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Abstract: Much has occurred since our 2010 report in Cancers. In the past few years we 

published several extensive reviews of our research so a brief review is all that will be 

provided here. We proposed in the earlier reports that most relapses in breast cancer occur 

within 5 years of surgery and seem to be associated with some unspecified manner of 

surgery-induced metastatic initiation. These events can be identified in relapse data and are 

correlated with clinical data. In the last few years an unexpected mechanism has become 

apparent. Retrospective analysis of relapse events by a Brussels anesthesiology group 

reported that a perioperative NSAID analgesic seems to reduce early relapses five-fold. We 

then proposed that primary surgery produces a transient period of systemic inflammation. 

This has now been identified by inflammatory markers in serum post mastectomy. That 

could explain the early relapses. It is possible that an inexpensive and non-toxic NSAID can 

reduce breast cancer relapses significantly. We want to take this opportunity to discuss 

database quality issues and our relapse hazard data in some detail. We also present a 

demonstration that the computer simulation can be calibrated with Adjuvant-on-line, an 

often used clinical tool for prognosis in breast cancer. 
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1. Introductory Comments on Quality of Breast Cancer Databases 

Researchers who study relapse rates in breast cancer are aware that breast cancer databases often have 

accuracy problems especially after the first few years of follow-up. There are many reasons for this.  

The disease runs its course in over 15 years [1,2]. In that time, patients move and modify treatments, 

data base managers die, retire or change jobs, physicians die or retire, computer systems fail or are 

changed—just to name the obvious reasons. In Italy patients are known to be generally compliant with 

physician directives and move infrequently, so few patients there are lost to follow-up. The Milan data 

have been under the personal control of P. Valagussa, who looked after databases from important 

randomized clinical trials (e.g., the seminal trial on adjuvant CMF for node-positive early breast cancer) 

since the first patients were treated decades ago [3]. Valagussa is a no-nonsense person and very diligent. 

She was doing the data management and would be the first person to discover a problem and she would 

take action immediately. She does not have a PhD or is a physician but she has spoken on breast cancer 

to an audience of several thousand medical oncologists and clearly knows much about the disease. Her 

data are universally considered reputable and our experience substantiates that. We analyzed the Milan 

data, consisting of 1173 patients undergoing mastectomy without any other adjuvant treatment, with 

high confidence of their quality and accuracy. 

In particular, it should be emphasized that in this database the time of recurrence was determined with 

high accuracy. Indeed, the proper determination of the time to event is a basic requisite to avoid biases 

in uncovering the shape of hazard rate curve. In the Milan database, for each patient the time to 

recurrence was discussed by the clinical team: when recurrence was not detected due to symptoms 

inducing the patient to anticipate the planned clinical control (about 80% of cases), a review of both 

clinical and instrumental data was performed. 

This is not a trivial matter. To put quality of breast cancer databases in perspective, we can describe 

some real problems that we personally have encountered regarding such databases. One of us (MR) was 

Visiting Professor in Department of Medical Oncology at University of Texas Health Science Center—

San Antonio (UTHSC-SA) in 1989. This was in the department of the late William McGuire who was 

an early recognizer of the importance of estrogen and progesterone receptors in breast cancer [4]. MR’s 

project was to add estrogen receptor to a previously developed computer simulation using the  

San Antonio data base. This was a very large database consisting of medical records and frozen tissue 

and serum from 57,000 breast cancer patients. Access was provided to a Cray supercomputer in Austin, 

TX for this project. The UTHSC-SA staff did not want to provide a full copy of the entire database to a 

visiting scientist so a few key columns were downloaded and given to MR. The first step was to make 

sure the existing simulation was consistent with these data. We had technical problems making the 

simulation run on the supercomputer but with some effort these were eventually solved. Running the 

Cray with thousands of cases took several hours of CPU time. A serious problem occurred however 

when we determined that the existing simulation that worked relatively accurately with our own data 
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with 2%–3% error was producing an unacceptable 10%–20% error with the UT data. This was a very 

complicated hardware/software procedure and changing computer systems especially was a focus of our 

investigation. We examined and reexamined everything and could not find anything wrong. The problem 

remained. A few months later we discovered that the columns given to us were mislabeled. Instead of 

what we thought was date of relapse, we were actually given date of last office visit. With the proper 

labeling we got nearly our expected accuracy but too much time had elapsed to do the simulation  

of estrogen. 

While the investigation of why the errors were so high was underway, we got a backdoor look into 

the UTHSC-SA data management process. With such a large database to manage, about 15 young 

women sat in a row in a long lowly lit room each with a computer and telephone. They knew how 

important the project was and were intent on doing it well. We noticed a number of sticky notes on the 

wall in front of each person to remind them to contact such and such doctor’s office to get updates on 

individual patients. We also found out that these women were not highly paid. They were mostly spouses 

of US Army personnel stationed at the nearby Ft. Sam Houston. These soldiers were frequently 

reassigned to other bases so there was a steady turnover of women updating the UTHSC-SA database. 

It impressed us that with constant turnover of data entry personnel and management partly by sticky 

notes, it was possible for errors to slip in. The frozen tissue and fluids were stored in freezers in a 

basement and damaged by a flood in Louisiana a few years ago, but the UTHSC-SA database played an 

important and historic role in establishing HER-2/neu as a major subject in breast cancer [5]. 

Having this personal knowledge of what can go wrong even under the best of intentions in large 

database management, we appreciated the value of one competent person managing a relatively small 

database in Milan, where data were obtained by physicians performing follow-up visits and not by 

telephone. Computer simulation is mentally demanding and the researcher must have it lodged in his or 

her mind that these data are valid. You simply cannot do a good job of developing detailed and error free 

software to model human cancer growth when doubts exist of the data to be modeled. 

2. Results and Discussion 

Based on computer simulation of the Milan relapse data in 1997 we proposed that something 

happened at or about the time of surgery to initiate the early wave of relapses within 3–4 years of  

surgery [6,7]. There are other ways to represent relapse data but it is customary to measure time from 

primary surgery. This has the effect of allowing us to clearly see events that are synchronized to the 

surgical event. The early relapse hazard data in Milan data were too sharply peaked to be explained by 

any purely stochastic process. Something must have happened at surgery to synchronously kick-off 

metastatic activity for a significant number of patients. We could identify clusters of metastatic relapses 

that we attributed to single cells that started to divide at the time of surgery and avascular micrometastases 

that underwent an angiogenic switch at the time of surgery. The latter were most prominent for 

premenopausal patients with positive lymph nodes. We had a few theories but nothing stood out as 

overly compelling. As reported in the 2010 Cancers paper [1], we could explain much clinical behavior 

with the surgery-accelerated metastatic growth hypothesis. These include why adjuvant chemotherapy 

is most effective for premenopausal node positive patients and why mammography works better for 

women age 50–59 than it does for women age 40–49. 
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Most relapses in untreated breast cancer are in the early category. The late relapses we proposed to 

be stochastically driven events that are not synchronized to surgery other than cutting off the supply of 

cancer cells shed from the primary. 

Shortly after the 2010 Cancers paper was published, a report was presented by an anesthesiology 

group from Brussels including P. Forget and M. De Kock [8]. They retrospectively reviewed the outcome 

from 327 consecutive breast cancer patients treated at their hospital. Patients were given mastectomy 

performed by one surgeon and this was followed by conventional adjuvant therapy according to accepted 

consensus reports. The relapse outcome was presented grouped by what drug was used as analgesia. The 

surprising development was that one analgesic drug resulted in 5-fold lower relapse hazard 9–18 months 

post-surgery compared to all the other drugs. The best drug was ketorolac which was the only NSAID 

out of the six in the group. 

We were perhaps primed to consider this development. In 2005 we were asked to review a case report 

from Lebanon in which a 43 year old male with a smoking history was diagnosed with inoperable stage 

IIIA or IIIB poorly differentiated non-small cell lung cancer [9]. The prognosis for this stage is very 

poor with 5-year survival of approximately 10%. Treatment was chemotherapy and radiation. While 

relapse was inevitable, the patient was seemingly doing well 15 months after primary treatment. The 

patient then incurred a minor trauma to the right temporal skull bone; within a month, the patient reported 

a rapidly growing 7 cm tumor at the place of the trauma. Imaging revealed tumor had penetrated the 

skull with meningeal invasion, and while some compression was apparent, it did not yet invade the brain 

(lung cancer most often relapses to the brain or adrenal glands, but can recur virtually anywhere, 

including the skeleton). The patient died 15 days later of massive hemoptysis. 

The authors suggested that it was not a coincidence that both the growth occurred at the location of 

the trauma and that the growth started shortly after the trauma. Such a phenomenon has been reported 

by others [10–12]. The mechanisms suggested include some type of trauma-induced angiogenesis of a 

dormant micrometastasis or dormant malignant cells that happened to be at that place, or perhaps, there 

were no cancer cells at the site, but circulating cancer cells were entrapped there due to the trauma. 

Being that we had a quantitative computer simulation of breast cancer and assuming NSCLC growth 

was not too much different from breast cancer we could say with confidence that it was not possible that 

this case report showed surgery induced angiogenesis of some dormant deposit. The only explanation 

that seemed possible to us was that the minor trauma resulted in inflammation at the site of trauma and 

that circulating cancer cells were entrapped there similar to what the authors suggested. This was an 

exaggerated situation to be sure; however in our published comments we suggested that inflammation 

can be a facilitating precursor to tumor and may be a new and possibly important hematologic metastatic 

pathway [13]. 

So it was not too great a leap for us to consider that, since an NSAID at the time of surgery seemed 

to prevent early relapses according to the Brussels report, this may indicate that surgery somehow 

resulted in transient systemic inflammation and the inflammation was part of the initiation process for 

early relapses. We sensed the importance of this, teamed with the anesthesiologists, and analyzed the 

situation involving perioperative NSAIDs and early relapses and concluded there are a number of 

biologically sound ways by which the Brussels NSAID intervention prevented transient systemic 

inflammation following surgery and effectively blocked events leading to early relapse [14,15]. This 

could explain both the Milan data and the Brussels data. The implications are potentially important since 
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this is an inexpensive and non-toxic treatment, can be done anywhere in developed or developing 

communities and could (if Brussels data will be confirmed) reduce breast cancer relapses and mortality 

by 25% to 50%. This is all discussed in our recent reviews. 

Demicheli et al. have reported similar relapse patterns in other cancers such as NSCLC and Uveal 

Melanoma [16,17]. Perhaps this is a general effect rather than applying to only a few malignancies. Also 

Forget, De Kock et al. report other breast cancer databases showing this perioperative NSAID effect 

including breast conservation surgery and they also report a simple preoperative marker that would be 

related to the systemic inflammation [18–20]. 

What Other Databases Show a Multimodal Relapse Pattern? 

There are several papers reporting on recurrence or mortality that explicitly acknowledge the 

occurrence of multiple hazard rate peaks [21–35], and other papers where such peaks may be seen  

but are not explicitly acknowledged, although both the peak pattern and its explanations may be  

different [36–46]. Still another paper reports gene differences between early and late relapses [47]. 

Regarding the Yakovlev et al. paper [27], the main author is now deceased and the document itself does 

not state anything about multimodal relapse but one of us (MR) spent an afternoon in New York with 

him discussing this subject. Yakovlev clearly told us that there is a bimodal relapse pattern in his data. 

About peak patterns, discrepancies are not surprising and may be ascribed to different database 

quality levels (as previously explained), and different details of the analysis. The discretization of time, 

for example, is crucial for detecting hazard rate structures: in our experience analyzing events in a  

3 month time lag allowed detecting the fine structure of premenopausal recurrence risk during the first 

three years (Figure 1) that was elusive in the previous 6 month analysis and that is undetectable in a  

12 month analysis. Moreover, it is essential to have a clear definition of the analyzed variable,  

which should be unambiguous (e.g., distant metastasis, death for any cause, etc.). In this regard,  

it is instructive to examine the excellent paper of Karrison et al. aimed to evaluate the limit of breast 

cancer dormancy [25]. The authors “did not see evidence for a second peak in the hazard curve”, an 

occurrence that may be ascribed to the event they analyzed (“first recurrence or death from breast 

cancer”). Indeed, while the events “first recurrence” and “death from breast cancer” reliably identify 

patients who are not cured, the combined event is not a useful end point for study of the time-dependent 

structure of the hazard of each of the two events. This point is supported by the fact that when the yearly 

discrete hazard for time to death from all causes for breast cancer patients from the Karrison et al. study 

(1547 patients) and from the Milan study (1173 patients) were compared, both curves display an initial 

peak at about 3 to 4 years and a second peak at 8 years with an impressive similarity in values [48]. 

The naive evaluation of Kaplan-Mayer (KM) curves suggests the occurrence of peaks without other 

details. Indeed, the confidence on the occurrence of “true” peaks instead of artifacts from data processing 

relies on their constancy when: (a) different smoothing modalities are utilized (we used both Kernel-like 

smoothing and more sophisticated models such as for example flexible piecewise exponential regression 

models) and (b) different databases and different subsets of patients are analyzed. 

Referring to Figure 1, these patients were untreated with adjuvant therapy. Trimodal relapse pattern 

is apparent in this case whereas a bimodal pattern is usually seen for treated patient groups [15].  

The peak in hazard at 10 months from surgery is the result of surgery-induced angiogenesis of dormant 
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avascular micrometastases according to the computer simulation. Likewise the 30 month peak is 

identified as single malignant cells that are induced into division at the time of surgery and then 

stochastically undergo angiogenesis. The broader peak at 50–60 months according to the simulation 

represents what may be called natural history relapse events and apparently are not stimulated into 

growth by surgery. The top of that peak identifies when the benefit of removing the primary tumor that 

sheds metastatic cells first appears so that may be considered temporally tied to the surgical event.  

The remaining very small hills and valleys after the 50–60 month peak are apparently noise due to very 

few events and according to the simulation are not associated with or synchronized to the time of surgery. 

Are the 10, 30 and 50–60 month peaks real or might they be merely an artifact of the numerical analysis? 

That is a key question and reasonable to ask. We can say these peaks are routinely identified in our 

analyses, no matter what methodology is adopted, and the timing of the events is constant and 

quantitatively consistent with our model. 

Figure 1. Recurrence hazard rate for Milan premenopausal patients. 

 

Looking at Figure 2, where the same data as in the prior Figure 1 are presented in the more common 

disease free survival (DFS) format, it is clear that the plateau between 3 and 5 years represents the end 

of the early relapse events and the late relapse events are shortly to be seen. Indeed, the hazard rate is 

related to the slope of the KM curves. With this concept in mind we may look at KM curves and 

qualitatively detect presence of structured hazard rates, such as in the Fisher et al. paper (Figure 3) [41]. 

This figure has been seen for 30 years but it was only after we identified the multimodal distribution in 

the Milan data was it clear that Fisher et al. data also show a multimodal relapse pattern. Looking at the 

node negative curve at the top, surgery alone cures 80% of such patients. Of the 20% of patients that 

relapse, half are in the early wave of 1–3 years post-surgery and the other half are late relapses greater 

than 5 years post-surgery. For the highest risk category at the bottom, surgery alone is clearly inadequate 

since all patients relapse and 90% of these are in the early category and 10% in the late category. This is 

visually and quantitatively what we found for the Milan data. From this figure, the large magnitude of 

the early relapses is apparent. Over half of all relapses in untreated patients are in the early group. 

Visually apparent multimodal data from another clinical group are presented in Figure 4. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 12 24 36 48 60 72 84 96 108 120

R
e
la

p
s
e
 H

a
z
a
rd

Months

Milan data premenopausal 
patients 

Structure can be seen in early peak



Cancers 2014, 6 2349 

 

 

Figure 2. Milan data in disease-free survival format for premenopausal patients. Modified 

from Bonadonna et al. [3].  

 

Figure 3. Disease-free-survival reported (modified) from Fisher et al. [41]. 
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Figure 4. Saphner et al. data (Saphner et al. ECOG trials, Hazard of Relapse). These data 

which combine approximately 10 clinical trials for a variety of controls and adjuvant 

therapies clearly show bimodal hazard. The error bars are small as a result of the large 

number of patients. Modified from Saphner et al. [39]. ECOG is the Eastern Cooperative 

Oncology Group. 

 

3. Can the Simulation Be Adjusted to Match Specific Clinical Data? 

As an exercise and to demonstrate that the simulation can be adjusted to agree with clinical data,  

we used the Milan data for premenopausal patients and examined to what exact clinical situation  

this corresponds. We used the often used and clinically validated website Adjuvant-on-line 

(http://www.adjuvantonline.com/index.jsp). Milan data were used as an intermediate connection between 

the simulation and Adjuvant. Milan data are for untreated patients. As Adjuvant provides only 10 year 

disease-free-survival, it could correspond to different sets of prognostic factors. For the Milan 

premenopausal data, the corresponding Adjuvant situation could be for a patient 45 years of age, tumor 

size 2.1 to 3.0 cm, N-, ER unknown, Grading unknown. It also could be for a patient 45 years of age, 

tumor size 1.1 to 2.0, N+ 1–3, ER unknown, Grading unknown. Hazard of relapse for these data and 

simulations are shown in Figure 5 and corresponding DFS data are shown in Figure 6. 

In Figure 5 we are comparing the Milan data for premenopausal patients and the simulation.  

We adjusted the simulation to try and agree with hazard and DFS for the Milan data. The cohort that was 

generated using the simulation consisted of a linear combination of patient groups that were predisposed 

to relapse at approximately 10 or 30 months after surgery as a result of surgery induced activity plus a 

group that would relapse with stochastic events only. No other adjustments were made to produce 

Figures 5 and 6. This calibration exercise was conducted on a trial and error basis with much data traffic 

between US and Italy where the simulation and analysis software respectively reside. Initial figures were 

far apart and, as adjustments were made, the simulation and Milan data became more similar. 

Correspondence is good although slightly less than perfect. 

  

http://www.adjuvantonline.com/index.jsp
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Figure 5. Simulation of Milan data in blue and actual Milan data for premenopausal patients 

in red. Format is hazard of relapse. We are comparing the Milan data for premenopausal 

patients and the simulation. We adjusted the simulation to try and agree with hazard for the 

Milan data. Time scale is 120 months. 

 

Figure 6. Simulation of Milan data in blue and actual Milan data for premenopausal patients 

in red. Format is disease free survival. 

 

4. Discussion—Analysis and Synthesis 

We two authors each have backgrounds in physics in addition to doing cancer research. Physicists 

have long considered analysis and synthesis to be a very useful strategy to help understand a complex 
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item. By taking the item apart, examining the individual components and demonstrating how they work 

together by reassembling the pieces, the scientists demonstrate some new level of understanding.  

That is precisely what we have done in this breast cancer study. We found two early and one late relapse 

modes. We have quantified their separate growths in a computer simulation and shown the temporal 

connection to the surgery event. We show in Figures 5 and 6 that the three relapse modes together can 

visually resemble clinical data from the Milan database and also agree with Adjuvant-on-line specific 

clinical situations. 

Physicists also ascribe to the scientific method that starts by proposing a testable hypothesis to explain 

data. An important step here is to attempt to correlate this hypothesis with other observations that have 

not previously been connected. This has been done as we reported in Cancers in 2010 among which is 

the ability to explain why adjuvant chemotherapy works best by far for premenopausal node positive 

patients and also why early detection of breast cancer is more effective for women age 50–59 years than 

it is for women age 40–49 years. We eagerly await the opportunity to prospectively confirm a key 

prediction that a perioperative NSAID can dramatically reduce early relapses at low cost and low toxicity. 

One such trial is scheduled to begin this year in Seoul, South Korea at the Samsung Medical Center. 

5. Conclusions 

We have verified that at least in this application a relatively small database consisting of good quality 

data is far more important than one of large size and questionable quality data. We compliment and thank 

Pinuccia Valagussa for developing and providing the Milan database upon which all this is based. 
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