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Abstract: The signal transducer and activator of transcription (STAT)3 governs essential 

functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While 

the role for STAT3 in promoting the progression of many solid and hematopoietic 

malignancies is well established, this review will focus on the importance of STAT3 in 

prostate cancer progression to the incurable metastatic castration-resistant prostate cancer 

(mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation 

of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition 

that drive progression to mCRPC. As equally important, STAT3 regulates interactions 

between tumor cells and the microenvironment as well as immune cell activation. This 

makes it a major factor in facilitating prostate cancer escape from detection of the immune 

response, promoting an immunosuppressive environment that allows growth and metastasis. 

Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the 

promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the 

variety of STAT3 inhibitors used in cancer therapies is discussed. 
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1. Introduction 

The signal transducer and activator of transcription (STAT)-3 plays an indispensable role in the 

progression of a wide variety of cancers. Activation of STAT3 downstream of cell surface receptors 

for cytokines and growth factors, by oncogenes or by chemical carcinogens in the microenvironment 

of many tumor types drives their transformation, survival, proliferation, invasion and dissemination. 

This is mediated by phosphorylation of latent cytoplasmic STAT3 on specific residues (Y705, Ser727) 

by a variety of tyrosine and serine kinases leading to its dimerization and nuclear translocation, where 

it acts as a transcription factor for a plethora of genes governing the malignant properties of the tumor 

cell. STAT3 is a critical mediator of differentiation, activation, migration and inflammatory capacity of 

immune cells and stromal cells that create the microenvironment supporting tumor cell growth  

(Figure 1). Importantly, there are strong feed forward mechanisms between the factors able to activate 

STAT3 and what genes STAT3 itself activates, intrinsically in tumor cells themselves as well as in the 

hematopoietic and stromal compartments, explaining perhaps the constitutive or at least hyperactivation of 

STAT3 in almost all cancers and highlighting its role as a bona fide oncogene.  

Overviews on the importance of STAT3 signaling and targeting it with potential therapies for 

cancer in general have been the subject of recent reviews [1]. However, the breadth and scope of 

STAT3 regulatory networks that drive the progression of prostate cancer (PCa) have not been 

addressed recently. In PCa, STAT3 plays a unique role; it acts as a key signaling conduit that allows 

activation of the androgen receptor (AR), a central driver of PCa cell survival and proliferation, by 

alternative mechanisms than through AR binding to its primary ligand, testosterone. These mechanisms 

include the IL-6 cytokine pathway as well as other oncogenic and molecular chaperone pathways 

known to drive the re-activation of the AR in castration-resistant prostate cancer (CRPC), including 

AKT/PI3K/PTEN, MAPK, EGFR and heat shock proteins (Hsps). As well, STAT3 controls PCa cell 

fate and interaction with the microenvironment; it plays roles in the maintenance of cancer stem cell 

(CSC) populations, the switch between epithelial to mesenchymal phenotypes that precede metastasis, 

tumor angiogenesis, as well as both tumor cell and stromal cell mediated immunosuppression. In this 

review, we will discuss the multifunctional role of STAT3 in PCa progression and drug resistance as 

well as its potential as a therapeutic target in this disease.  

2. STAT3 Signaling 

STAT 3 belongs to the STAT family of highly conserved proteins that originally were identified in 

the acute phase response. Abbreviation for the Latin word for “immediately”, the STAT family of 

proteins is unique in that they control the fastest signaling pathway linking extracellular signals to a 

transcriptional response. STAT3 activation is most commonly associated with the binding of 

inflammatory cytokines or growth factors in the IL-6 [2] and IL-10 [3] family (G-CSF, CNTF, 

Oncostatin M, IL5-6, IL10-11, IL12, IL19-21 IL-22, IL-24, IL-26, IL-28) to their cognate receptors on 

the cell surface. Downstream of the activated cytokine receptor, STAT3 must be phosphorylated at two 

sites, tyrosine 705 and serine 727 for full activation [4]. Janus associated kinases (JAK) typically 

phosphorylate STAT3 on Y705, leading to its dimerization through the SH2 domain to opposing 

STAT3 monomers. However, Y705 can also be phosphorylated by other Receptor Tyrosine Kinases 
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(RTK) directly including EGFR, VEGFR, PDGFR and IGFR [5], as well as non-receptor tyrosine 

kinases like Src-family kinases (Src, Lyn, Fyn, etc.) and Abl [6,7]. Phosphorylation of Serine 727 by 

serine/threonine kinases like p38MAPK [8], ERK [9], JNK [10], PKC [11] and mTOR [4] is required 

for optimal activity, allowing for Improtin α5 mediated nuclear transport of the STAT3 dimer [12]. 

Once in the nucleus, the DNA binding domain of each STAT3 monomer binds to an 8–10 nucleotide 

GAS (Gamma activated sequence) or ISRE (IFN-stimulated response element) to initiate gene 

transcription [13]. Interestingly, crystal structures of STAT3 bound to DNA indicate that dimers can 

exist without SH2 binding, indicating that non-phosphorylated STAT3 can dimerize to induce gene 

transcription, a feature which is unique to STAT3 in the STAT family [13].  

Figure 1. STAT3 integrates different signaling pathways involved in prostate cancer 

progression to metastatic disease. Binding of ligands to Cytokine Receptors and or Receptor 

Tyrosine Kinases recruits non-receptor Tyrosine kinases (JAK family and Src family) 

through their SH2 domains to the receptors. The same SH2 interaction also recruits STAT3 

to the receptors and STAT3 gets phosphorylated on Tyrosine 705 by the non-receptor 

kinases leading to its dimerization, nuclear translocation and binding to DNA of target 

genes involved proliferation (CyclinD1, cMyc, Mcl1), Angiogenesis (Hif1α and VEGF), 

EMT (Twist, MMP2, 9, 7). In addition to this, the activity of mTOR and MAPK pathways 

phosphorylates STAT3 at Serine 727 which directly interacts with the NTD of the Androgen 

Receptor promoting its differentiation activity without increasing cell proliferation. 
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Importantly, the specificity, duration and inhibition of STAT3 dependent gene transcription is 

tightly regulated. Because STAT3 signals downstream of so many extracellular cytokines and growth 

factors and it is activated by so many intracellular kinases, multiple levels of control dictate the 

specificity of which genes are transcribed in a STAT3 dependent manner, depending on the stimulus. 

For example, multiple co-activators like CBPp300 [14], APE1 [14] and NCOA [15] cooperate with 

STAT3 in specific conditions to control gene transcription. Moreover, the duration of STAT3 induced 

transcription is very tightly regulated [13]. Even under constitutive cytokine signaling, STAT3 

phosphorylation peaks between 15–60 min. These phosphorylation events are tightly controlled by 

many different protein families, including protein tyrosine phosphatases, protein inhibitors of activated 

STATs (PIAS), proteasomal degradation and most importantly the family of suppressor of cytokine 

signaling proteins (SOCS) [16]. This regulation of phosphorylation events by SOCS family members 

combined with the number of STAT3 binding sequences present in the promoter region of a gene that 

dictate the strength of STAT3 mediated gene induction. This mechanism explains the contrasting 

effects of STAT3 mediated IL-6 vs. IL-10 gene transcription; the transient nature of IL-6 signaling is 

controlled by rapid SOCS3 inhibition of the gp130 subunit of the IL-6 receptor. This limits the 

duration that the STAT3 dimer is functional within the nucleus, allowing pro-inflammatory genes with 

multiple response elements to be transcribed. By contrast, the lack of a SOCS3 binding site in the  

IL-10 receptor prolongs STAT3 activation, allowing more time for STAT3 dimers to bind to  

anti-inflammatory genes that have only single STAT3 response elements [17]. In cases where 

unphosphorylated STAT3 dimers bind DNA, the altered dimer structure binds different response 

elements than the typical GAS and IRSE, allowing for transcription of varying genes [12,18]. For 

example, Yu et al. found that unphosphorylated-STAT3, through direct interaction with p65 of nuclear 

factor (NF)-κβ, serves as a suppressor and inhibits the ability of NF-κβ to induce the iNOS promoter in 

mesangial cells [19]. 

3. STAT3 in Oncogenic Signaling in PCa 

Growth and maintenance of normal prostate epithelium and primary prostate cancer tumors is 

fueled by androgen activation of the AR present in prostate cells. This reliance on AR signaling makes 

androgen depravation therapy (ADT) an effective way to limit prostate cancer tumor growth; initially 

tumors respond well to anti-androgen therapy, dramatically shrinking in size and patients see a 

reduction in cancer symptoms. However, tumor recurrence within 3 years of ADT occurs in 80% of 

patients, and tumor regrowth combined with a rise in the AR dependent production of circulating 

prostate specific antigen (PSA), marks the progression to CRPC. Continued dependence on AR 

signaling is a hallmark of CRPC and there are multiple mechanisms by which the AR can be  

re-activated in castration conditions, including hyperactivation of oncogenic signaling pathways, 

intratumoral production of androgen, ligand independent AR activation due to AR mutation or splice 

variants and increased expression of molecular chaperones and the AR itself [20]. Any combination of 

these AR activating changes in CRPC tumors makes them hypersensitive to androgen and tumor 

growth resumes as in androgen dependent conditions [21,22]. While significant advancements in 

therapy have prolonged progression to CRPC, it still remains an incurable form of PCa. 
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Hyper-activation of multiple oncogenic signaling pathways drives progression of PCa to CRPC. For 

example, the most frequently deleted tumor suppressor gene in prostate cancer is phosphatase and 

tensin homolog gene (PTEN), which is a negative regulator of the PIK3/Akt survival pathway [23]. As 

a result of PTEN loss, constitutive activation of AKT and its downstream signaling targets can lead to 

activation of the AR in CRPC. Indeed there is areciprocal feedback loop whereby PI3K inhibition 

activates the AR and vice versa in the absence of PTEN [24]. Importantly, there is a close 

interplay between STAT3 and the PTEN/PI3k/AKT pathway. For example, in mice heterozygous 

for PTEN, development of adenocarcinoma is accelerated by the constitutive activation of STAT3. 

PTEN+/−STAT3C mice not only show increased phosphorylation of STAT3 but also AKT, which 

augment the growth rate of spontaneous tumors arising in these mice [25]. Highlighting the importance 

of feed forward mechanisms present in the tumor microenvironment mediated by a the synergy 

between STAT3 and PTEN loss is recent data from the Witte lab, showing that IL-6 and oncostatin M 

increase STAT3 signaling leading to the development of aggressive adenocarcinoma of the prostate in 

mouse models of PTEN loss or constitutive AKT expression [26]. Moreover, STAT3 is a direct 

transcriptional repressor of p53 and loss of p53 in combination with PTEN drives the progression of 

lethal CRPC [27]. 

In addition to the PTEN/PI3K/AKT pathway, STAT3 also functions up or downstream of a number 

of other oncogenes important for PCa progression. For example, STAT3 is required for the activation 

of proto-oncogenes that protect PCa cells from apoptosis, including Bcl-2 and Bcl-3 [28–30]. 

Interestingly, STAT3 is also a critical component downstream of the y box binding protein YB-1 in 

Her2 driven breast cancer as well as renal cancer. YB-1 protects breast cancer cells from apoptosis via 

activation of AKT/mTOR and phosphorylation of STAT3 at serine 727 [31] and in renal cancer YB1 

stabilizes STAT3 and YB-1/STAT3 signaling mediate resistance to interferon a therapy [32]. These 

data have important implications for PCa, as YB-1 has been shown to be activated downstream of 

AKT and can activate the AR in CRPC [33]. It suggests that STAT3 may be a central signaling node 

downstream of a number of oncogenes, including both AKT and YB-1 that can lead to AR reactivation 

as well as support PCa cell survival.  

4. STAT3 as a Modulator of Androgen Receptor in PCa 

External signals from cytokines and growth factors can trigger oncogenic signaling cascades that 

modulate AR activity. In particular, IL-6, the prototypical JAK/STAT3 signaling cytokine, can 

modulate activity and expression of the AR. It is no surprise therefore that increased IL-6 levels in PCa 

patients has been associated with decreased survival [34], increased metastasis [35] and related 

morbidity [36]. However, even though IL-6 seems to be associated with tumor progression, its 

relationship with the AR is convoluted and IL-6/STAT3 can have both pro and anti-proliferative 

effects on tumor cells as that depends on AR status of PCa cells well as activity/crosstalk from other 

pathways. For example short-term IL-6 treatment of the PCa cell line LNCaP activates STAT3 and AR 

downstream genes such as PSA, due to direct interaction between STAT3 residues 234–558 and the 

NTD of the Androgen Receptor [37]. Similarly, in pancreatic cancer cells treated with IL-6 there is 

increased phosphorylation of STAT3, which is required for AR transcriptional activity [38]. 

Interestingly, IL-6 mediated activation of STAT3 and AR is also associated with inhibition of cell 
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growth and differentiation of LNCaP cells to a neuroendocrine phenotype [39]. By contrast, long-term 

treatment of cells with IL-6 greatly reduces AR expression [40] but at the same time, IL-6 loses its 

growth inhibitory effect [41] and the cell line shows more activity in the MAPK pathway rather than 

IL-6 induced STAT3 phosphorylation. Other studies have also determined that activation of STAT3 is 

an underlying mechanism for IL-6 induced growth inhibition, as IL-6 treated cells expressing 

dominant negative STAT3 show no signs of a growth inhibitory effect [39]. Independently, Lin et al. 

showed that IL-6 receptor can cooperate with ErbB2 (Her2/Neu) to activate the MAPK pathway with 

short-term IL-6 treatment and promote AR activity [42]. This interaction could also explain the 

previously mentioned increased proliferation caused with long-term IL-6 treatment’s activation of the 

MAPK pathway once AR expression is reduced.  

The link between IL-6 and STAT3 signaling to AR activity is further underscored by the 

importance of this signaling pathway in the development of anti-androgen resistance. Autocrine IL-6 

signaling in PCa cells induces the constitutive activation of STAT3, enhancing recruitment of the AR 

to the PSA promoter and rendering these cells resistant to the new generation anti-androgen Enzalutamide, 

which can be reversed by treatment with a STAT3 inhibitor [43]. In addition, the feed forward loop that 

exists between IL-6, the NF-κβ pathway and STAT3 may also determine anti-androgen resistance. For 

example, both paracrine and autocrine IL-6 signaling activates NF-κβ in cancer cells, and there is 

substantial crosstalk between NF-κβ and STAT3, leading to their positive or negative regulation [44]. 

The significant overlap between tumor prosurvival and proliferative genes activated by STAT3 and 

NF-κβ, is not surprising based on data showing that STAT3 maintains the acetylation and nuclear 

retention of the NF- transcriptional subunit RelA in Du145 PCa cells as well as hematopoietic  

cells [45]. Importantly, like in autocrine IL-6 expressing cells, recent work has shown that 

overexpression of NF-κβ in LNCaP cells confers resistance to Enzalutamide and Enzalutamide 

treatment greatly increases NF-κβ expression. This resistance was associated with the NF-κβ 

dependent expression of AR splice variants which exhibit ligand independent activation of AR [46,47]. 

Although this study did not directly show the link between IL-6 and NF-κβ activation, others in PCa 

have shown these pathways are intrinsically linked and the importance of NF-κβ in PCa is widely 

accepted [48]. Taken together, these results suggest that while STAT3 activity may be associated with 

reduced PCa cell proliferation, STAT3 mediated signaling is an important component of the progression to 

CRPC and the development of anti-androgen resistance downstream of multiple pathways that are 

present in the PCa tumor environment.  

5. STAT3 as a Mediator or PCa Tumor Cell Phenotypic Plasticity: CSCs and EMT 

While re-activation of the AR is undoubtedly the hallmark of progression to CRPC, it is also clear 

that the ability of PCa tumor cells to retain some degree of phenotypic plasticity, or the ability to 

change into a variety of aggressive tumor cell types, such as cancer stem cells or cells that have 

undergone epithelial to mesenchymal transition (EMT), is also a critical component of advanced 

disease. CSC theory postulates that transformed progenitor cells drive continued expansion of tumors 

with invasive and metastatic propensity [49]. CSCs have been found in many cancers, including 

prostate [50], and prostate cancer (PCa) patients with tumors harboring an embryonic stem cell signature 

have poor survival outcome with tumors that are significantly more likely to metastasize [51]. Because 
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CSCs from prostate show resistance to chemotherapy and radiotherapy [52], it may be that the 

selective pressure of drugs used during CRPC treatment also cause PCa cells to acquire features of 

stem cells, leading to treatment resistance. Indeed, the frequency of PCa cells with stem markers 

increase in after castration in mice and CSC marker expression increases in basal PCa cells after  

ADT [53]. In addition to their intrinsic resistance to treatment and self-renewal properties, CSCs may 

promote treatment resistance through their ability to undergo EMT. EMT, a normally embryonic 

developmental program in which epithelial cells assume a mesenchymal phenotype during gastrulation 

and organogenesis, is activated by multiple signals in the tumor microenvironment, is regulated by many 

oncogenic signaling pathways and transcription factors, and is required for tumor metastasis [54]. 

Indeed, expression of mesenchymal markers is associated with invasiveness of PCa cell lines [55] and 

with high Gleason score and tumor metastasis in patients undergoing ADT [56].  

Emerging evidence suggests that STAT3 plays critical roles in maintaining CSCs and promoting 

EMT in PCa as well as head and neck, hepatocellular carcinoma, glioblastoma and breast cancers. This 

is not surprising as a large body of work has shown the importance of STAT3 in embryonic stem cell 

differentiation in cooperation with other central regulators of pluripotency, including Oct4 and Sox 

family transcription factors as well as LIF [57]. Importantly, it there is an inverse relationship between 

AR expression and/or activity and the CSC phenotype in PCa cells [58,59] and downregulation of AR 

increases STAT3 signaling which is required for CSC maintenance in Du145 and TRAMP C2 PCa 

cells. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells 

exhibiting high STAT3 activity and low AR expression [60]. Moreover, treatment of Du145 PCa that 

are positive for aldehyde dehydrogenase (ALDH), a marker of CSCs which express high levels of 

phosphorylated STAT3 with the potent and specific STAT3 inhibitor galiellalactone, reduces 

frequency of ALDH+ cells and induces apoptosis of Du145-ALDH+ cells [61]. Increased STAT3 

signaling has also been observed in breast cancer ALDH+ stem cell populations and targeted inhibition 

of STAT3 reduces the tumorogenic capacity of this stem population [62]. Moreover, targeting STAT3 

transcriptional activity using parthenolide, induces cell death in tumor initiating cells isolated from a 

number of PCa cell lines and prevents their growth in vivo [63].  

The requirement for STAT3 in CSC maintenance in PCa is intrinsically linked to its role as a 

critical component of IL-6 signaling. The importance of the IL-6/STAT3 axis has been linked to 

supporting CSC populations in a variety of cancers, including hepatocellular [64], breast [65], head 

and neck cancers and glioblastoma [66,67]. In PCa, STAT3 activation associated with decreased AR 

expression is mediated through increased production of IL-6 and treating mice with soluble IL-6 

receptor fusion protein significantly reduces CSC number and xenograft tumor growth [60]. Moreover, 

stem-like cells from patients with advanced PCa secrete high levels of IL-6 compared to normal 

prostate stem cells, and these cells express high levels of the IL-6 receptor and pSTAT3. In this study, 

they showed that inhibition of either IL-6 signaling using neutralizing antibody or a STAT3 inhibitor 

prevented the clonogenic potential of CSCs isolated from patients with high grade disease [68]. 

Moreover, IL-6/STAT3 signaling downstream of reactive oxygen species generation was found to be 

required for PCa spheroid formation [69].  

Interestingly, this requirement for IL-6 signaling, in PCa CSCs may underlie the observation that 

there is significant overlap or fluctuation between a CSC and EMT-like phenotype in may PCa cell 

lines. Indeed, many reports in PCa as well as other cancers have shown a correlation between 
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expression of EMT and CSC markers within the same cells. For example, after androgen deprivation, 

both EMT and CSC populations increase in mouse prostates and PCa cells [49] and PCa cells induced 

to an EMT phenotype, or CSCs isolated from PCa cell lines, strongly upregulate transcription factors 

expressed by CSCs or markers of EMT, respectively, and are highly tumorigenic in mice [70,71].  

IL-6/STAT3 signaling may be a bridge between these phenotypes, as it has been identified as a driver 

of EMT in PCa that requires STAT3 [72]. Importantly however, new evidence suggests that IL-6 is not 

the only factor that can drive STAT3 dependent EMT in PCa. For example, CCL2-dependent STAT3 

activation leads to EMT and inhibiting CCL2 prevents PCa cell line migration and invasion and in vivo 

xenograft growth better than AR targeting alone. Interestingly this mechanism occurs in cells with 

siRNA inhibition of the AR, further underscoring an inverse relationship between AR activity and 

the CSC/EMT phenotype [73]. In addition, ROS induction by EGF stimulation of PCa cells leads 

to transcriptional regulation of EMT via the E-Cadherin repressor Twist, which requires the 

phosphorylation of STAT3 and its subsequent activation of hypoxia inducible factor (HIF)1α[74]. 

TGF-β1 can also stimulate STAT3 phosphorylation and HIF-1α expression in PCa, leading to STAT3 

and HIF-1α mediated Twist expression and increased invasiveness [75].  

6. STAT3 and the Tumor Microenvironment in PCa 

Despite the numerous cell intrinsic pathways that endow tumor cells with their remarkable 

propensity for unrestricted growth, survival and dissemination, the interaction of cancer with their host 

and the microenvironment tumors create for themselves play equally important roles in the progression 

of disease. This is of course true for PCa, and newly emerging roles of the stromal cells, immune cells 

and secreted factors that mediate the interactions between these cell types and the tumor in the  

pre-metastatic and metastatic niches are being uncovered at a rapid rate. 

6.1. STAT3 in Angiogenesis 

Tumor mediated angiogenesis is a hallmark of solid tumors [76]; they require the formation of new 

blood vessels to supply oxygen and nutrients that support their growth and survival. Vascular Endothelial 

Growth Factor (VEGF) is the most important inducer of tumor mediated angiogenesis [77,78] and 

STAT3 is a direct transcriptional activator of VEGF [79]. It is no surprise therefore, that inhibition of 

STAT3 reduces angiogenesis by reducing VEGF expression and therefore VEGF receptor activity in 

multiple models of cancer. Reciprocally, in breast, skin, pancreatic, cervical, head and neck carcinoma 

and prostate cancer cell lines expression of constitutively active STAT3 up-regulates VEGF expression 

and tumor angiogenesis [80–82]. Moreover, in PCa, the intersection of STAT3 and the AR also has 

important implications for VEGF expression, as there are AR binding sites in the promoter of VEGF, 

further controlling its transcription [83]. The expression of STAT3 also correlates with another highly 

potent angiogenic factor called basic-Fibroblast Growth Factor (bFGF) both tumor-derived myeloid 

cell lines, lung cancer cell lines as well as lung cancer patient samples. This correlation was proven 

functionally when experiments knocking down STAT3 reduced expression of bFGF [84,85]. The 

importance of STAT3 as a central signaling node in PCa downstream of bFGF and VEGF is further 

underscored by recent work showing that delivery of endostatin, a non-specific inhibitor of FGF and 

VEGF angiogenesis and STAT3 siRNA using an attenuated Salmonella vector inhibited PCa xenograft 
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growth in vivo [86]. Interestingly, VEGF is also a target gene of the AR and its expression is 

dependent on STAT3 activity. Like in PCa, VEGF expression is important for hepatocellular 

carcinoma progression, which is often associated with hepatitis C viral infection, and HCV infection 

induces STAT3 and AR dependent VEGF expression [87]. 

As mentioned above, STAT3 also activates transcription of HIF-1α, which in itself is a 

transcriptional activator of VEGF, and STAT3 and HIF-1α cooperatively bind to the VEGF promoter 

to induce VEGF transcription [14]. Inhibition of the HIF-1α/STAT3/VEGF pathway using multiple 

plant derived agents and siRNA, have shown reduction of PCa tumor cell growth both in vitro and  

in vivo [88–92]. Moreover, combination therapy using specific inhibitors of HIF-1α and STAT3 

greatly reduce growth of Du145 and TRAMP C2 PCa cell lines and xenografts [93]. Interestingly, a 

feed forward loop seems to exist in PCa between STAT3, oncogenic signaling and HIF-1α mediated 

angiogenesis; as STAT3 can directly inhibit p53 and p53 acts as an inhibitor of HIF-1α, it may be that 

in PCa where STAT3 is constitutively active there is further downstream activation of HIF-1α and 

VEGF. This idea is supported by work showing that overexpression of HDM2, an oncogene that 

supresses p53 in cancer cells, in LNCaP PCa cell lines increases pSTAT3, HIF-1α and VEGF 

expression [94]. 

6.2. STAT3 in the Stromal and Bone Compartments 

Importantly, STAT3 signaling is not confined to regulating tumor cell intrinsic pathways that 

control the microenvironment; it is also a key player in the development of “reactive” or inflammatory 

stromal cells that have been shown to promote PCa tumor aggressiveness [95,96]. For example, 

activation of the canonical WNT/β-catenin signaling cascade in PCa stromal cells by fibroblast growth 

factor (FGF) activates STAT3 and promotes PCa tumor progression in vivo [97] and loss of TGFβ 

mediated suppression of Wnt3a via STAT3 in stromal cells promotes LNCaP cell proliferation and 

tumorogenesis in vitro and in vivo [98]. In addition, secreted heat shock proteins can also promote 

stromal reactivity in PCa. Secreted Hsp90 from PCa cell lines rapidly activates STAT3 in prostate 

fibroblast cell lines, leading to the activation of the pro-inflammatory NF-κβ pathway and secretion of 

inflammatory mediators known to augment PCa tumor survival and proliferation, such as IL-6 and  

IL-8 [99]. The activation of STAT3 in the stromal compartment is not limited to PCa; as examples, 

feed forward loops exist in breast [100] and ocular cancers [101] that induce the activation of STAT3 

and subsequent secretion of CCL2 by cancer associated fibroblasts (CAFs) which promotes tumor  

cell survival and proliferation. Reciprocally, secreted factors, including FGF, EGF, HGF, chemokines 

and cytokines, from stromal cells have paracrine effects which activate STAT3 in tumor cells. 

Mesenchymal stem cells from hypoxic stroma secrete VEGF and the chemokine CCL21 to  

promote the STAT3 dependent activation of PI3K/AKT/NF-κβ and migration of PC3 PCa cell lines 

and xenografts [102]. Moreover, secretion of inflammatory cytokines, such as TNFα from cancer 

associated fibroblasts drives EMT in tumor cells through NF-κβ and AKT mediated stabilization of the 

E Cadherin repressor, Snail [103]. Since STAT3 is an important signaling component in both of these 

pathways in PCa, it is likely that it is also activated downstream of paracrine TNFα arising from the 

stromal compartment to promote PCa progression.  
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While primary prostate tumors are supported through interactions with fibroblastic stromal cells, 

tumor cells that metastasize modulate hematopoietic stroma in the bone to establish themselves within 

that niche. Over 80% of men that die from CRPC have tumors that have metastasized to the bone. 

These bone lesions are primarily osteoblastic and a variety of bone and cancer derived growth factors 

and chemokines play important roles in tumor establishment and bone destruction in this metastatic 

niche [104]. One signaling pathway essential for normal bone metabolism and the pathogenesis of PCa 

bone metastases is the receptor activator of NF-κβ (RANK) pathway [105]. Interactions between 

RANK with its ligand in the bone compartment stimulates osteoclast differentiation and this pathway 

is also functional in PCa cells; Du145 and PC3 PCa cells expressing RANK respond to RANKL, 

increasing migration and invasive properties[106–109]. RANK signaling stimulates a variety of 

intracellular signaling cascades, including NF-κβ and AKT, in which STAT3 signals [105]. The 

importance of STAT3 in promoting bone metastasis in PCa is highlighted by the fact that that 

conditioned medium from PC3 PCa cells induces the production of chemokines and cytokines from 

osteoblasts that promote osteoclast generation and that STAT3 in osteoblasts is detectable in bone 

biopsies from patients with osteolytic metastases [110]. In addition, the canonical IL-6/STAT3 axis 

also plays crucial roles in the development of bone metastases for a number of solid tumors. IL-6 has 

multiple effects on RANK, TGFβ and Wnt signal cascades and the control of these pathways by IL-6 

results in degradation of bone that facilitates cancer metastasis to this site [104]. While radiographically 

PCa causes osteoblastic lesions in the bone, it has been suggested that the presence of osteolytic 

lesions in addition lead to bone weakness [111] and interestingly, IL-6 mediates the formation of 

hematopoietic stem cell derived osteolytic lesions in a bone model of PCa [112].  

6.3. STAT3 Mediated Immune-Suppression 

An essential component of the tumor microenvironment that dictates cancer progression is the 

immune system. Indeed, evading detection and clearance by innate and adaptive immune cells is a 

hallmark of cancer [113] and STAT3 plays equally important roles in regulating leukocyte cell 

function as it does in tumor cells, putting it at the crossroads of tumor immune evasion. Many 

studies have shown persistent activation of STAT3 in myeloid cells and T cells at primary tumor 

sites, leading to an immunosuppressive environment which allows for tumor angiogenesis, growth 

and metastasis [114] More specifically, STAT3 mediated immunosuppression has been linked to its 

function downstream of cytokines and T cell inhibitory or “checkpoint” molecules, such as IL-27, 

PDL-1 and HVEM that promote the differentiation of regulatory T cell subsets [115–118]. In PCa, use 

of the histone deacetylase inhibitor entinostat inhibits the induction of the T regulatory cell 

transcription factor FOXP3 in a STAT3 dependent manner, resulting in decreased survival of CRPC 

tumors [119]. STAT3 also plays an important role in innate immune cells targeted by PCa cells. For 

example, hormone resistant TRAMPC2 xenograft tumors recruit myeloid derived suppressor cells 

(MDSCs), a cell type well known for their association with aggressive solid tumors, in an IL-6/STAT3 

dependent manner, which promotes their growth in vivo [120]. Like MDSCs, tumor associated 

macrophages (TAMs) also can play substantial roles in preventing anti-tumor responses and 

macrophages co-cultured with prostate epithelial cells may be induced to this phenotype, producing the 

chemokine CCL4 in a STAT3 dependent manner which induces spontaneous prostate tumorogenesis 
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in normal prostate cells associated with the downregulation of p53/PTEN as well as the induction of  

EMT [73,121]. CCL2-STAT3 activation also occurs in macrophages exposed to anti-androgens like 

Enzalutamide and Casodex, enhancing the migratory capacity of the macrophage and subsequent 

invasiveness of PCa cells. Reciprocally, the CCL2-STAT3 axis also is activated directly in PCa cells 

downstream of AR signaling and combination therapy targeting the AR and the CCL2/CCR2/STAT3 

pathway effectively prevents EMT in PCa cells in vitro and suppresses xenograft growth in vivo [73,122]. 

The activation of STAT3 signaling pathways in PCa cells not only affects their interactions with 

macrophages and T cells, but B cells as well. Activation of IKKβ and STAT3 are activated in CRPC 

and that this signaling is required for the CXCL13 mediated recruitment of immunosuppressive B cells 

to the tumor microenvironment [123]. Importantly, as STAT3 signaling is central to transduction of 

signals from both IL-10 and IL-6 family cytokines as well as IFN, all key factors that shape the 

outcome of antigen presentation and effector T cell responses as well as PCa cell survival, it most certainly 

is a key driver of immunosuppression and tumor survival not just in PCa but for all malignancies.  

6.4. STAT3 as a Therapeutic Target for PCa 

Considering the wide array of signaling pathways that promote progression of CRPC that require 

STAT3, targeting this molecule for therapeutic benefit has been an intense area of investigation. This 

is true not only for PCa, but many other cancers as well. In Table 1, the extensive list of natural 

compounds, JAK kinase inhibitors, small molecules and cytokine pathway antibody therapies that can 

inhibit STAT3 function and their experimental effects on PCa are presented. Importantly, while all of 

these compounds are known to inhibit IL-6, JAK and/or STAT3 signaling, some of the listed effects on 

PCa cell lines and in vivo models were not necessarily associated with inhibition of STAT3 itself. 

While many of these agents have anti-proliferative effects on PCa in vitro or in in vivo xenograft 

models in immunocompromised animals, few have gone on to show efficacy as single agents in 

patients. For example, the IL-6/JAK/STAT3 inhibitors siltuximab (CNTO 328) and ruxolitinib  

(INCB-018242) failed Phase II clinical trials due to a complete lack of PSA50 response [124,125]. The 

failure of these IL-6 inhibitors as monotherapies may most likely be explained by the wide variety of 

other secreted factors that are known to activate STAT3 in solid tumors, including many of those 

mentioned above like VEGF, bFGF, EGF, chemokines (CCL2, 21, etc.) and cytokines in the IL-6 

family. Importantly, in the studies aforementioned, most inhibition of PCa growth, migration, 

invasiveness or metastasis in in vitro or in vivo models was achieved using STAT3 specific inhibitors 

rather than inhibition of IL-6. However, combination therapy using IL-6 targeting with chemotherapy 

may prove more effective, as a recent phase I trial with siltuximab and docetaxel in combination 

showed robust PSA decline in the patients [126]. While these results do not corroborate findings 

from a previous phase II study in CRPC patients combining silutixmab with mitxantrone, which 

showed no difference in progression free survival [127], this may be due to an inappropriate 

choice of endpoint in this study [128].  

By contrast however, targeting Hsp27 has shown promise in PCa clinical trials in combination with 

prednisone in patients with metastatic CRPC; up to 71% of patients were progression free at 12 weeks 

and 50% showed 50% reduction in PSA when treated with the Hsp27 antisense OGX-427 and 

prednisone [129]. While these effects are most certainly not limited to Hsp27 effects on STAT3, 
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preclinical studies using OGX-427 have shown that there is significant reduction of STAT3 activity in 

LNCaP with this treatment and that the cytoprotection afforded to LNCaP cells by Hsp27 

overexpression requires STAT3 [130]. The heterogeneous nature of PCa tumors combined with the 

multifaceted roles of STAT3 in survival and activation pathways in tumor cells, stromal cells and 

immune cells may answer why there is such diversity in effects of STAT3 inhibitors in patient 

responses; certainly future explorations will entail targeted combination therapy of STAT3 inhibition 

with other key pathways identified in individual patient tumors that have actionable targets. 

Table 1. List of different drugs targeting STAT3 signaling pathway in cancers. 

Drug Mechanism Effects on PCa Ref. 

Inhibitor class: Natural Products 

Curcumin* 
Dietary spice that has been shown to inhibit 
JAK1, JAK2 and therefore STAT3 tyrosine 

phosphorylation. 
Inhibits AR expression [131–133] 

Guggulsterone 
Stimulates tyrosine phosphatases responsible for 

de-phosphorylation of STAT3. 

Causes apoptosis in 
AR- PC3 cells through 

STAT3 inhibition. 
[134–136] 

Capsaicin* 
Inhibits JAK1 mediated STAT3 phosphorylation 

but also induces tyrosine phosphatases.  
Induces apoptosis in 

vitro and in vivo. 
[137,138] 

Celastrol 
Inhibits IL6 induced JAK2 phosphorylation of 

STAT3. 
Inhibits the TMPRSS-

ERG fusion. 
[139,140] 

Caffeic acid (CA)  
CAPE  

CADPE 

Caffeic acid and its derivatives all inhibit STAT3 
phosphorylation by blocking JAK2 activity along 

with other tyrosine kinases like Src. 

Anti-proliferative and 
anti-androgenic 

activity.  
[141–143] 

Curcubitacin  
B  
E  
F 

Chinese medicine family ranging from Curcubitacin 
A to T. Curcubitacin B has been studied the most 

and it prevents STAT3 phosphorylation by 
inhibiting JAK2. 

Curcubitacin E 
disrupts cytoskeleton 

in PCa cell lines. 
[144,145] 

Cryptotanshinone* 
Binds to SH2 domain of STAT3 and prevents 

dimerization. 

Inhibits STAT3 in PCa 
cell lines and 

suppresses AR 
activity, 

[146,147] 

3,3′-diindolyl-
methane* 

DIM has various anti-cancer properties. It inhibits 
JAK2 function. It is also important to note that 

DIM has anti-androgen activity.  

Heavily tested in PCa, 
affects AR activity, 

metastasis, epigenetics, 
Currently in Phase II 
clinical trials for PCa.  

[148–153] 

Emodin 
Pugrative resin extracted from rhubarb. Has 
various pharmacological activities including 

inhibition of JAK2. 

Inhibits PI3K pathway 
and AR activity in PCa 

cell lines. 
[154–156] 

Paclitaxel* 
Inhibit STAT3 phosphorylation and STAT3 

interaction with tubulin.  

Has been tested in 
many Clinical Trials 

for CRPC and 
metastatic PCa.  

[157,158] 

Evodiamine 
Suppresses pY-STAT3 by inducing expression of 

tyrosine phosphatase SHP-1. 
Causes apoptosis in 

various PCa cell lines.  
[159–161] 
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Table 1. Cont. 

Drug Mechanism Effects on PCa Ref. 

Indirubin 
Block VEGFR induced phosphorylation of JAK2 

and consequently STAT3. 

Induces apoptosis and 
reduces angiogenesis in 

PCa cell lines via 
STAT3 inhibition. 

[92,162,163] 

Inhibitor class: STAT3 Small Molecule Inhibitors  

S31-1757  

Binds to the SH2 domain of STAT3. The 
inhibitor binds to Arg-609 and Lys-591; both 

sites are essential in recognition and binding to 
the pTyr-705 residue of STAT3 (dimerization) as 

well as the pTyr-904 for binding to the gp-130 
subunit of the IL-6 receptor as well as other 

receptors like EGFR. 

Not yet tested in PCa [164] 

Sttatic 

Small-molecule that directly binds to the SH2 
domain of STAT3 preventing the interaction with 
the phosphor-tyrosine motif of the neighbouring 

STAT3. 

Not yet tested in PCa [165] 

STA-21  

Also known as Ochromycinone was discovered 
through a virtual database screen in silico and 

was shown to inhibit STAT3 SH2 and phosphor-
Tyr interaction. 

Tested against some 
PCa cell lines where it 

reduces growth through 
pY-STAT3. 

[166,167] 

S31-201  
Benzoic acid that was also discovered through in 
silico screen also inhibits dimerization of STAT3 

through the SH2 domain. 
Not yet tested in PCa [168] 

BP-1-102  

Software designed analog of S31-201 whose 
structural differences allow it to interact with all 

3 strutural sub-pockets in the SH2 domain of 
STAT3 causing a more potent inhibition of the 

dimerization. 

Not yet tested in PCa [169] 

LLL12 
Binds directly to Tyr705 of STAT3 to prevent 
phosphorylation and subsequent dimerization. 

Not yet tested in PCa [170] 

Inhibitor class: Kinase inhibitors  

SAR302503* Orally available inhibitor of Janus Kinase 2 (JAK-2). 
Reduces tumor growth 

in vivo through 
suppression of STAT3.  

[171,172] 

LS104 

A non-ATP-competitive small molecule inhibitor 
of JAK-2. This attribute of LS104 allows it to be 
used in combination with an ATP-competitive 

inhibitor for a synergistic effect. 

Not yet tested in PCa [173] 

Atiprimod  

Cationic amphiphilic compound that blocks 
transcription of IL-6 by inhibiting the NFκβ 

pathway as well as inhibits the phosphorylation 
of STAT3 at Tyr705 through a separate 

mechanism. 

In clinical trials for 
Neuroendocrine 

Carcinoma. Could have 
implications in PCa.  

[174–177] 
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Drug Mechanism Effects on PCa Ref. 

Ruxolitinib 
(INCB-018242)* 

Orally available a JAK1 and JAK2 inhibitor. 
Failed Clinical Trials in 

metastatic PCa. 
[124,178] 

Lestaurtinib 
(CEP-701) 

Inhibitor of a few tyrosine kinases including 
JAK2. It is structurally similar to 

staurosporine. 
Suppresses AR activity. [179,180] 

Tofacitinib 
Primarily a JAK3 inhibitor, but has some 

activity against JAK1 and therefore reduces 
pY-STAT3. 

Not yet tested in PCa. [181] 

CYT387* ATP competitive JAK1 and JAK2 inhibitor. Not yet tested in PCa. [182] 
Pacritinib* Orally available inhibitor for JAK2.  Not yet tested in PCa. [183] 

Sorafenib* SC-1 
SC-49 

Sorafenib and its derivatives are tyrosine 
kinase inhibitors that affect multiple kinases, 

including JAK2. They reduce pY-STAT3.  

Currently in many clinical 
trials for metastatic PCa. 

[184,185] 

AZD1480* ATP-competitive JAK2 inhibitor. 
Suppresses growth of  

PCa cell lines. 
[186,187] 

Auranofin 
A gold compound that inhibits STAT3 

phosphporylation through JAK1 and also 
inhibits NFκβ activity. 

Not yet tested in PCa. [188,189] 

AG-490  
Known as Tyrophostin B42 is a potent 

inhibitor of Janus Kinase 2 (JAK2).  
Induces apoptosis by 

supressing STAT3 activity. 
[190–192] 

XZH-5 

Inhibits Tyr705 phosphorylation and 
dimerization of STAT3 and possibly targets 

one of the tyrosine kinases responsible for this: 
mechanism is unknown. 

Not yet tested in PCa. [92,193,194] 

FLLL32 
Derived from Curcumin, this compound 
prevents phosphorylation of STAT3 by 

inhibiting JAK2. 
Not yet tested in PCa. [195] 

BMS-911543 
Orally available small molecule JAK2 
inhibitor. Active against V617F JAK2 

mutants. 
Not yet tested in PCa. [196,197] 

AC-430 
Small molecule JAK2 inhibitor, also active 

against the V617F mutant. 
Not yet tested in PCa. [1] 

CEP-33779 Small molecule JAK2 inhibitor. Not yet tested in PCa. [198–200] 

R723 
Small molecule JAK2 inhibitor, also active 

against the V617F mutant. 
Not yet tested in PCa. [201,202] 

Inhibitor class: IL-6 Antibodies/Inhibitors  

Sant7 

superantagonist of the IL-6 receptor capable of 
blocking all IL-6 receptor activity and 

therefore the activity of one of its major 
downstream transcription factors: STAT3. 

Sensitizes PCa cell lines to 
cytotoxic therapy by 

inhibiting IL6/JAK/STAT3 
pathway. 

[203,204] 
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Drug Mechanism Effects on PCa Ref. 

Tocilizumab 
Humanized monoclonal antibody against the 

human IL-6 receptor. Works against both soluble 
and membrane bound IL-6R.  

Not yet tested in 
PCa. 

[205] 

Siltuximab (CNTO 
328)* 

Chimeric murine-human monoclonal IL-6 
antibody. 

Failed Phase II 
clinical Trials in 

CRPC. 
[127,206] 

Inhibitor class: DNA or RNA targeting  

Platinum Compounds  
CPA-1  
CPA-7  
IS3-295  

Carboplatin  
Oxaliplatin  
Satraplatin 

Complexes like CPA-1, CPA-7 and IS3-295 
disrupt the STAT3 interaction with DNA in breast, 

prostate, lung and skin cancers. The exact site 
where these complexes bind to STAT3 is 

unknown. 

Platinum 
Compounds such as 

carboplatin, 
oxaliplatin or 

satraplatin have 
been used as 

chemotherapy 
agents in CRPC in 

clinics. 

[207–209] 

Double-Stranded 
Oligodeoxynucleotides 

decoys* 

DNA sequences that are the same as GAS or ISRE 
elements and would bind to the STAT3 dimers in 

place of the actual sequence in the genome. 

Not yet tested in 
PCa 

[210,211] 

G-rich 
oligodeoxynucleotides 

(G quartets) 

Very specific K+-dependent four-stranded DNA 
structures that occupy sites within the STAT3 SH2 

domains. The selection method for these G 
quartets can effectively be used to block any 

interaction in the cell. 

Supress growth in 
PCa cell lines 

through STAT3 
inhibition. 

[212,213] 

siRNA for STAT3 
Through formation of double stranded mRNA, 
siRNA can degrade mRNA for specific proteins 

using the DICER enzyme. 

Repeatedly shown 
to reduce STAT3 

activity in vitro and 
in vivo. 

[214–216] 

*: Drugs are in clinical trials for different cancers.  

7. Conclusions 

A wide body of work spanning multiple solid tumor types, including PCa, have shown an 

indespensible and multifaceted role for STAT3 signaling in promoting tumor progression. Importantly, 

STAT3 has pivotal roles in re-activation of the AR, an essential step in the development of mCRPC. 

This can occur via STAT3 cooperation with other highly relevant oncogenic signaling cascades such 

as PTEN/PI3K/AKT and the integration of signals by STAT3 received from multiple growth factors, 

Src kinases and serine/threonine kinases that themselves have known roles in the progression of PCa. 

The diversity of signaling pathways in PCa tumor cells in which STAT3 acts as a major signaling node 

translates into it being a driving force in not only tumor proliferation and survival, but also in 

determining cell phenotype, behavior and interaction with stromal cells and the immune system. It is 

not surprising therefore that therapeutic targeting of STAT3 is under intense investigation for the 

treatment of mCRPC. However, due to the promiscuous nature of STAT3 signaling in so many cell 
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types, the future success of potential therapies may possibly entail cell-specific delivery of STAT3 

targeting or co-targeting with other known drivers of PCa progression to obtain optimal results. This 

concept has been explored to enhance immune responses in hematopoietic cancers, whereby targeting 

STAT3 specifically in TLR9 expressing cancer cells can be achieved using CpG based delivery of 

silencing oligos results in growth inhibition of myeloma and myeloid leukemia [217,218]. Indeed this 

work also highlights that STAT3 targeting can also be a modality of immunotherapy, which will surely 

also be a critical feature of the future of mCRPC treatment [219]. Taken together, it is clear that 

STAT3 sits at the crossroads of multiple signalling pathways that are essential for the progression of 

PCa to advanced disease and uncovering specific mechanisms of action of STAT3 in PCa tumor cells, 

stromal cells and associated hematopoietic cells will bring the PCa community closer to exploring 

STAT3 as a therapeutic target. 
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