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Abstract: Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. 

The objective of this study is to gain insight into the molecular mechanisms underlying 

angiogenesis, and to elucidate the role of osteopontin in this process. We report here that 

osteopontin/αvβ3 signaling pathway which involves ERK1/2 phosphorylation regulates the 

expression of VEGF. An inhibitor to MEK or curcumin significantly suppressed the 

phosphorylation of ERK1/2 and expression of VEGF. MMP9 knockdown reduces the 

secretion but not the expression of VEGF. Moreover, MMP9 knockdown increases the 

release of angiostatin, a key protein that suppresses angiogenesis. Conditioned media from 

PC3 cells treated with curcumin or MEK inhibitor inhibited tube formation in vitro in 

human microvascular endothelial cells. Similar inhibitory effect on tube formation was 

found with conditioned media collected from PC3 cells expressing mutant-osteopontin at 

integrin-binding site and knockdown of osteopontin or MMP9. We conclude that MMP9 

activation is associated with angiogenesis via regulation of secretion of VEGF and 

angiostatin in PC3 cells. Curcumin is thus a potential drug for cancer treatment because it 

demonstrated anti-angiogenic and anti-invasive properties.  
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Abbreviations: OPN, Osteopontin; VEGF, vascular endothelial growth factor; MAPK,  

mitogen-activated protein kinase; ERK1/2, extracellular signal-regulated
 
kinases 1 and 2; MEK1 

inhibitor, MAP/ERK kinase 1 inhibitor; MMPs, matrix metalloproteinases; MMP9, matrix 

metalloproteinase 9; integrin αvβ3, vitronectin receptor; RGD, amino acid sequences such as, 

Arginine(R), Glycine (G) and Aspartic acid (D). It is also known as integrin binding motif; RGA, 

amino acid sequences such as Arginine (R), Glycine (G) and Alanine (A); PC3/OPN, PC3 cells over 

expressing OPN; PC3/OPN (RGA), PC3 cells over-expressing mutated OPN in integrin binding motif 

(RGDRGA); PC3/OPN (KD), PC3 cells knockdown of osteopontin; PI3-K, phosphatidylinositol  

3-kinases; HMEC-1 cells, human microvascular endothelial cells-1. 

1. Introduction 

Prostate cancer is the second leading cancer that causes death in men and it is the most commonly 

diagnosed cancer in the U.S. It is a disease of extensive metastasis, with secondary lesions in the 

lymph node, brain, bones, and sometimes in visceral organs such as liver and lungs. Metastasis of 

malignant tumor cells is dependent on the formation of new blood vessels from existing ones, a 

process which is known as angiogenesis [1]. It is one of the fundamental processes required for solid 

tumor growth, survival and metastasis. A number of autocrine and paracrine factors facilitate 

angiogenesis. Vascular endothelial growth factor (VEGF) is known to be one of the most potent 

angiogenic factor due to its specificity to endothelial cells [2]. VEGF, a 34–42 kDa glycoprotein 

recognizes two major tyrosine kinase receptors (VEGF-R1 and -R2).  

VEGF expression has been found in prostate cells of normal, benign, and malignant types [3,4].  

It plays a role in the microvascular remodeling in prostate cancer induced osteolysis and bone loss [5]. 

Of the four VEGF isoforms (VEGF-121, -165, -189, and -206) identified [6,7], VEGF-165 is 

predominantly implicated in physiological and pathological angiogenesis [8]. VEGF-165 henceforth 

denoted as VEGF. Overexpression of VEGF-165b by tumor cells inhibits the growth of prostate 

carcinoma. VEGF-165b is implicated as anti-angiogenic factor [9]. 

Osteopontin (OPN) produced by tumor cells has the potential to enhance the metastatic ability 

through regulation of VEGF secretion and angiogenesis [10,11]. Cooperative mechanisms involving 

osteopontin and αvβ3 are implicated in VEGF-mediated endothelial cell migration and angiogenesis. A 

monoclonal antibody (LM609) to αvβ3 suppressed angiogenesis [12,13]. These observations suggest 

OPN and VEGF as important regulators of angiogenesis through integrin αvβ3 signaling pathway. 

Curcumin modulates multiple pathways and several of its molecular targets relevant to prostate cancer 

have been identified [14]. In addition to their effects on proliferation, curcumin and inhibitors to 

MMPs and MEK were shown to abrogate pathological angiogenesis [15]. 

Studies on the function of active MMP9 reported that it triggers the angiogenic switch during 

carcinogenesis [15,16]. Upregulation of secreted MMP9 correlated with an increase in tumor growth 

and angiogenesis compared to cells expressing low MMP9 levels [17]. We have shown previously that 

OPN and αvβ3 signaling regulates the activity of MMP9 in prostate cancer PC3 cells. PC3 cells 

expressing mutated OPN at integrin-binding site [PC3/OPN (RGA)] and knockdown of OPN 

[PC3/OPN (KD)] displayed a significant decrease in MMP9 activity [18]. Our aim in this study is to 

identify the specific roles of OPN and MMP9 in VEGF-mediated angiogenesis using respective PC3 
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knockdown cells. In the present study we have shown that osteopontin/αvβ3 signaling which involves 

ERK1/2 phosphorylation regulates VEGF expression in PC3 cells. MMP9 activation is associated with 

angiogenesis via regulation of secretion of VEGF and inhibition of secretion of angiostatin by PC3 cells.  

2. Experimental Section 

2.1. Materials 

Antibodies to VEGF, GAPDH, and β-Actin as well as HRP-conjugated secondary antibodies 

(rabbit, goat and mice) were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). 

An inhibitor to MEK1/2 inhibitor (U0126) and antibodies to phospho-ERK and ERK were purchased 

from Cell Signaling Technology, Inc. (Danvers, MA, USA). Polyvinyldifluoride (PVDF) membrane 

for immunoblotting analysis and Amicon centrifugal concentrator devices for concentrating the protein 

in the conditioned media were obtained from Millipore Corp. (Bedford, MA, USA). Human prostate 

tumor and normal tissue lysates (total tissue, membrane and nuclear lysates) were purchased from 

Abcam (Cambridge, MA, USA). Matrigel was purchased from BD Biosciences (Bedford, MA, USA). 

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] was purchased from 

Sigma Chemical Co. (St. Louis, MO, USA). 

2.2. Cell Lines and Culture Conditions 

Cell lines. Prostate cancer epithelial cell lines that stably express high levels of osteopontin (OPN; 

full length and mutant-RGDΔRGA) and knockdown of OPN (PC3/OPN (KD) or MMP9 (PC3/MMP9 

(Si) were generated as described previously [18,19]. These clones were designated as PC3/OPN, PC3/OPN 

(RGA), PC3/OPN (KD) and PC3/MMP9 (Si). Normal prostatic epithelial cells (HPR-1) were used as 

controls [20]. These cell lines were cultured as described previously [18,19]. Human microvascular 

endothelial cells (HMEC-1) were used for angiogenesis assay in vitro. HMEC-1were cultured in 

MCDB-131 medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum 

(FBS), 10 mM L-glutamine (invitrogen 25030), 1 µg/mL hydrocortisone (Sigma), 10 ng/mL epidermal 

growth factor (BD) and 1% (v/v) penicillin-streptomycin at 37 °C, in a 5% CO2 humidified atmosphere. 

2.3. Treatment of PC3 Cells with MEK Inhibitor and Curcumin 

PC3 cells cultured in RPMI-1640 media containing 10% FBS at 37 °C were treated with the 

following at the indicated time and concentration: 10 μM MEK inhibitor (U0126) for 48 h; curcumin 

40 μM for 24 h. Following various treatments, lysates were made with cold RIPA lysis buffer as 

described previously [21].  

2.4. Quantification of VEGF in the Conditioned Medium 

Cells were grown to 80–90% confluence in RPMI-1640 medium containing 5% FBS. They were 

washed thrice with pre-warmed serum-free medium and incubated with the same for 72 h at 37 °C. 

Conditioned media were collected and concentrated approximately 10-fold with a Centricon 

concentrator (Amicon, Beverly, MA, USA) [18]. Quantification of the secreted VEGF in the conditioned 
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media of PC3 cell lines was done by comparative analysis with different concentrations of either BSA 

or purified recombinant VEGF using 12% SDS-PAGE. Coomassie blue staining was done in gels 

loaded with BSA. Immunoblotting analysis was done with an antibody to VEGF in gels loaded with 

different concentrations of recombinant VEGF (R&D systems; Minneapolis, MN, USA).  

2.5. Tube Formation: An in Vitro Matrigel Angiogenesis Assay 

Capillary tube formation assays were performed using HMEC-1 essentially as described [22]. 

Briefly, 200 μL thawed matrigel on ice was pipetted into pre-chilled 24-well plates and allowed to 

polymerize for 1 h at 37 °C. To investigate the response of HMEC-1 to different conditioned media of 

PC3 cells on in vitro angiogenesis, HMEC-1 were seeded (~1 × 10
5
 cells/mL) on the matrigel and 

cultured in MCDB-131 medium with equal amount of conditioned media protein from indicated PC3 

cell lines in the results section. The plates were then incubated at 37 °C in a humidified atmosphere of 

95% air and 5% CO2. Capillary tube formations on matrigel were visualized after 24 h under an 

inverted phase-contrast microscope.  

2.6. Immunoblotting and Gelatin Zymography Analyses 

Equal amount of protein lysates were used for immunoblotting analyses as described previously [21]. 

Conditioned media protein was diluted and used for gelatin zymography analysis as described 

previously [18]. 

2.7. Immunohistochemistry 

Prostatic adenocarcinoma tissue microarray (TMA) sections containing six cases of prostate 

adenocarcinoma with six adjacent normal prostate tissues in duplicate cores per case were purchased 

from the US Biomax, Inc. (Rockville, MD, USA). TMA sections were processed, stained with VEGF 

antibody, and analyzed essentially as described previously [23].  

2.8. Statistical Analysis 

All values are presented as mean ± SEM. A value of p < 0.05 was considered significant. Statistical 

significance was determined by analysis of variance (ANOVA) with the Bonferonni corrections (Instat 

for IBM; GraphPad software; San Diego, CA, USA). Statistically significant difference in VEGF 

distribution was determined between prostatic adenocarcinoma and normal prostatic epithelial cells as 

specified in Figure 7.  

3. Results  

Vascular endothelial growth factor (VEGF) was shown to have an effect on the proliferation of 

prostate cancer cells found in the bone microenvironment [24]. Therefore, we have primarily used PC3 

cells derived from bone metastasis. A positive correlation between OPN and VEGF concentrations was 

found in synovial fluid in synovial tissue [24]. To determine the contribution of OPN/αvβ3 signaling in 

the expression of VEGF and angiogenesis, we have used PC3/OPN (RGA) which demonstrated a 

decrease in integrin signaling [18]. We have also used PC3/OPN (KD) cells [18,25].  
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3.1. Regulation of VEGF Expression by Osteopontin 

As shown previously [18], OPN expression is considerably more in PC3/OPN and PC3/OPN 

(RGA) (Figure 1A, lanes 2 and 3) cells as compared with vector DNA transfected control PC3 cells 

(PC3/V; lane1). A significant decrease in OPN expression was observed in PC3/OPN (KD) (lane 4) 

and normal prostatic epithelial cells (HPR-1, lane 5). Subsequently, total cellular (Figure 1C) and 

secreted (Figure 1E) levels of VEGF were determined in these cell lines by immunoblotting analysis. 

A significant increase in the cellular (Figure 1C, lane 4) and secreted (Figure 1E, lane 4) levels of 

VEGF was observed in PC3/OPN cells as compared with control cells. However, a significant 

decrease below the level detected in PC3/V cells (C and E, lane 2) was observed in PC3/OPN (RGA) 

and PC3/OPN (KD) cells (C and E, lanes 3 and 5).  

Figure 1. Osteopontin induces VEGF expression. Equal amount of protein from indicated 

PC3 cell lines was used for immunoblotting analysis with an antibody to OPN (A) and 

VEGF (C, E, and G). Total cellular lysate (A and C) and conditioned media (E) proteins 

(20µg protein) were used for this analysis. Lysates made form prostatic normal (NT) and 

tumor (TT) tissue were also used for immunoblotting analysis with an antibody to OPN 

(G) and VEGF (I). GAPDH was used as a loading control (B, D, H and J). The loading 

control for the conditioned media is shown by the use of Coomassie blue staining of a gel 

ran in parallel (E). The results shown are representative of three or four experiments. 

 

VEGF expression is very minimal in HPR-1 cells (C and E, lane 1). The expression level was 

observed in the following order: PC3/OPN > PC3/V >>PC3/OPN (RGA) = PC3/OPN (KD) >> HPR-1. 

Immunoblotting analyses of lysates from prostate tumor tissue (TT; panel G) demonstrated that OPN 

and VEGF expression is significantly more in TT than normal tissue (NT, panel G and I). Taken 

together, these results indicate that OPN induces expression of VEGF in PC3 cells. Integrin signaling 

may play a role in this process because a decrease in VEGF expression was observed in PC3 cells 
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expressing mutant OPN at integrin binding site (RGDRGA). These observations together with others 

demonstrate an increase in the expression of OPN and VEGF in cancer cells [26–29]. 

3.2. Osteopontin Deficiency Suppresses VEGF-Induced Angiogenesis in Vitro 

Subsequently, we examined the efficacy of VEGF in the conditioned media of different PC3 cells to 

induce endothelial cell proliferation and formation of network of interconnecting tubules-like 

structures in vitro (Figure 2). HMEC-1 were used for this purpose. We found that conditioned media 

from PC3 and PC3/OPN cells induced the formation of tubular sprouts (Figure 2A,B).  

Figure 2. Secreted OPN and VEGF promote endothelial cell migration and microvascular 

tube formation in vitro. Phase contrast micrograph showing tube formation in vitro by 

HMEC-1 cells. HMEC-1 cells were grown on matrigel and incubated with conditioned 

media from indicated PC3 cells for 24 h. Images were captured (×200) with an inverted 

phase contrast microscope. Results shown are representative of three independent experiments. 

 

The tubular sprouts were thicker in endothelial cells incubated with the conditioned medium from 

PC3/OPN cells (B1 and B2). Furthermore, we observed clusters of cells at the intersections (corners) 

of intertubular networks (indicated by an arrow in B1 and B2). This suggests that OPN in the 

conditioned media of PC3/OPN cells not only stimulates proliferation but also adhesion by clustering 

of endothelial cells. Neither tube formation nor proliferation was observed with conditioned media 

from PC3/OPN (KD) and PC3/OPN (RGA) cells (C and D). Taken together, these data suggest that 

secretion of OPN and VEGF by PC3 cells can induce angiogenesis process in bone microenvironment. 

OPN not only can increase VEGF expression but also adhesion of cells which can possibly occur by 

interaction of OPN with cell surface adhesion molecules of HMEC-1 cells.  

A considerable number of reports have shown that curcumin has anti-cancerous and chemotherapeutic 

effects. A series of experiments have been done in PC3 cells to determine the effects of curcumin on 

VEGF expression, MMP9 activity, and VEGF secretion. To corroborate that reducing MMP9 activity 

by curcumin blocks VEGF secretion, we used PC3 cells knockdown of MMP9. We also determined 
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whether curcumin and MAPK inhibitor has similar inhibitory effects on VEGF expression and there is 

any cross communication occur between the ERK pathway and VEGF expression. 

3.3. Curcumin Down-Regulates Vascular Endothelial Growth Factor (VEGF) Expression in PC3 Cells 

Curcumin, a polyphenolic medicinal substance, has been implicated as a suppressor of tumor 

initiation, promotion, angiogenesis, and metastasis [30,31]. PC3 cells were treated with curcumin for 

24 and 48 h (Figure 3A).  

Figure 3. Curcumin reduces ERK phosphorylation and VEGF expression in PC3 cells. (A) 

and (B) PC3 cells were treated with 20 and 40 µM curcumin for 24 (lanes 1 and 2) and 48h 

(lanes 4 and 5). Untreated PC3 cells were indicated as (-) in lane 3. (C–E) Equal amount of 

lysate protein (20µg protein) made from untreated (-) and curcumin (lane 2) or MEK 

inhibitor UO126 (lane 3) treated PC3 cells were immunoblotted with a phospho-specific 

antibody to ERK1/2 (C). Membrane was stripped successively and reprobed with a VEGF 

antibody (E) and a non-phosphorylated ERK1/2 antibody (D) to demonstrate equal protein 

loading. (F) and (G) To determine the secreted levels of VEGF in PC3 cells treated with 

curcumin (lane 2) and MEK inhibitor UO126 (lane 3), equal amount of conditioned media 

protein was used for immunoblotting with an antibody to VEGF (F). Untreated (-) PC3 

cells were used as controls (lane 1). Coomassie blue staining of a gel ran in parallel was used 

as a loading control (G). Percent decrease of VEGF levels for the representative blot is shown 

at the bottom of the panels. Results shown are representative of three independent experiments. 

 

Two different concentrations (20 and 40 µM) of curcumin were used. Changes in the expression of 

VEGF were determined by immunoblotting analysis. VEGF level in untreated PC3 cells is shown in 

lane 3 (Figure 3A). Curcumin downregulated the expression of VEGF in a dose- and time-dependent 

manner (lanes 1, 2, 4 and 5). Since comparable downregulation of VEGF was observed with 40 µM 

curcumin at 24 and 48 h (A, lanes 2 and 5); we chose to continue our experiments with 40 µM 

curcumin treatment for 24 h. 
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3.4. Curcumin Inhibits ERK Phosphorylation and VEGF Levels in PC3 Cells 

To determine whether MAPK pathway is involved in the expression of VEGF and curcumin affects this 

pathway, PC3 cells were treated with 40 µM curcumin for 24 h. Phosphorylation of ERK1/2 was 

determined by immunoblotting analysis (Figure 3C). As a control, a MEK inhibitor (U0126; 10 μM for  

24 h) was used to inhibit the phosphorylation of ERK1/2 (Figure 3F, lane 3). The data indicate that 

curcumin significantly inhibits the phosphorylation of ERK1/2 (Figure 3C,F, lane 2). ERK1/2 

phosphorylation is significantly reduced in PC3 cells treated with a MEK inhibitor. Inhibition of ERK 

phosphorylation reduces cellular (lanes 2 and 3 in panel G) and secreted (lanes 2 and 3 in panel I) 

levels of VEGF. Immunoblotting of the corresponding non-phosphorylated ERK1/2 (D and H) and a 

GAPDH antibody (E) was used to demonstrate equal loading. Taken together, the data demonstrate 

that VEGF expression involves MAPK pathway and curcumin abrogates the expression of VEGF by 

inhibiting ERK1/2 phosphorylation.  

3.5. Inhibition of ERK Phosphorylation Represses VEGF Induced Angiogenesis in Vitro 

Conditioned media collected from PC3 cells treated with curcumin (Figure 4B) and MEK inhibitor 

(C) was used for angiogenesis assay in vitro with HMEC-1 cells. HMEC-1 cells incubated with the 

conditioned medium from PC3 cells were used as controls (A). Consistent with the observation shown 

in Figure 2A, conditioned medium from PC3 cells induced the formation of tubular sprouts (Figure 4A). 

Tube formation was significantly inhibited in HMEC-1 cells incubated with conditioned media of 

curcumin and MEK inhibitor treated PC3 cells (Figure 4B,C). However, proliferation and clustering of 

HMEC-1 cells was observed under these conditions. The effects of curcumin and MEK inhibitor on 

the secretory levels of OPN were determined in the conditioned media by immunoblotting analysis. 

OPN expression and secretion was not affected by these treatments in PC3 cells (D, lane 2 and 3). 

Clustering and proliferation of HMEC-1 cells may be due to the presence of OPN in the conditioned 

media. Consistent with the observations by others in breast cancer studies [32]; curcumin inhibits the 

expression of VEGF in prostate cancer cells and therefore angiogenesis in vitro. It exerts its potential 

inhibitory effect on the OPN/αvβ3-mediated MAPK pathway which may be involved in the expression 

of VEGF in PC3 cells.  

3.6. Matrix Metalloproteinase 9 (MMP9) Plays a Role in the Secretion of VEGF 

MMP2 and MMP9 expression has been associated with the progression of neovascular diseases and 

secretion of VEGF [33,34]. We have observed MMP9 as a principal MMPs in PC3 cells [18,19]. 

Therefore we generated stable control (PC3/Sc) and MMP9 knockdown (PC3/Si (MMP9) PC3 cell 

lines as described previously [19]. We examined the association of MMP9 with VEGF expression and 

secretion using these stable cell lines.  
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Figure 4. Curcumin and MEK inhibitor reduces microvascular tube formation in vitro.  

(A–C) Conditioned media collected from untreated (A) and curcumin (B) or MEK 

inhibitor UO126 (C) treated PC3 cells were used for angiogenesis assay in vitro with 

HMEC-1 cells. Images were captured (×200) with an inverted phase contrast microscope. 

(D) Immunoblotting analysis of secretory levels of OPN in PC3 cells treated with curcumin 

(lane 2) and MEK inhibitor U0126 (lane 3) is shown. Untreated PC3 cells are indicated as 

(-) in lane 1. The loading control for the conditioned medium is shown by the use of a 

Coomassie blue (E) staining of a gel ran in parallel. Results shown are representative of 

three independent experiments. 

 

As shown in Figure 1 in PC3 cells, we have shown here that control PC3/Sc (MMP9) cells express 

VEGF 165 (Figure 5A, lane 1). VEGF-165 (denoted as VEGF) is the most common form in tissues and 

potent angiogenic factor. Expression of VEGF and VEGF165-b (an isoform of VEGF) was found to be 

significantly elevated in PC3/Si (MMP9) cells (Lane 2). However, only the VEGF isoform is secreted 

by these cells (Figure 5A, lanes 3 and 4). The secretion is significantly lower in PC3/Si (MMP9) cells 

(lane 4) than PC3/Sc cells (lane 3). The decrease was found to be > 3 fold in PC3/Si (MMP9) cells as 

compared with control cells (3.4 ± 0.04; n = 3; ** p > 0.001 vs. PC3/MMP9 (Sc) cells). These results 

indicate that MMP9 more potently enhanced the secretion of VEGF in PC3 cells. MMP9 knockdown 

exert a positive effect on VEGF-165b expression and negative effects on the secretion of both VEGF 

and VEGF165-b. MMP9 levels in indicated PC3 cells are shown in the bottom panel (A). How the 

expression and secretion of VEGF-165b is spatially modulated by MMP9 needs further elucidation. 
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Figure 5. MMP9 plays a role in the secretion of VEGF. (A–C) Total cellular lysates (TL; 

lanes 1 and 2) and conditioned media (CM; lanes 3 and 4) made from PC3/Sc (MMP9) 

(lanes 1 and 3) and PC3/Si (MMP9) (lanes 2 and 4) were immunoblotted with an antibody 

to VEGF (A, top panel) and MMP9 (A, bottom panel). Equal amount of total cellular lysate 

protein (20 µg) and conditioned media (20 µg) was used for immunoblotting analysis. Blot 

in A was stripped sequentially and reprobed with a MMP9 to demonstrate MMP9 levels 

(A, bottom panel) and GAPDH antibody to demonstrate equal protein loading in total 

cellular lysates (B-left panel). Coomassie blue staining of a gel ran in parallel was used as a 

loading control for conditioned media (C). (D,E) PC3 cells were treated with 20 µM 

curcumin for 24 h (lane 5) and 40 µM curcumin for 24 (lanes 4) and 48 h (lanes 3). 

Untreated PC3 cells (-) were used as controls (lane 2). Equal amount of conditioned media 

(20 µg) was used for zymogram analysis. The activity of a recombinant MMP9 protein 

containing pro- and active band (indicated by arrows) was used as an identification marker 

(lane 1). The loading control for the conditioned media used for zymogram analysis is 

shown by the use of Coomassie blue staining of a gel ran in parallel (E). (F–H) Conditioned 

media from indicated PC3 cells (F-H) were tested for their effect on angiogenesis. HMEC-1 

cells were used. Images were captured (×200) with an inverted phase contrast microscope. 

The results represent one of three separate experiments performed. 
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3.7. Curcumin Abrogates MMP9 Activity 

Curcumin suppressed MMP2 and MMP9 activity in the tumor bearing site of prostate cancer. 

Therefore, the metastatic nodules in vivo were significantly fewer in the curcumin-treated group than 

untreated group [35]. Conditioned media was used to determine the MMP9 activity by gelatin-zymogram 

analysis (Figure 5D). As shown by others [35,36], curcumin abrogates MMP9 activity in a dose and 

time dependent manner (lanes 3–5). A significant decrease in MMP9 activity was observed in PC3 

cells treated with 40 µM curcumin for 48 h (lane 3). Targeting MMP9 by curcumin might serve as a 

potential therapeutic approach for tumor-induced angiogenesis and invasion.  

3.8. MMP9 Knockdown Reduces VEGF-Induced Angiogenesis in Vitro 

MMP9 is implicated in regulating angiogenesis via secretion of VEGF [16]. Conditioned media 

collected from PC3, PC3/Sc (MMP9), and PC3/Si (MMP9) cells (Figure 5F–H) were used for in vitro 

angiogenesis assay with HMEC-1 cells. The formation of tubular structures (Figure 5F–H) is directly 

proportional to the amount of VEGF present in the conditioned media of PC3 (Figure 3A,I) and 

PC3/Sc (MMP9) (Figure 5A) cells. Neither clustering of cells nor elongation of tubular structures was 

observed in HMEC-1 cells incubated with the conditioned medium of PC3/Si (MMP9) cells (Figure 

5H). This may be partly due to a decrease in the proliferation rate. However, these cells displayed 

migratory phenotype and have a propensity to organize tubular structures (H). MMP9 knockdown in 

PC3 cells significantly reduced VEGF secretion (Figure 5A, lane 4) and hence tubular extension of 

HMEC-1 cells in vitro (Figure 5H).  

3.9. MMP9 Knockdown Increases Angiostatin Secretion by PC3 Cells 

Angiostatin is a 38 kDa fragment of plasminogen that selectively inhibits endothelial cell 

proliferation and angiogenesis. MMPs such as MMP7 and MMP9 regulate the formation of angiostatin 

fragment(s) from plasminogen [37]. Here we sought to determine whether MMP9 knockdown affect 

the formation of angiostatin (Figure 6). Immunoblotting analysis indeed has demonstrated the presence 

of two bands with apparent molecular masses of 42 and 38 kDa angiostatin in total cellular lysates 

isolated from stable PC3/Sc (MMP9) and PC3/Si (MMP9) cells (lanes 1 and 2). However, angiostatin 

bands with molecular mass ~42 and 38 kDa were observed only in the conditioned medium of PC3/Si 

(MMP9) cells (lane 4). Consistently, the 38 kDa band is thicker than 42 kDa in both total cellular 

lysates (lanes 1 and 2) and conditioned medium (lane 4). An increase in the secretion of 38 kDa 

angiostatin protein (78 ± 8% *** p > 001; n = 3) by PC3/Si (MMP9) cells indicate that MMP9 may 

play a suppressive role in the secretion of angiostatin from PC3 cells. It seems that MMP9 is not 

involved in the cleavage of plasminogen and formation of angiostatin in PC3 cells. However, it blocks 

the release of this vital anti-angiogenic factor and increases the metastatic potential of prostate cancer.  
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Figure 6. MMP9 knockdown increases secretion of angiostatin in PC3 cells. Total cellular 

lysates (TL; lanes 1 and 2) and conditioned media (CM; lanes 3 and 4) made from PC3/Sc 

(MMP9) (lanes 1 and 3) and PC3/Si (MMP9) (lanes 2 and 4) were immunoblotted with an 

antibody to angiostatin (A). Equal amount (20 µg) of protein was used for immunoblotting 

analysis. Membrane was stripped and reprobed with a GAPDH antibody (B, left). GAPDH 

level was used as a control for loading. Equal protein loading in conditioned media was 

verified by Coomassie blue (B, right) staining of a gel ran in parallel. 

 

3.10. VEGF Expression Is More in Prostate Adenocarcinoma 

Three tissue microarray sections (two PR243a and one PR243 from Biomax) containing six cases of 

prostate adenocarcinoma and six adjacent normal prostate tissues with duplicate cores for each case 

were used for immunohistochemistry analysis with an antibody to VEGF (Figure 7). Relative 

distribution of VEGF in immunostained TMA sections were semi-quantitatively analyzed by two 

investigators and provided in Table 1. Tissue sections shown in Figure 7A have normal luminal 

epithelial and hyperplasic prostatic cells with adjacent adenocarcinoma. Normal prostatic luminal 

epithelial cells and cancer adjacent to normal prostate tissue shows VEGF distribution in the 

membrane (indicated by arrows in A''). Cancer cells adjacent to normal prostatic epithelial cells appear 

normal and displayed very similar VEGF distribution to those of normal luminal epithelial cells (A'). 

Sparse staining was observed in the cytoplasm (A' and A''). VEGF staining is considerably lower in 

normal prostatic tissue (A–A'') than prostatic carcinoma sections (B–B''). Sections with 

adenocarcinoma at stage II and IV as well as adenocarcinoma with necrosis displayed cells with 

significant VEGF staining in the cytoplasm (B' and B''; Table 1) as compared with cancer adjacent to 

normal prostate tissue and normal luminal epithelial cells. This is consistent with the observations 

shown by others in prostatic adenocarcinoma [38]. Immunohistochemistry analysis corroborates the 

findings of the immunoblotting analysis (Figure 1G).  
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Figure 7. Immunohistochemistry on TMA derived from normal and cancerous prostate 

tissue. Immunohistochemical staining was performed with an antibody to VEGF in prostate 

cancer tissue array with adjacent normal prostate tissue. Normal tissue adjacent to prostate 

cancer is shown in (A). Prostate cancer filled lumen adjacent to normal prostate tissue is 

indicated by a white asterisk. Arrows in (A'') point to membrane staining of VEGF in 

normal cells. Prostate carcinoma at grade 3 is shown in (B). Immunostained sections were 

counterstained with hematoxylin stain (blue). Location of the high magnification regions is 

indicated by a rectangle field in (A), (A'), (B), and (B'). Staining was repeated three times. 

 

Table 1. Expression of VEGF in prostatic carcinoma and cancer adjacent to normal 

prostate tissue sections. Prostatic carcinoma and normal tissue microarray containing 12 

cases/24 cores was used. Immunohistochemistry was performed with an antibody VEGF. 

Staining was repeated thrice with two different microarrays (PR243 and 243a; Biomax).  

** p < 0.01 and *** p < 0.001 staining intensity vs. normal cells. 

Grade Grade/Stage/# of cores Cells VEGF 

Normal prostatic 

epithelial cells and 

PCa to these cells  

(-)/n = 16 Cancer cells appear normal 

Normal cells = 28.0 ± 13% 

PCa = 33 ± 12% 

Stromal cells < 10% 

Adenocarcinoma 

(Type: Malignant) 
2/IV/n = 16 

Cells appear slightly different than 

normal; moderately differentiated 

PCa = 68.7 ± 18% ** 

Stromal cells ~6–8% 

Adenocarcinoma 

with necrosis  

(Type:Malignant) 

3/II/n = 8 

Cells appear abnormal; 

poorly differentiated;  

stroma is less  

PCa = 78 ± 22% *** 

Stromal cells ~5–8% 

Adenocarcinoma 

(Type:Malignant) 

3/II/n = 8 

3/IV/n = 16 

Cells appear abnormal;  

poorly differentiated;  

stroma is less. 

PCa = 82 ± 28% *** 

Stromal cells ~4–6% 
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4. Discussion 

Osteopontin has been discovered as the leading candidate clinical marker derived from a screen of 

approximately 12,000 named genes [39]. We demonstrated previously that OPN expression increases 

prostate cancer progression through the formation of invadopodia-like structures through integrin αvβ3 

signaling pathway [25]. OPN has been related to the development and progression of tumor through its 

angiogenic potential [32,40]. The present study was undertaken to determine the role of OPN in VEGF 

expression and angiogenesis. The study tested whether OPN induced MAPK pathway has a role in the 

expression of VEGF and whether MMP9 has a role in the expression and/or secretion of VEGF. ERK 

inhibitor has been shown to regulate the expression of VEGF [41,42]. The comparable effects of 

curcumin and an ERK inhibitor on ERK phosphorylation and VEGF expression has been evaluated in 

this paper. Curcumin has been shown to block MMP2 and MMP9 activity [36], (reviewed in [43]). We 

have determined the anti-angiogenic effects of curcumin by comparing its effect with an ERK inhibitor 

and PC3 cells knockdown of MMP9.  

We confirmed that OPN over-expression in PC3 cell line enhanced proliferation (Supplemental 

Figure S1) of PC3 cells and increased the tumorigenecity. The tumor size corresponds with expression 

levels of OPN. PC3/KD (OPN) and PC3/OPN (RGA) cells produced very small tumors (Supplemental 

Figure S1). Using tissue microarray analysis and lysates from prostatic tumor cells, we have observed 

that expression of OPN (Supplemental Figure S3) and VEGF was more pronounced in prostate cancer 

as compared with benign or normal prostatic tissue. Rates of VEGF expression were also shown to be 

significantly lower in benign prostatic vs. prostate cancer specimens [38]. It is well established that 

VEGF plays an important role in the maintenance of angiogenesis and has systemic effects at 

secondary sites on tumor growth [44,45]. Several stimuli regulated the expression and secretion of 

VEGF. We postulated that OPN-mediated signaling may regulate the expression and secretion of 

VEGF in prostate cancer cells. 

In endothelial cells, OPN has been shown to induce angiogenesis through activation of  

ERK-mediated pathways with VEGF acting as a positive feedback signal [46]. MAPK signaling 

pathway which involves ERK1/2 seems to be responsible for VEGF secretion in multiple myeloma 

and breast cancer cells [47]. The down-modulation of ERK1/2 activity with an inhibitor reduces 

myeloma induced angiogenesis by inhibiting VEGF secretion [41]. In this study we found that MEK 

inhibitor suppresses ERK1/2 phosphorylation as well as VEGF expression and secretion in PC3 cells. 

Curcumin has been shown to suppress multiple signaling pathways and inhibit cell proliferation, 

invasion, metastasis, and angiogenesis (reviewed in [43]). However, its effect on VEGF expression by 

MAPK pathway and MMP9-mediated secretion of VEGF needs further elucidation. Recently, we have 

reported that activation of c-Raf-ERK cascade may promote cell cycle arrest in prostate cancer cells 

and OPN signaling has a role in the anti-apoptotic mechanism [48]. Curcumin has been shown to have 

anti-tumor effects in prostate cancer [32,35]. MAPK is shown to be one of the targets of curcumin in 

VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells [49]. Our results in 

the present study also suggest that ERK plays a role in VEGF expression. Curcumin has comparable 

inhibitory effect as ERK inhibitor in the expression of VEGF.  

MMP9 is the principle MMP although MMP2 is also expressed in PC3 cells. Data presented here 

and previously, demonstrated membrane localization of pro- and active forms of MMP9 and secretion 
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of only active form of MMP9 in PC3 cells [18]. OPN over-expression increased the activity of cell 

surface and secreted MMP9 [18]. We have previously shown an increase in the levels of MMP9 in 

tissue microarray sections containing adenocarcinoma at stages 2 to 4 [23]. Consistent with the 

observations shown in PC3 cells [18], high expression of active form of MMP9 was observed in 

prostatic adenocarcinoma tissue lysates (Supplemental Figure S2). MMP9 seems a promising target for 

preventing angiogenesis, invasion, and metastasis in cancer patients. Our results are in agreement with 

previous reports of inhibition of MMPs activity by curcumin (reviewed in [43,50,51]). Curcumin 

blocks MMP9 activity and secretion of VEGF in addition to its effect on the reduced expression of 

VEGF through suppressing ERK1/2 phosphorylation in PC3 cells. However, expression and secretion 

of OPN is unaffected by MEK inhibitor or curcumin. Therefore, OPN present in the conditioned 

medium of PC3 cells treated with MEK inhibitor or curcumin stimulated proliferation and clustering of 

HMEC-1 cells through cell-cell adhesion but not cell migration and tube formation.  

MMP9 knockdown PC3 cells corroborate the relevance of MMP9 in angiogenesis through its role 

in the secretion of VEGF. VEGF 165 (indicated as VEGF) and VEGF165-b are expressed in PC3/Si 

(MMP9) cells. VEGF165 was not observed in PC3 cells expressing scrambled RNAi or control PC3 

cells. It is not known whether the secreted or membrane bound MMP9 controls VEGF release. 

However, studies using PC3/Si (MMP9) cells evidently suggest a role for MMP9 in the secretion of 

VEGF. Induction of MMP9 activity may be a likely mechanism by which VEGF is released from 

prostate cancer. 

The intriguing observation in the present study is that while the total cellular levels of angiostatin 

remains the same in PC3/Sc (MMP9) and PC3/Si (MMP9) cells, an increase in the release of 

angiostatin was observed in PC3/Si (MMP9) cells. As MMP9 knockdown increases the release of 

angiostatin, we cannot exclude the fact that MMP9 is a potential blocker of angiostatin release from 

PC3 cells. It is possible MMP9 may increase the angiogenic potential via suppression of secretion of 

angiostatin by unknown mechanism. It would be interesting to find out how MMP9 suppresses the 

release of angiostatin. Angiostatin produced from plasminogen by MMP7 and MMP9 has been shown 

to have biological activities such as inhibition of endothelial cell proliferation, angiogenesis, tumor 

growth and metastasis [52]. It is not known whether MMP7 is involved in the release of angiostatin in 

the absence of MMP9.  

5. Concluding Remarks and Future Directions 

VEGF expression and secretion correlates well with the levels of OPN in PC3 cells. OPN/integrin 

αvβ3 signaling involving MAPK pathway plays a role in the expression of OPN. ERK inhibitor and 

curcumin has comparable effects on the inhibition of VEGF expression. However, curcumin also has 

an inhibitory effect on the activation of MMP9. Experiments with PC3 cells knockdown of MMP9 and 

PC3 cells treated with curcumin show a positive feedback regulation between MMP9 activity and 

VEGF secretion. MMP9 appears to have negative regulatory role in the secretion of VEGF165b and 

angiostatin. VEGF-165b is implicated as anti-angiogenic factor [9]. Angiostatin has been implicated as 

a potent inhibitor of angiogenesis and reported to be one of the factors which suppresses the growth of 

secondary tumors in mice bearing previous tumors. However, the mechanism by which angiostatin 

suppresses the growth has not been proven [53–55]. Understanding the different roles of MMP-9 
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should allow the development of better therapeutic strategies in the treatment of cancer. This 

interesting observation stimulated our interest in the identification of the mechanism that induces the 

release of angiostatin from PC3/Si (MMP9) cells.  
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Supplemental Materials 

Figure S1. OPN over-expression increases proliferation of PC3 cells and the ability of 

these cells to form big tumor in nude mice. Cells at log phase of growth were used for 

proliferation assay in vitro in 48 well plates (A) and tumor growth experiment in vivo in 

nude mice (B and C).  

 

A. Proliferation assay: About 2.5 × 104 cells were plated per well in triplicates of each cell line in 

serum-free RPMI medium for 48 h. Cells were washed with serum-free RPMI medium and 

removed with trypsin/EDTA (Sigma) for counting. Cells were added with trypan blue to count 

viable cells. Viable cells were immediately counted manually on a hemocytometer. Dotted line 

indicates the initial cell number at the time of plating. The data presented in Figure A represent the 

mean ± SD of one experiment performed in triplicates of each cell line. Results were independently 

validated in three different experiments. *** p < 0.001, ** p < 0.01 and * p < 0.05 compared with 

the control groups (PC3 and PC3/V cells). Tumor growth (B and C): Six weeks old male nude mice 

were bought from National Cancer Institute—Fredrick (Fredrick, MD). Mice were injected with 

indicated PC3 cells (2.5 × 106 cells in 50 µL PBS) subcutaneously into the dorsal region near thigh 

of athymic male nude mice. Tumor volume was measured in five to six nude mice injected with 
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indicated PC3 cells. The tumor volume was measured every week for 8 weeks. Data presented 

represents mean tumor volume ± SD of 5 mice at 8 weeks. Arrows indicate location of tumors. 

Tumor formation increased in mice injected with PC3/OPN cells as compared with mice injected 

with control PC3 cells or PC3/OPN (RGA), PC3/Si (OPN and PC3/Si (MMP9) cells. ** p < 0.01 

and * p < 0.05 compared with the control groups (PC3 and PC3/V cells); *** p < 0.001 compared 

with PC3/OPN cells. Representative nude mice showing tumor growth (mm3) by indicated PC3 

cells is shown in C.  

Figure S2. Expression levels of MMP9 in human prostate normal (NT) and tumor (TT) 

tissue. Immunoblotting analysis. Total cellular lysate (TL; lanes 1 and 2) and membrane 

fraction (MF; lanes 3 and 4) of the lysate from normal (NT) and tumor (TT) prostatic tissue 

were immunoblotted with antibodies to MMP9 (A). Equal loading of membrane protein 

was shown by immunoblotting with an actin antibody (B) after stripping the blot. The 

results represent one of three separate experiments performed. As shown in PC3 cells [18], 

an increase in the levels of active form of MMP9 was observed in total cellular lysates and 

membrane fraction (A, lanes 2 and 4)of the prostate tumor tissue (TT) as compared with 

normal tissue (lanes 1 and 3 in A). The active form of MMP9 is more in tumor tissue (lanes 

2 and 3). 
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Figure S3. Immunohistochemistry on tissue microarray sections containing normal tissue 

adjacent to adenocarcinoma and adenocarcinoma at grades 1 to 3. Immunohistochemical 

staining was performed with an antibody to osteopontin. Normal tissue adjacent to prostate 

cancer (A) and adenocarcinoma at grade 2–3 (B) are shown. Sections were immunostained 

(brown) as described in the Methods section. Immunostained sections were counterstained 

with hematoxylin stain (blue). Location of the high magnification regions are shown by a 

rectangle field in (A) and (B) Magnification is 50× in A and B and 200× in (A') and (B'). 

The staining was repeated two times with similar results. Staining was observed in stromal 

cells, normal prostatic tissue, and adenocarcinoma in lumen. Cytosolic staining was 

observed in these cells. Adenocarcinoma at grade 2–3 is shown in (B) and (B'). Prostatic 

adenocarcinoma sections showed multiple small foci of tumor cells. Cells appear slightly 

different than normal. One of the foci is showed in higher magnification (A' and B'). An 

increase in number of cells in the foci of adenocarcinoma corresponds with intense staining 

of cells (B'). A part of the reason for more OPN in the lysates from tumor tissue (Figure 1 

in the main document) may be due to an increase in the number of cancer cells in the foci 

which express more OPN. 
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