Late Changes in Renal Volume and Function after Proton Beam Therapy in Pediatric and Adult Patients: Children Show Significant Renal Atrophy but Deterioration of Renal Function Is Minimal in the Long-Term in Both Groups
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Proton Beam Therapy
2.3. Analysis of Renal Volume and DVH
2.4. Kidney Function
2.5. Statistical Analysis
3. Results
3.1. Treatment Characteristics and Renal Volume Changes
3.2. DVH Analysis
3.3. Renal Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saggini, R.; Calvani, M.; Saggini, R.; Calvani, M. The Treatment of Cancer: A Comprehensive Therapeutic Model Entailing a Complex of Interaction Modalities. In Cancer Treatment—Conventional and Innovative Approaches; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Majeed, H.; Gupta, V. Adverse Effects of Radiation Therapy; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rocha, P.H.P.; Reali, R.M.; Decnop, M.; Souza, S.A.; Teixeira, L.A.B.; Lucas Júnior, A.; Sarpi, M.O.; Cintra, M.B.; Pinho, M.C.; Garcia, M.R.T. Adverse Radiation Therapy Effects in the Treatment of Head and Neck Tumors. Radiographics 2022, 42, 806–821. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Jiang, L.; Cui, X.; Zhang, J.; Yu, J. Proton Beam Therapy for Cancer in the Era of Precision Medicine. J. Hematol. Oncol. 2018, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Vaios, E.J.; Wo, J.Y. Proton Beam Radiotherapy for Anal and Rectal Cancers. J. Gastrointest. Oncol. 2020, 11, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Macomber, M.W.; Spraker, M.B.; Bowen, S.R.; Hippe, D.; Fung, A.; Russell, K.J.; Laramore, G.E.; Rengan, R.; Liao, J.; et al. Analysis of Gastrointestinal Toxicity in Patients Receiving Proton Beam Therapy for Prostate Cancer: A Single-Institution Experience. Adv. Radiat. Oncol. 2018, 4, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jabbour, S.K.; Zhang, A.; Liu, B.; Yue, N.J.; Biswal, N.C. Proton Beam Therapy Can Achieve Lower Vertebral Bone Marrow Dose than Photon Beam Therapy during Chemoradiation Therapy of Esophageal Cancer. Med. Dosim. 2021, 46, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Timmermann, B. Paediatric Proton Therapy. Br. J. Radiol. 2020, 93, 20190601. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, M.; Fuji, H.; Miyachi, M.; Soejima, T.; Yamamoto, T.; Aibe, N.; Demizu, Y.; Iwata, H.; Hashimoto, T.; Motegi, A.; et al. Proton Beam Therapy for Children and Adolescents and Young Adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat. Rev. 2021, 98, 102209. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Mizumoto, M.; Oshiro, Y.; Shimizu, S.; Nakamura, M.; Hiroshima, Y.; Iizumi, T.; Saito, T.; Numajiri, H.; Nakai, K.; et al. An Analysis of Vertebral Body Growth after Proton Beam Therapy for Pediatric Cancer. Cancers 2021, 13, 349. [Google Scholar] [CrossRef] [PubMed]
- Nitta, H.; Mizumoto, M.; Li, Y.; Oshiro, Y.; Fukushima, H.; Suzuki, R.; Hosaka, S.; Saito, T.; Numajiri, H.; Kawano, C.; et al. An Analysis of Muscle Growth after Proton Beam Therapy for Pediatric Cancer. J. Radiat. Res. 2024, 65, 251–255. [Google Scholar] [CrossRef]
- Köst, S.; Dörr, W.; Keinert, K.; Glaser, F.H.; Endert, G.; Herrmann, T. Effect of Dose and Dose-Distribution in Damage to the Kidney Following Abdominal Radiotherapy. Int. J. Radiat. Biol. 2002, 78, 695–702. [Google Scholar] [CrossRef]
- Yeh, H.; Chiang, C.C.; Yen, T.H. Hepatocellular Carcinoma in Patients with Renal Dysfunction: Pathophysiology, Prognosis, and Treatment Challenges. World J. Gastroenterol. 2021, 27, 4104–4142. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, T.; Matsuura, K.; Kashiwado, K. Analysis of Chronic Kidney Disease After Radiation Therapy for Gastric/Duodenal Mucosa-Associated Lymphoid Tissue Lymphoma. Adv. Radiat. Oncol. 2021, 6, 100788. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.K.; Maturen, K.E.; Feng, M.U.; Wizauer, E.J.; Watcharotone, K.; Parker, R.A.; Ellis, J.H. Renal Remodeling after Abdominal Radiation Therapy: Parenchymal and Functional Changes. Am. J. Roentgenol. 2014, 203, W192. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.P.; Fish, B.L.; Moulder, J.E. Late-Onset Effects of Radiation and Chronic Kidney Disease. Lancet 2015, 386, 1737–1738. [Google Scholar] [CrossRef]
- Jones, D.P.; Spunt, S.L.; Green, D.; Springate, J.E. Renal Late Effects in Patients Treated for Cancer in Childhood: A Report from the Children’s Oncology Group. Pediatr. Blood Cancer 2008, 51, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, K.; Murakami, M.; Hishikawa, Y.; Abe, M.; Akagi, T.; Yanou, T.; Kagiya, G.; Furusawa, Y.; Ando, K.; Nojima, K.; et al. Preclinical Biological Assessment of Proton and Carbon Ion Beams at Hyogo Ion Beam Medical Center. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Uemura, O.; Nagai, T.; Ishikura, K.; Ito, S.; Hataya, H.; Gotoh, Y.; Fujita, N.; Akioka, Y.; Kaneko, T.; Honda, M. Creatinine-Based Equation to Estimate the Glomerular Filtration Rate in Japanese Children and Adolescents with Chronic Kidney Disease. Clin. Exp. Nephrol. 2014, 18, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Burnet, N.G.; Thomas, S.J.; Burton, K.E.; Jefferies, S.J. Defining the Tumour and Target Volumes for Radiotherapy. Cancer Imaging 2004, 4, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Dracham, C.B.; Shankar, A.; Madan, R. Radiation Induced Secondary Malignancies: A Review Article. Radiat. Oncol. J. 2018, 36, 85–94. [Google Scholar] [CrossRef]
- Brook, I. Late Side Effects of Radiation Treatment for Head and Neck Cancer. Radiat. Oncol. J. 2020, 38, 84–92. [Google Scholar] [CrossRef]
- Mizumoto, M.; Oshiro, Y.; Pan, H.; Wang, F.; Kaste, S.C.; Gajjar, A.; Chemaitilly, W.; Merchant, T.E. Height after Photon Craniospinal Irradiation in Pediatric Patients Treated for Central Nervous System Embryonal Tumors. Pediatr. Blood Cancer 2020, 67, e28617. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, Y.; Mizumoto, M.; Pan, H.; Kaste, S.C.; Gajjar, A.; Merchant, T.E. Spinal Changes after Craniospinal Irradiation in Pediatric Patients. Pediatr. Blood Cancer 2020, 67, e28728. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Mizumoto, M.; Saito, T.; Shimizu, S.; Li, Y.; Oshiro, Y.; Inaba, M.; Hosaka, S.; Fukushima, H.; Suzuki, R.; et al. A Systematic Review and Meta-Analysis of Radiotherapy and Particle Beam Therapy for Skull Base Chondrosarcoma: TRP-Chondrosarcoma 2024. Front. Oncol. 2024, 14, 1380716. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; Kavanagh, B.D.; Paulino, A.C.; Das, S.K.; Miften, M.; Li, X.A.; Pan, C.; Ten Haken, R.K.; Schultheiss, T.E. Radiation-Associated Kidney Injury. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S108–S115. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; May, K.S.; Iyer, R.V.; Chandrasekhar, R.; Wilding, G.E.; McCloskey, S.A.; Khushalani, N.I.; Yendamuri, S.S.; Gibbs, J.F.; Fakih, M.; et al. Renal Atrophy Secondary to Chemoradiotherapy of Abdominal Malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Klaus, R.; Niyazi, M.; Lange-Sperandio, B. Radiation-Induced Kidney Toxicity: Molecular and Cellular Pathogenesis. Radiat. Oncol. 2021, 16, 43. [Google Scholar] [CrossRef]
- Parihar, A.S.; Chopra, S.; Prasad, V. Nephrotoxicity after Radionuclide Therapies. Transl. Oncol. 2022, 15, 101295. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Kleta, R.; Ehrich, J.H.H. Renal Involvement in Children with Malignancies. Pediatr. Nephrol. 1999, 13, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Bhirud, A.R.; Lin, C. Dosimetric Analysis of Kidney Toxicity After Stereotactic Body Radiation Therapy for Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, S313. [Google Scholar] [CrossRef]
- Bölling, T.; Ernst, I.; Pape, H.; Martini, C.; Rübe, C.; Timmermann, B.; Fischedick, K.; Kortmann, R.D.; Willich, N. Dose–Volume Analysis of Radiation Nephropathy in Children: Preliminary Report of the Risk Consortium. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 840–844. [Google Scholar] [CrossRef]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Patterson, B.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.J.; Ebb, D.; MacDonald, S.M.; et al. Endocrine Outcomes with Proton and Photon Radiotherapy for Standard Risk Medulloblastoma. Neuro-Oncology 2016, 18, 881–887. [Google Scholar] [CrossRef]
- Gross, J.P.; Kim, S.Y.; Gondi, V.; Pankuch, M.; Wagner, S.; Grover, A.; Luan, Y.; Woodruff, T.K. Proton Radiotherapy to Preserve Fertility and Endocrine Function: A Translational Investigation. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Ishikawa, H.; Okumura, T. Proton Beam Therapy in Japan: Current and Future Status. Jpn. J. Clin. Oncol. 2016, 46, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mizumoto, M.; Oshiro, Y.; Nitta, H.; Saito, T.; Iizumi, T.; Kawano, C.; Yamaki, Y.; Fukushima, H.; Hosaka, S.; et al. A Retrospective Study of Renal Growth Changes after Proton Beam Therapy for Pediatric Malignant Tumor. Curr. Oncol. 2023, 30, 1560–1570. [Google Scholar] [CrossRef]
- Kutanzi, K.R.; Lumen, A.; Koturbash, I.; Miousse, I.R. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. Int. J. Environ. Res. Public Health 2016, 13, 1057. [Google Scholar] [CrossRef]
- Khong, P.L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R. ICRP Publication 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology. Ann. ICRP 2013, 42, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Kleinerman, R.A. Cancer Risks Following Diagnostic and Therapeutic Radiation Exposure in Children. Pediatr. Radiol. 2006, 36, 121–125. [Google Scholar] [CrossRef]
- Bajoghli, M.; Bajoghli, F.; Tayari, N.; Rouzbahani, R. Children, CT Scan and Radiation. Int. J. Prev. Med. 2010, 1, 220–222. [Google Scholar] [PubMed]
- Maeshima, A.; Nakasatomi, M.; Nojima, Y. Regenerative Medicine for the Kidney: Renotropic Factors, Renal Stem/Progenitor Cells, and Stem Cell Therapy. Biomed. Res. Int. 2014, 2014, 595493. [Google Scholar] [CrossRef] [PubMed]
- Maeshima, A.; Takahashi, S.; Nakasatomi, M.; Nojima, Y. Diverse Cell Populations Involved in Regeneration of Renal Tubular Epithelium Following Acute Kidney Injury. Stem Cells Int. 2015, 2015, 964849. [Google Scholar] [CrossRef]
- Tong, J.; Hei, T.K. Aging and Age-Related Health Effects of Ionizing Radiation. Radiat. Med. Prot. 2020, 1, 15–23. [Google Scholar] [CrossRef]
- Dybiec, J.; Szlagor, M.; Młynarska, E.; Rysz, J.; Franczyk, B. Structural and Functional Changes in Aging Kidneys. Int. J. Mol. Sci. 2022, 23, 15435. [Google Scholar] [CrossRef] [PubMed]
- Ray, N.; Reddy, P.H. Structural and Physiological Changes of the Kidney with Age and Its Impact on Chronic Conditions and COVID-19. Ageing Res. Rev. 2023, 88, 101932. [Google Scholar] [CrossRef] [PubMed]
- Biegon, A.; Cohen, S.; Franceschi, D. Modulation of Secondary Cancer Risks from Radiation Exposure by Sex, Age and Gonadal Hormone Status: Progress, Opportunities and Challenges. J. Pers. Med. 2022, 12, 725. [Google Scholar] [CrossRef] [PubMed]
- Mbah, N.E.; Myers, A.L.; Chung, C.; Thompson, J.K.; Hong, H.S.; Sajjakulnukit, P.; Nwosu, Z.C.; Shan, M.; Sweha, S.R.; Maydan, D.D.; et al. Therapeutic Targeting of Differentiation State-Dependent Metabolic Vulnerabilities in DIPG. bioRxiv 2022. [Google Scholar] [CrossRef]
- Rymer, C.; Paredes, J.; Halt, K.; Schaefer, C.; Wiersch, J.; Zhang, G.; Potoka, D.; Vainio, S.; Gittes, G.K.; Bates, C.M.; et al. Renal Blood Flow and Oxygenation Drive Nephron Progenitor Differentiation. Am. J. Physiol. Renal. Physiol. 2014, 307, F337–F345. [Google Scholar] [CrossRef]
- Sear, J.W. Kidney Dysfunction in the Postoperative Period. Br. J. Anaesth. 2005, 95, 20–32. [Google Scholar] [CrossRef]
- Carrie, C.; Thomas, P. The Pediatric Radiation Oncology Society (PROS): Why? Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 666. [Google Scholar] [CrossRef]
- Chiruvella, V.; Annamaraju, P.; Guddati, A.K. Management of Nephrotoxicity of Chemotherapy and Targeted Agents: 2020. Am. J. Cancer Res. 2020, 10, 4151–4164. [Google Scholar]
- Kiaunytė, S.; Maškė, R.; Kiudelienė, R.; Rutkauskienė, G. Chemotherapy Induced Kidney and Urinary Tract Related Complications: A Study in the Department of Pediatric Oncology and Hematology. Biomed. Pharmacother. 2022, 153, 113316. [Google Scholar] [CrossRef]
- Righetto, M.; Mancini, M.; Modonutti, D.; Calpista, A.; Beltrami, P.; Dal Moro, F. Patients with Renal Transplant and Moderate-to-Severe LUTS Benefit from Urodynamic Evaluation and Early Transurethral Resection of the Prostate. World J. Urol. 2021, 39, 4397–4404. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Children (n = 12) | Adult (n = 12) |
---|---|---|
Age (years) Median Range | 3.5 1–14 | 66 51–80 |
Sex Male Female | 6 (50%) 6 (50%) | 6 (50%) 6 (50%) |
Primary disease HCC Neuroblastoma Osteosarcoma Ewing sarcoma Pancreatic cancer Rhabdomyosarcoma Metastatic liver cancer | - 8 (66.7%) 1 (8.3%) 1 (8.3%) - 2 (16.7%) - | 6 (50%) - - - 2 (16.7%) - 4 (33.3%) |
Surgery Gross total resection Subtotal resection Biopsy None | 9 (75%) 1 (8.3%) 2 (16.7%) - | - 1 (8.3%) - 11 (91.7%) |
Chemotherapy Pre-radiation Chemoradiation None | 7 (58.3%) 5 (41.7%) 0 (0%) | 1 (8.3%) 5 (41.7%) 6 (50%) |
PBT Dose (range) (Gy (RBE)) Fractions (range) | 30.6 (19.8–70.4) 17 (11–32) | 72.6 (66–74) 22 (10–50) |
Follow-up (months) Median Range | 32.1 23.5–56.5 | 70.8 62.7–136.5 |
Case | Primary Disease | Age (y) | Total Dose (Gy (RBE)) | Fractions | V10 a (%) | V20 a (%) | V30 a (%) | Follow-Up (Months) | Volume Change of Irradiated Kidney (mL) b | Volume Change of Control Kidney (mL) b | Relative Volume Change of Irradiated Kidney (mL) b,c |
---|---|---|---|---|---|---|---|---|---|---|---|
#1 | Neuroblastoma | 10 | 30.6 | 17 | 53.04 | 28.26 | 0.06 | 23.5 | +3.52 | +7.39 | −3.87 |
#2 | Neuroblastoma | 4 | 30.6 | 17 | 74.83 | 53.32 | 0 | 26.1 | +3.27 | +31.81 | −28.54 |
#3 | Neuroblastoma | 2 | 30.6 | 17 | 78.4 | 52.74 | 15.3 | 56.5 | −5.92 | +22.29 | −28.21 |
#4 | Osteosarcoma | 7 | 70.4 | 32 | 32.3 | 25.12 | 15.33 | 27.8 | −31.08 | +5.6 | −36.68 |
#5 | Rhabdomyosarcoma | 1 | 50.4 | 28 | 29.55 | 25.07 | 21.53 | 32.0 | +0.67 | +5.96 | −5.29 |
#6 | Neuroblastoma | 3 | 30.6 | 17 | 74.28 | 58.3 | 22.94 | 50.7 | +4.13 | +53.89 | −49.76 |
#7 | Neuroblastoma | 3 | 19.8 | 11 | 60.14 | 0.66 | 0 | 40.6 | −5.24 | +15.44 | −20.68 |
#8 | Ewing sarcoma | 14 | 55.8 | 31 | 83.06 | 76.58 | 68.74 | 47.9 | −94.95 | +24.5 | −119.45 |
#9 | Neuroblastoma | 4 | 19.8 | 11 | 74.31 | 21.37 | 0 | 36.4 | −47.29 | +31.26 | −78.55 |
#10 | Neuroblastoma | 3 | 19.8 | 11 | 53.45 | 1.85 | 0 | 27.0 | +4.79 | +14.4 | −9.61 |
#11 | Rhabdomyosarcoma | 6 | 41.4 | 23 | 42.4 | 28.66 | 13.66 | 24.1 | −18.74 | −4.03 | −14.71 |
#12 | Neuroblastoma | 3 | 30.6 | 17 | 33.31 | 0 | 0 | 32.2 | −49.51 | −19.45 | −30.06 |
Case | Primary Disease | Age (y) | Total Dose (Gy (RBE)) | Fractions | V10 a (%) | V20 a (%) | V30 a (%) | Follow-Up (Months) | Volume Change of Irradiated Kidney (ml) b | Volume Change of Control Kidney (ml) b | Relative Volume Change of Irradiated Kidney (mL) b,c |
---|---|---|---|---|---|---|---|---|---|---|---|
#1 | HCC | 59 | 72.6 | 22 | 15.17 | 11.94 | 9.79 | 136.5 | −16.74 | −21.61 | +4.87 |
#2 | Metastatic liver cancer | 80 | 72.6 | 22 | 3.01 | 2.68 | 2.49 | 111.7 | −24.36 | −7.92 | −16.44 |
#3 | Metastatic liver cancer | 69 | 72.6 | 22 | 3.42 | 1.39 | 0.6 | 62.7 | −7.97 | −6.87 | −1.10 |
#4 | Metastatic liver cancer | 51 | 72.6 | 22 | 5.11 | 3.38 | 3.07 | 112.7 | −68.7 | −57.26 | −11.44 |
#5 | HCC | 78 | 72.6 | 22 | 18.1 | 14.1 | 11.36 | 66.6 | −12.02 | −0.16 | −11.86 |
#6 | Metastatic liver cancer | 58 | 72.6 | 22 | 6.5 | 3.86 | 2.19 | 65.0 | −8.23 | −39.15 | +30.92 |
#7 | HCC | 64 | 72.6 | 22 | 32.08 | 24.75 | 19.67 | 96.3 | −49.91 | −35.86 | −14.05 |
#8 | HCC | 78 | 74 | 37 | 18.57 | 12.94 | 6.37 | 70.9 | −28.93 | −31.47 | +2.54 |
#9 | Pancreatic cancer | 52 | 67.5 | 50 | 46.69 | 16.04 | 1.6 | 83.3 | −40.58 | −11.73 | −28.85 |
#10 | Pancreatic cancer | 61 | 67.5 | 50 | 17.55 | 12.45 | 4.83 | 63.1 | −37.6 | −56.18 | +18.58 |
#11 | HCC | 79 | 72.6 | 22 | 37.84 | 30.4 | 23.32 | 70.7 | −3.48 | −21.51 | +18.03 |
#12 | HCC | 68 | 72.6 | 22 | 39.06 | 30.29 | 23.74 | 63.6 | −20.49 | −9.93 | −10.56 |
Items | Relative Volume Change/Year (mL) | |
---|---|---|
r Value | p Value | |
V10 | −0.701 | <0.001 |
V20 | −0.559 | 0.005 |
Adults (n = 12) | Children (n = 12) | |||||
---|---|---|---|---|---|---|
CKD Stage | Before PBT | During PBT | After PBT | Before PBT | During PBT | After PBT |
1 | 5 | 3 | 2 | 11 | 10 | 10 |
2 | 6 | 8 | 8 | 1 | 2 | 2 |
3 | 1 | 1 | 2 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mizumoto, M.; Nitta, H.; Fukushima, H.; Suzuki, R.; Hosaka, S.; Yamaki, Y.; Murakami, M.; Baba, K.; Nakamura, M.; et al. Late Changes in Renal Volume and Function after Proton Beam Therapy in Pediatric and Adult Patients: Children Show Significant Renal Atrophy but Deterioration of Renal Function Is Minimal in the Long-Term in Both Groups. Cancers 2024, 16, 1634. https://doi.org/10.3390/cancers16091634
Li Y, Mizumoto M, Nitta H, Fukushima H, Suzuki R, Hosaka S, Yamaki Y, Murakami M, Baba K, Nakamura M, et al. Late Changes in Renal Volume and Function after Proton Beam Therapy in Pediatric and Adult Patients: Children Show Significant Renal Atrophy but Deterioration of Renal Function Is Minimal in the Long-Term in Both Groups. Cancers. 2024; 16(9):1634. https://doi.org/10.3390/cancers16091634
Chicago/Turabian StyleLi, Yinuo, Masashi Mizumoto, Hazuki Nitta, Hiroko Fukushima, Ryoko Suzuki, Sho Hosaka, Yuni Yamaki, Motohiro Murakami, Keiichiro Baba, Masatoshi Nakamura, and et al. 2024. "Late Changes in Renal Volume and Function after Proton Beam Therapy in Pediatric and Adult Patients: Children Show Significant Renal Atrophy but Deterioration of Renal Function Is Minimal in the Long-Term in Both Groups" Cancers 16, no. 9: 1634. https://doi.org/10.3390/cancers16091634
APA StyleLi, Y., Mizumoto, M., Nitta, H., Fukushima, H., Suzuki, R., Hosaka, S., Yamaki, Y., Murakami, M., Baba, K., Nakamura, M., Ishida, T., Makishima, H., Iizumi, T., Saito, T., Numajiri, H., Nakai, K., Kamizawa, S., Kawano, C., Oshiro, Y., & Sakurai, H. (2024). Late Changes in Renal Volume and Function after Proton Beam Therapy in Pediatric and Adult Patients: Children Show Significant Renal Atrophy but Deterioration of Renal Function Is Minimal in the Long-Term in Both Groups. Cancers, 16(9), 1634. https://doi.org/10.3390/cancers16091634