revealing significant differences in mean PRS percentiles between
cases and controls (p < 0.001) for both SNP sets (313-SNP PRS: 52.81 and 48.07; 3820-SNP PRS: 55.45
and 49.81), with receiver operating characteristic curve analysis showing area under the curve values
of 0.596 and 0.603 for the 313-SNP and 3820-SNP PRS, respectively. PRS fluctuations (from ~2–3% up
to 9%) emerged across imputation iterations. Our study robustly reaffirms the predictive capacity of
PRSs for BC by replicating their performance in an independent BC population and showcases the
need to average imputed scores for reliable outcomes.

Keywords: breast cancer; polygenic risk score; validation; genetic risk; GWAS; genotype imputation

1. Introduction

Breast cancer (BC) is one of the most common cancers in the world, with 2.26 million
new cases, and killing over 684,000 women in 2020 [1]. The disease has seen great reductions
in recent decades [2] due to the increasing number of medical therapies, use of screening
methods, and emphasis on preventative efforts [3,4]. Already, in both the United States and
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the Netherlands, BC screening begins at age 50 for average risk women, which has led to
important decreases in BC-related mortality in both countries [3,5]. However, reductions in
cancer incidence have slowed in multiple domains, especially those which have improved
outcomes from early detection, such as BC [6]. Increasing preventative efforts has effectively
decreased both the morbidity and mortality of cancers; however, addressing the underlying
risk factors which lead to BC is still needed [7].

Enhancing the methods of BC prevention would play a significant role in reducing
the number of women who will develop cancer in their lifetimes. One of the major risk
factors in the development of BC is an individual’s genetic code. Many advances have
been made to characterize the genetic underpinnings of BC [8], most notably the discovery
of BRCA1 [9], CHEK2 [10], and ATM mutations [11]. While the identification of these
genes has played a major role in understanding those at very high risk of familial BC, most
women who develop BC do not possess these mutations [8]. In fact, approximately 0.12%
of Caucasian women actually carry susceptible variants in BRCA1, accounting for only
1.7% of BC cases diagnosed before age 70 [9]. Heritability estimates of BC are between 15%
and 31% [12–14], leaving considerable potential for other genetic variants to contribute to
overall genetic risk for BC.

Polygenic risk scores (PRSs) have become an increasingly popular modality for the
use of genetics in medicine, particularly for the early detection of individuals with high
genetic risk for a given disease [15]. With the steady expansion of genome-wide association
studies (GWASs), genetic data on multiple diseases are now readily available for PRS
production. PRSs are developed through the use of GWAS data to determine the single
nucleotide polymorphisms (SNPs) associated with the development of a given disease or
the phenotype of interest. Specifically, the number of risk alleles at each locus is determined
(either 0, 1, or 2) and then weighted by the associated β-value (a measure of relative risk
of the effect allele vs. the reference allele) from the discovery GWAS. While the effect of
one SNP is generally quite small, by using an additive model and summing the effects of
all contributing SNPs in the DNA of an individual, a composite score can be produced
and then compared to a reference population for relative genetic risk determination. This
method has the potential to scale far more broadly across a population because it does
not rely on single-gene testing and can be applied, at a relatively low cost, as a screening
and disease prevention tool. Others have demonstrated a significant improvement to the
development of PRS algorithms and the potential benefits of their use for categorizing
individuals into specific risk categories [16]. By doing so, patients would be given more
personalized advice on lifestyle choices, screening methods, and treatment options to
prevent or manage a disease [16].

In a previously published study by Mavaddat et al. in 2019, the authors developed
BC PRSs optimized for the prediction of estrogen receptor-specific BC, utilizing a large
collaborative effort involving 94,075 BC positive cases and 75,017 BC negative controls
of European ancestry genotyped on the iCOGS and OncoArray following 1000 genomes
imputation [17]. The PRSs were independently and prospectively validated in a test dataset
comprising 11,428 breast cancer-affected cases and 18,323 controls. The two best PRSs,
313-SNP and 3820-SNP PRSs, were developed using hard-thresholding, least absolute
shrinkage, and selection operator (LASSO) methods, respectively. Validation testing re-
vealed area under the receiver operating characteristic curve (AUROC) values of
0.639 and 0.646 for overall BC for the 313-SNP and 3820-SNP PRSs, respectively. When
tested prospectively, the AUROC values decreased slightly to 0.630 and 0.636 for overall BC,
respectively, for the 313-SNP and 3820-SNP PRSs. Though the AUROC values were modest,
the differences in the tails of the distribution of predicted risk were large, as demonstrated
by women in the top 1% of the distribution having a predicted risk approximately four-fold
larger than the risk of those in the middle quintile. Furthermore, the association between
PRS and disease risk was observed for women with and without a family history of disease.

The clinical potential of PRSs faces a significant hurdle related to the diverse genotyp-
ing methods used to procure the necessary genetic data. When essential variants crucial for
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PRS calculations are not directly identified by genotyping platforms, genotype imputation
becomes essential. This process leverages high linkage disequilibrium (LD) genetic variants
to infer untagged SNPs, reducing costs compared to whole-genome sequencing. While
imputation has been successful, it becomes less precise with rare alleles, potentially yielding
slightly different genotypes. These variations, especially at critical loci, may alter an individ-
ual’s overall genetic risk, impacting the resulting PRS and overall risk categorization [18].
Such variability raises concerns regarding proper risk stratification and subsequent clinical
care. Here, we assess the variability in BC PRS due to the imputation process.

This study aims to replicate and assess the efficacy of two previously established
PRSs within a cohort of BC cases and cancer-negative controls. Additionally, we aimed to
assess the impact of genotype imputation on BC PRSs. We anticipate that these PRSs will
effectively gauge BC risk among our study subjects, showing comparative performance
to prior findings. Additionally, we expect slight variations in BC PRSs due to imputation
disparities and the inherent probabilistic nature of genotype inference from reference
populations. Through validation across two independent European ancestry populations,
this research aims to bolster the evidence supporting PRSs’ utility in differentiating high-
and low-risk individuals, facilitating improved stratification for screening and preventative
therapies while optimizing risk–benefit ratios. Furthermore, our findings offer insights
into the influence of genotype imputation on PRSs, presenting potential strategies for
addressing associated concerns.

2. Materials and Methods
2.1. Study Subjects

We curated two European ancestry cohorts of breast cancer (BC) cases and controls
originating from the United States (US) and the Netherlands (NL), as shown in Figure 1. The
US-based BC-positive cases (n = 321) were sourced from the integrated Cancer Repository
for Cancer Research (iCaRe2) and the Breast Cancer Collaborative Registry (BCCR), situated
in the Midwestern United States [19]. Concurrently, the US BC-negative controls (n = 129)
were drawn from the Avera Twin Register [20]. The NL cohort comprising 147 BC cases
and 4208 controls, was obtained from the Netherlands Twin Register, part of the Vrije
Universiteit in Amsterdam [21]. Previous quantitative analyses have confirmed the genetic
similarity between these populations [22]. Participant inclusion criteria encompassed
genetically confirmed female sex, European ancestry, and genetic non-relatedness.
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Figure 1. Diagram of the general study design. Ultimately, 468 cases and 4337 controls from
the US and NL were selected after quality control. Genotyping was performed for all subjects,
undergoing quality control steps, and 20 rounds of imputation. Data were then analyzed us-
ing principal component analysis, polygenic scoring, and various statistical tests to produce the
study results.
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2.2. Phenotypes

Phenotypic data for the US case subjects were gathered via IRB-approved patient
questionnaire and electronic medical records using the iCare system. For the NL cases,
phenotype information was obtained from longitudinal questionnaire data based on female
self-reporting of breast cancer and the question, “Did you ever have cancer?” and the
follow-up question “What type of cancer?”. The consistency between the questionnaire
data and the Netherlands Cancer Institute medical record information (Netherlands Cancer
Registration application K09.56) was checked in 2010, and at the time showed full concor-
dance. Phenotype data for control subjects were collected via longitudinal questionnaires
sent to the participants. Priority was given to the most recent available data for control
ages and all records were searched to confirm cancer-negative status. All case and control
subjects consented to the collection of biological specimens and phenotypic data accord-
ing to Avera Internal Review Board approval or Central Ethics Committee on Research
Involving Human Subjects of the Vrije University Medical Centre.

2.3. Genotyping and Imputation

A total of 20,723 subjects were genotyped on the Illumina Global Screening Array
(GSA) according to the manufacturer’s protocol. Subjects had DNA extracted from blood or
buccal samples. Blood samples were collected via a phlebotomist within the Avera hospital
system in an 8 mL PAXgene DNA tube. Samples were then stored at −20 ◦C for long-term
storage. DNA extraction for case and control subjects was either performed manually
via the PAXgene DNA extraction kit or was performed using the Qiagen QiaSymphony
platform and stored at −20 ◦C. Subjects were genotyped on the Illumina Global Screening
Array (GSA) according to the manufacturer’s protocol. Genotype calling and quality
control were conducted initially via GenomeStudio2.0 software. PLINKv1.9 [23] was used
for additional quality control to confirm female biological sex of the DNA samples. For
the NTR, the identity-by-descent status was compared to the expected relational status.
Samples with a PLINK heterozygosity F-value less than −0.10 or greater than 0.10 were
removed. Samples were retained if the call rate was above 90%, as well as above 80% per
chromosome. All samples failing these criteria were excluded. Then only female samples
with European ancestry and BRC phenotypes available were selected. KINGv2.2.5 [24] was
used to estimate genetic relatedness. Up to 3rd degree relatives were finally excluded from
subsequent analyses to avoid PRS value distribution differences due to different measures
of relatedness in cases and controls. The total sample size after all exclusions was 4805, but
only 12 cases were dropped. The number of samples removed in each step as well as the
number of single nucleotide polymorphisms (SNPs) removed from the data are reported in
Appendix A Tables A1 and A2, respectively.

SNPs (n = 669,317) were checked and excluded based on the following criteria: du-
plicate SNPs and non-relevant mitochondrial and chromosome Y SNPs, >5% Mendelian
inheritance problems in NTR families, genotyping error rate—defined by >5% genotype
mismatches in 370—2 times genotyped—samples, call rate < 95%, Minor Allele Frequency
(MAF) < 0.005, and Hardy–Weinberg Equilibrium (HWE) p-value < 0.0001. SNPs were
also excluded if they were absent from the 1000 Genomes [25] V3 Phase 5 reference panel
(1000 G), and if the allele frequency of the SNPs exceeded a 0.10 difference with the Eu-
ropean reference subset in the 1000 G panel. Palindromic SNPs with allele frequencies
between 0.40 and 0.60 were excluded and SNPs were removed if the alleles did not match
after strand alignment, which happens if there are more than 2 SNP alleles. Genotype
imputation to the 1000 G reference panel was performed using BEAGLE 5.4 (22jul22.46e)
software [26] on the 518,924 SNPs that remained following quality control. The imputation
process was repeated 20 times with different random seeds to obtain stochastic variability
of inferred genotypes. The imputed genotype probabilities of each set were converted to
best-guess genotypes with PLINK for roughly 31.6 million genetic variants.
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2.4. Statistical Analyses
2.4.1. Genetic Principal Component Analysis

Principal component analysis (PCA) was performed with PLINK using the 1000 G
reference data for the African, East Asian, and European superpopulations combined with
study population data. SNPs that passed SNP quality control in the study sample and
that were also in the HapMap3 and the 1000 Genomes reference sets, with MAF > 0.01
and call rate > 98% were used for PCA. These SNPs were pruned for LD with a pairwise
independence window of 1 MB and a maximum LD-R2 of 0.20. Long-range linkage dis-
equilibrium regions were excluded [27] leaving a total of 69,717 SNPs. Only individuals
with European ancestry were selected which were identified by having PCs within the
maximum and minimum values of the first 10 PCs of the 1000 G European superpopu-
lation. To avoid residual population stratification, PCs were also used as covariates in
downstream analyses.

2.4.2. Polygenic Risk Scoring

Summary statistics for both the 313-SNP and 3820-SNP sets, containing the effect
estimates, SNP names, and risk alleles needed for polygenic scoring, were downloaded
from the supplementary materials published as part of the Mavaddat et al. study [17].
These were matched with the imputed study genetic data to make sure that the names, and
risk and alternate alleles of each SNP were equal to our study data. This led to a minor
reduction in the number of SNPs due to there being more than two mismatching alleles
present in a SNP and unresolvable strand designation (for A/T and C/G SNPs) between the
Mavaddat sets and our study data. When possible, bi-allelic alternative tagging SNPs were
used to replace these alleles. This was achieved by uploading a list of the affected SNPs to
the Ensembl database (build 37) and then using a combination of two measurements of
linkage disequilibrium between SNPs, namely a maximal D’ and LD-R2, a minimal allele
frequency difference for alleles, and a minimal distance to the original SNP, as subsequent
selection criteria for determining the best alternative SNP present in our data. This resulted
in retaining 307 out of the 313 (98.1%) and 3712 out of the 3820 (97.2%) SNPs. Polygenic
scores were then calculated for all individuals in our study using the PLINK v1.90 software
for all 20 best-guess imputation replicates.

For generating the percentile scores, the minimum and maximum polygenic scores
were taken from each replicate run. Subsequently, for each individual a percentile score was
calculated by taking the maximum minus the minimum individual score, divided by the
range (maximum–minimum) and multiplying by 100%. Over the 20 replicate imputations,
the average percentile score was then calculated, as well as the minimum and the maximum
percentile score for each subject.

2.4.3. Statistical Testing

Statistical testing was performed in either SPSSv28 or Python v3.12. For assessing
mean differences between cases and controls, the 20-run average percentile polygenic
score was used in a one-way ANCOVA. Age and was used as a covariate for all means
testing. A two-stepwise logistic regression was used to determine the explained variance
by the Nagelkerke R2, a measure of goodness-of-fit, for the PRS. In the first step, case
control status was predicted by the 10 PCs plus age. In the second step, either the 313 PRS
or the 3820 PRS or both were added to the model to determine the improvement in the
Nagelkerke R2 to test how well each PRS predicted and which PRS set predicted the best.
PRS prediction was also determined with AUROC calculations based on the 20-run average
PRS percentile for cases and controls from all 20 imputation runs. A Pearson correlation
was employed between the average 313 and 3820 PRSs in the whole study sample to
examine the equality of the two scores. Absolute risk measures were calculated with the
GenoPred (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html) interactive webtool
provided by Pain et al. [28] by inputting population standardized PRS, population-specific
AUC, and a population-specific BC disease prevalence estimate. Figures and tables were

https://opain.github.io/GenoPred/PRS_to_Abs_tool.html
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generated using a combination of Microsoft Excel v2401, SPSS v28, and Python v3.12. Since
a significant difference between the polygenic scores was found between the NL and US
cases, we performed an χ2—association test comparing the allele frequencies of the 307 and
3712 SNPs between both cases as well as controls, to confirm absence of an allele difference
here. The α-level of these tests that we considered significant was p < 0.001.

3. Results
3.1. Population Characteristics

Table 1 contains the population characteristics and the average percentile score over
the 20 imputation replications, separately for the American (USA) and Dutch populations
(NL). Note that not all 313 and 3820 SNPs could be utilized, resulting in the retention of
307 and 3712 SNPs, respectively. The PRS distributions for cases and controls separated by
country are shown in Figure 2. For both the 313-SNP and 3820-SNP PRS models within
each country, there was a significant difference between cases and controls (p < 0.01 for all
comparisons). The overlap between the cases and controls can be seen in the scores and
is common in PRS studies given the probabilistic nature of genetic risk. There was also a
significant difference between American and Dutch cases for both PRS models.

Table 1. Average age and PRS of study population.

USA Netherlands Total (USA and
Netherlands)

Controls Cases Controls Cases Controls Cases

Sample Size 129 321 4208 147 4337 468

Average Age 42.60
(15.21)

57.19
(12.14)

45.34
(16.84)

56.86
(9.76)

45.25
(16.80)

57.08
(11.43)

313-SNP PRS Avg. % 48.51
(12.00)

53.66
(13.56)

48.06
(12.63)

50.95
(12.11)

48.07
(12.61)

52.81
(13.17)

3820-SNP PRS Avg. % 49.64
(12.94)

56.61
(14.46)

49.81
(14.16)

52.94
(13.47)

49.81
(14.32)

55.45
(14.32)

All subjects were genetically confirmed to be female, of European ancestry, and unrelated. Standard deviation
values listed in parentheses where appropriate.
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3.2. Comparison of PRS Prediction Performance in BC Cases and Controls

Using a stepwise logistic regression with 10 PCs to account for residual population
stratification, age of onset for cases, and age of last report of not having been affected by
BC for controls as covariates, we examined the effect of the average 313-SNP and 3820-SNP
PRSs in predicting BC disease status in the total study population. The results of the
modeling showed a significant effect of prediction of the 313-SNP PRS indicated by the
significant regression coefficients (beta = 0.030, SE = 0.004, p-value = 1.9448 × 10−13) and of
the 3820-SNP PRS (beta = 0.029, SE = 0.004, p-value = 3.402 × 10−15). The addition of the
313-SNP PRS to the model increased the Nagelkerke R2 from 0.127 to 0.15. The addition of
the 3820-SNP PRS to the model increased the Nagelkerke R2 from 0.127 to 0.153.

We also assessed the same models in each country separately (Figure A1). In the NL
population, using the 313-SNP PRS, the logistic model showed an effect on the prediction
of BC (beta = 0.021, SE = 0.007, p-value = 0.002) with an Nagelkerke R2 increase from 0.069
to 0.077. For the 3820-SNP PRS, the values (beta = 0.018, SE = 0.006, p-value = 0.0026) for
R2 also increased from 0.069 to 0.077. In the American samples, the logistic regression
model using the 313-SNP PRS showed a slightly larger predictive value (beta = 0.024,
SE = 0.009, p-value = 0.011). There was an even more predictive value for the 3820-SNP PRS
(beta = 0.029, SE = 0.009, p-value = 0.0015). For both the 313-SNP and 3820-SNP PRS, the
Nagelkerke R2 of the model increased from 0.293 to 0.311 and 0.320, respectively. A logistic
forward conditional stepwise model corrected for country showed that the 3820-SNP PRS
predicts better than the 313 PRS.

To best compare the 313-SNP and 3820-SNP PRSs to each other, as well as the paper
by Mavaddat et al. [17], we utilized the area under the curve (AUC) receiver operator
characteristic (ROC) to compare the general performance of the PRSs across all possible
thresholds. Here, the PRSs were used as a predictor for disease state. For the US data,
the AUC values were 0.614 (95% CI 0.558–0.669) and 0.633 (95% CI 0.578–0.688), for the
313-SNP and 3820-SNP PRSs, respectively. While for the NL data, the AUC values were
0.565 (95% CI 0.517–0.612) and 0.560 (95% CI 0.514–0.607) (see Figure A1). As shown
in Figure 3, the combined data had AUC values of 0.596 (95% CI 0.569–0.624) and 0.603
(95% CI 0.576–0.630), respectively. These results indicate a moderate increase in predictive
performance for the 3820-SNP PRS in each population and for both PRSs in the US data
compared to the NL data.
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3.3. Assessment of Imputation Replication on PRS Variability

In this study, we used 20 imputation replications to get an average PRS score for each
person. Here we examine the variability of the percentile PRSs within each individual. We
calculated the minimum and maximum PRS percentile of each person and then subtracted
the two to get a range of score variability. The range of PRS variability was then averaged
over all persons. The average percentile PRS score variability over all individuals (n = 4805)
is 2.22% (SD 0.90) for the 313-SNP PRS and 3.03% (SD 0.84) for the 3820-SNP PRS. In the
various subgroups analyzed, the variability is as follows for the 313-SNP PRS: US cases
2.52% (SD 1.04), US controls 2.64% (SD 0.94), NL cases 2.23% (SD 0.99) and NL controls
2.18% (SD 0.88). Likewise for the 3820-SNP PRS: US cases 3.42% (SD 1.03), US controls
3.36% (SD 0.80), NL cases 2.97% (SD 0.87) and NL controls 2.98% (SD 0.81). Both PRSs show
a slightly larger variation in the American scores compared to the Dutch (p < 0.004), in
both cases and controls. There were no significant differences in score variability between
cases and controls within each country (p > 0.252). The largest difference between the
minimum and maximum imputed scores for any individual in the study population for the
313-SNP PRS is 8.56%, and 9.15% for the 3820-SNP PRS. The Pearson correlation between
the 313-SNP and 3820-SNP PRSs is strong at 0.825, but not perfect unity.

Given the increased predictive power and the overall higher scores in the US samples,
we also examined the SNP markers resulting in this variation. Following imputation there
were seven variants which show a substantial allele frequency difference (defined by an
association p-value within cases p < 0.001) between the American and Dutch cases. The
resulting markers and their allele frequencies are shown in Table 2 as well as the expected
effects based on the 3820-SNP PRS summary statistics.

Table 2. SNPs exhibiting allele frequency differences between US and NL cases and controls.

US Allele
Frequency

NL Allele
Frequency Summary Statistics

rsID Chr BP A1 A2 Cases Controls Cases Controls R2 * Effect Allele Effect Size

rs13291323 9 6185360 C T 0.032 0.058 0.087 0.061 0.920 C 0.0046

rs7113140 11 123053078 T C 0.488 0.434 0.371 0.428 1.000 T 0.0019

rs12296461 12 116347863 A G 0.542 0.552 0.655 0.553 0.970 A 0.0048

rs12907670 15 63742901 G A 0.832 0.857 0.913 0.869 0.980 G 0.0102

rs4984247 15 63758647 C T 0.850 0.892 0.926 0.884 0.970 C 0.0044

rs34853502 16 53865368 A AG 0.319 0.279 0.216 0.258 0.990 A 0.0145

rs13049602 21 33501003 C T 0.826 0.810 0.731 0.780 0.961 C 0.0082

* Average Beagle imputation quality R2 (0–1) over 20 genotype imputation runs.

3.4. Relative and Absolute Risk Estimation

To aid in the interpretation of BC risk, we used the GenoPred interactive webtool
provided by Pain et al. [28] to convert the American and Dutch case and control group PRSs
to the absolute scale for each PRS model. To calculate absolute risk, we first standardized
the PRS within each country subpopulation. Utilizing mean case and control PRS Z-
scores for each population, the corresponding population-specific AUC of each PRS, and
a BC prevalence estimate of 2.8% for non-Hispanic females in the United States [29], we
calculated relative and absolute risk for the 313-SNP and 3820-SNP PRSs. The results of
are shown in Table 3. For example, assuming a population BC prevalence of 2.8% and a
polygenic AUC of 0.614 for the 313-SNP PRS for American cases, the average American
case has a polygenic Z-score of 0.11, they are in the 54.5th percentile of BC PRS. Converting
to the absolute scale reveals that 2.60% of individuals with that PRS will develop BC, based
on the PRS Z-score and corresponding AUC of the subpopulation PRS. Comparatively, the
average American control had a polygenic Z-score of −0.276. Using the same polygenic
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AUC of 0.614 for American samples, they would be in the 39.4th percentile of BC PRS.
Conversion to the absolute scale again suggests that 2.20% of individuals with that PRS
will develop BC, indicating a lower overall absolute risk than the American cases for the
313-SNP PRS.

Table 3. Relative and absolute risk calculations at observed mean PRS Z-scores.

US NL

SNP Panel Cases Controls Cases Controls

313-SNP PRS Relative Risk distribution of PRS 54.40% 39.40% 59.10% 49.60%

Absolute Risk distribution of PRS 2.60% 2.20% 2.80% 2.60%

3820-SNP
PRS Relative Risk distribution of PRS 55.20% 36.70% 58.30% 49.60%

Absolute Risk distribution of PRS 2.60% 2.10% 2.80% 2.60%

We also conducted a thorough evaluation of both relative and absolute risk estimation
stratified by PRS percentile bins (0–25%, 25–50%, 50–75%, and >75%), aiming to provide a
nuanced understanding of risk estimates grounded in calculated genetic predisposition in
both the US and NL cohorts (Table A3). Our analysis reveals a consistent trend wherein
relative and absolute risk estimates rise with PRS percentile, with case risks generally
exceeding those of controls across both populations. Nevertheless, certain deviations from
this pattern exist, primarily attributable to constrained and unequal sample sizes, as well
as the influence of disease prevalence and AUC values on estimates. It is essential to
acknowledge that controls were defined based on their current state, which may evolve to
include individuals who develop the disease over time.

4. Discussion

Significant progress in genotyping technology has allowed for the accrual of large
amounts of genetic data around the world. Over the last decade, researchers have devel-
oped methods for making PRSs for various diseases which have the potential to accurately
determine the genetic risk of an individual for a given disease and to help improve dis-
ease prevention efforts. In this study, our goal was to validate the use of two PRSs for
BC in representative case and control populations and to examine the effect of genotype
imputation on PRS. Overall, our investigation into PRS models for BC prediction revealed
intriguing insights, shedding light on the nuanced interplay between genetic predisposi-
tion, population characteristics, and predictive accuracy across different cohorts of similar
genetic ancestry.

Based on our analyses, we can confirm that both the 313-SNP and 3820-SNP PRSs
perform moderately well in distinguishing individuals with and without BC. We used
PCA to generate standardized residual scores for reliable comparisons and used age as
a covariate to ensure that the limited allele frequency differences in the case and control
cohorts were corrected for and to account for potential confounding. Our data showed
a significant difference between the case and control groups for both the 313-SNP and
3820-SNP PRS models (p < 0.01), with the case mean PRSs being significantly greater than
the mean PRSs of the respective control groups, confirming the capacity for the 313-SNP
and 3820-SNP PRS models to distinguish BC cases from controls.

Our analysis of the 313-SNP and 3820-SNP PRS models further delineated their per-
formance across populations. Notably, both PRS models exhibited significant predictive
power for BC, with the 3820-SNP PRS demonstrating superior performance in both study
cohorts. This observation was consistent across the overall study population and within
individual countries.

The logistic regression models emphasized the substantial enhancement in Nagelkerke
R2 values upon inclusion of both PRS models, underlining their utility in BC prediction.
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Additionally, the area under the curve (AUC) values derived from receiver operator char-
acteristic (ROC) analysis showcased moderate but consistent improvements in predictive
performance for the 3820-SNP PRS compared to the 313-SNP PRS, across both American
and Dutch populations.

A noteworthy finding was the disparity in prediction accuracy between the American
and Dutch cohorts. Our study indicated a higher predictive value of PRS for BC in the
American samples compared to those obtained from the Netherlands. We highlight poten-
tial factors that may explain this discrepancy. Firstly, the genetic proximity of the American
samples to the original GWAS population and study by Mavaddat et al. [17] potentially
conferred a higher predictive accuracy. Secondly, we identified seven variants exhibiting
significant allele frequency differences between the Dutch and American samples, which
unveiled a plausible reason for the divergent predictive abilities in the two populations.
These variants possessed the largest allele frequency differences between cases from the
two populations and potentially underpin the enhanced predictive value observed in the
American population. The identified variants warrant further investigation to elucidate
their functional relevance in breast cancer susceptibility, potentially enriching the predictive
power of future PRS models for specific populations. Finally, the distinct nature of case
identification—diagnosed breast cancer cases in the USA based on medical records versus
population-based surveys in the Netherlands—might contribute to the varying severity
levels captured within the cohorts, potentially impacting the overall predictive accuracy of
the PRS models.

Moreover, our investigation into the impact of genotype imputation on BC PRSs re-
vealed noteworthy findings. Through 20 imputation replications, we observed a 2–3%
variation in resultant BC PRS, aligning with previous findings [18]. The study demonstrated
that utilizing different pre-phasing and imputation tools resulted in minimal percentile
changes (<5%) across 14 PRSs, encompassing different disease architectures and PRS cal-
culation approaches. However, in our study, there were also people with substantially
larger differences, even reaching up to 9%. This highlights the challenges in individual-
level genetic analysis where rare variability events can be obscured by high overall score
reproducibility at the population level. To address potential fluctuations in the PRS results
of some individuals, our suggestion echoes that of Chen et al. [18], in that our recommen-
dation would be to employ the average of multiple imputation iterations when calculating
PRSs for clinical use and or personal predictions, when using imputed genotype data. This
will mitigate the stochastic nature of inferring alleles, ensuring more robust and consistent
PRS outcomes.

Understanding how PRS assesses risk and how this may impact clinical decision
making, it is important to differentiate between relative and absolute risk. To do so, we
utilized the GenoPred web tool [29] to convert PRS to relative risk and absolute risk for
each of our case and control populations. The relative risk differences were approximately
10–15% between cases and controls for the 313-SNP PRS in both the US and NL cohorts.
This relative risk difference expanded in the US cohort to nearly 20% and shrank to about
8% in the NL cohort for the 3820-SNP PRS. The absolute risk for the US cohort was 0.40%
greater for the average US case (2.60%) vs. the average US control (2.20%) based on the
313-SNP PRS. Compared to the absolute risk reduction (ARR) of 20 years of screening
mammograms (0.49%) [30], the ARR for the 313-SNP PRS of 0.40% is smaller, but not
without impact, especially given that the test would only need to be performed once and
at an earlier age than mammography. PRS testing may, in fact, be able to improve patient
selection for increased mammography frequency or use at an earlier age, as some studies
suggest [31].

This ARR is increased as the PRS increases, as exemplified by a US BC case in our
study with a Z-score of 1, the absolute risk is 3.7% (based on 313-SNP PRS AUC), leading
to an absolute risk reduction of 1.5% compared to the average US control. As the PRS
further increases to a Z-score of 2, the absolute risk becomes 5.50% with a resulting absolute
risk reduction of 3.30% compared to the average US control. These calculations suggest
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that PRS functions to distinguish individuals at the higher end of genetic risk better than
individuals closer to the mean. However, these comparisons are difficult to truly assess
because PRS functions as a spectrum, rather than a yes–no screening test, leading to
lost context.

The results of the percentile bin RR and AR calculations show much smaller dif-
ferences when comparing similar quartiles between cases and controls, especially for
the NL population, where the ARR is often 0.1%. In addition, the combination of our
smaller sample size, relatively low disease prevalence, and low AUC likely contributes to
these results. Larger prospective studies will likely improve the field’s ability to address
these questions.

While our study yields valuable insights into BC PRS modeling, acknowledging
limitations is crucial. It is imperative to note that our PRS analyses were conducted
after excluding certain SNPs from the 313-SNP and 3820-SNP PRSs. Whenever feasible,
direct bi-allelic tagging SNPs were used as replacements, but nevertheless resulted in PRS
calculations based on 307 out of the 313 (98.1%) and 3712 out of the 3820 (97.2%) SNPs
initially considered. Additionally, the use of population-based surveys for cases in the
Netherlands and the potential influences of unaccounted genetic or environmental factors
may have contributed to the diminished predictive performance compared to the clinically
diagnosed BC cases from the US. The data collected in this study did not contain sufficient
information on all cases regarding cancer stage or histochemical subtype, limiting our ability
to investigate these characteristics in our study population. This discrepancy highlights the
need for ongoing research to refine and enhance the accuracy of PRS models tailored to
specific subtypes of disease and diverse populations more generally. Additionally, it is vital
to recognize that PRSs are not entirely specific to predicting only the intended trait. They
may also forecast other pertinent disease comorbidities or genetically correlated traits. For
instance, a documented positive genetic correlation exists between BC and schizophrenia
(rg = 0.14, se = 0.03) [32]. Therefore, variations in PRS predictive performance could stem
from prevalence differences of genetically correlated traits among populations.

5. Conclusions

In conclusion, our study underscores the promising potential of PRS in BC risk as-
sessment, emphasizing the importance of refining models to suit diverse populations and
addressing variations observed across cohorts for more accurate predictive outcomes.
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and 3820-SNP PRS, respectively.

Table A1. Samples removed per study quality control procedures.

Sample QC Samples (n)

All subjects with genotyped on GSA (US + NL) 20,723

Callrate < 90% −224

Multiple DNA measurements same person −384

Heterozygosity −208

Sex problems −310

IBD problems −172

https://ntr-data-request.psy.vu.nl/
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Table A1. Cont.

Sample QC Samples (n)

19,425

Sample filters

Select only female members 11,580

Remove Non-European samples defined by
1000 Genomes PC projection. 11,225

Select women with a valid case control status 6997

20 × 1000 genomes imputation for 6997 individuals with random seed 1 to 20

Selected sample for analysis (unrelated people
only, keeping one of multiple related) 4805 *

* Subpopulation breakdown in Figure 1.

Table A2. SNPs removed per study quality control procedures.

Genotyping QC Steps SNPs (n)

Illumina GSA SNPs 669,317

Poor quality X Chr clustering −271

Parametric Y Chr −6

Duplicate markers −1246

Absent allele markers (A/C/T/G) −3503

Total 664,291

SNP QC

Call rate < 95% −5531

HWE < 0.001 −6688

MAF < 0.005 −130,095

Mendel errors ≥ 5% −82

370 duplicate samples more than 5% genotype
difference in SNP −152

Palindromic, >2 alleles, allele frequency
difference over 0.10, and removal of MIT +
chrY

−2819

Total (pre-imputation and aligned) 518,924
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Table A3. Relative and Absolute Risk Calculations on PRS percentile bins by country.

US Cases Bin Subjects (n) AVG
Z-Score RR (%) AR (%) US Controls Bin Subjects (n) AVG

Z-Score RR (%) AR (%)

313-PRS ≤25% 2 −1.91 2.8 1.2 313-PRS ≤25% 1 −2.56 0.5 0.9

25–50% 131 −0.57 28.4 2.1 25–50% 72 −0.61 27.1 2.0

50–75% 165 0.90 81.6 3.7 50–75% 54 0.74 77 3.5

>75% 23 2.58 99.5 7.2 >75% 2 3.18 99.9 8.3

US Cases Bin Subjects (n) AVG Z-score RR (%) AR (%) US Controls Bin Subjects (n) AVG Z-score RR (%) AR (%)

3820-PRS ≤25% 2 −2.27 1.2 0.9 3820-PRS ≤25% 6 −1.92 2.7 1.0

25–50% 106 −0.60 27.4 1.9 25–50% 60 −0.64 26.1 1.9

50–75% 173 0.70 75.5 3.5 50–75% 60 0.60 72.6 3.3

>75% 40 2.22 98.6 7.0 >75% 3 2.34 99 7.4

NL Cases Bin Subjects (n) AVG Z-score RR (%) AR (%) NL Controls Bin Subjects (n) AVG Z-score RR (%) AR (%)

313-PRS ≤25% 3 −2.03 2.1 1.7 313-PRS ≤25% 142 −2.28 2.51 1.6

25–50% 68 −0.52 30.2 2.4 25–50% 2220 −0.61 27.1 2.4

50–75% 73 0.93 82.4 3.4 50–75% 1776 0.82 79.4 3.3

>75% 3 2.25 98.8 4.5 >75% 70 2.51 99.4 4.8

NL Cases Bin Subjects (n) AVG Z-score RR (%) AR (%) NL Controls Bin Subjects (n) AVG Z-score RR (%) AR (%)

3820-PRS ≤25% 2 −1.82 3.4 1.9 3820-PRS ≤25% 169 −2.19 1.4 1.7

25–50% 56 −0.69 24.5 2.4 25–50% 1939 −0.68 24.8 2.4

50–75% 80 0.67 74.9 3.2 50–75% 1961 0.69 75.5 3.2

>75% 9 2.17 98.5 4.3 >75% 139 2.24 98.7 4.4
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