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Abstract: Prostate cancer development and progression is the result of complex interactions between
epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation
by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established
component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR
signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected
in the consistent finding of a strong association between stromal AR expression and patient outcomes.
In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and
prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of
fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in
stroma dramatically influences disease progression.
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1. Introduction

Histological assessment of solid tumours has been used in combination with clinical parameters for many
decades to inform both diagnosis and management decisions. In the emerging era of immunotherapeutics
and personalized medicine, histology and molecular assessment is playing an increasingly important
role in defining prognosis and individualised treatment options. Assessment now often includes
protein activity and mutation status in addition to extent and level within a tumour sample, as well
as markers of tumour activity, mitosis and turnover. For breast cancer, levels and extent of oestrogen
receptor (ER), progesterone receptor (PR, as a marker of ER function) and HER?2 are used to broadly
categorize a tumour and inform on the benefit of anti-estrogen agents (e.g., tamoxifen) or tyrosine
kinase inhibitors. Similarly, assessment of colon cancer includes EGRF, KNAS and UHA1; of melanoma,
BRAF,; of lung cancer, EGRF, ALK, KRAS and ROS-1; and of leukaemia a panel of markers for typing.
Prostate cancer remains an anomaly in this regard. Despite being the most common, non-skin, cancer,
and the leading cause of cancer related death, prognosis and treatment is generally defined using
clinical and pathological parameters established decades ago. The predominant histological patterns of
glandular disorganization are captured in the Gleason score, which together with clinical assessment
and/or medical imaging regarding the extent of disease within the prostate and any extracapsular
disease, are combined to provide prognostic information. Serum prostate specific antigen (PSA) testing
was introduced over 20 years ago, and although useful in stratification of patients for investigation,
risk of recurrence following definitive treatment and disease monitoring, is not a particularly useful in
a prognostic sense. Intriguingly, the lack of prognostic markers available to patients and clinicians
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is predicted to have led to both over and under treatment of patients, with financial and social
implications for both patients and the health care system. Currently, no histological markers are
routinely used to determine prostate cancer prognosis, or inform on the usefulness of androgen
ablation strategies. A key limitation in this regard is the multi-focal nature of most prostate cancers,
and the inherent heterogeneity within cancerous epithelia of individual patients. One alternative being
explored is the assessment of reactive changes occurring within the surrounding stroma.

Despite being generally regarded as a simple supportive structure for the specialised cells within
an organ, the stroma is actually vital to organ development and homeostasis, and plays a significant
role in both carcinogenesis and metastasis. The stroma is composed of a mixture of smooth muscle
cells, fibroblasts, immune cells, lymphatics, vasculature and extracellular matrix (ECM) as well as via
arich array of secreted factors, hormones, enzymes and other soluble second messengers. Along with
direct cell-cell interaction, these factors mediate communication between stromal constituents and
bidirectional signalling between stromal and epithelial compartments, which is observed in all organs
and is vital for normal development. With carcinogenesis and with tumour growth, substantial changes
are found in stromal constituents and behaviour. Cancer stroma is characterised by a loss of smooth
muscle cells and a predominance of activated myofibroblasts, termed cancer associated fibroblasts
(CAFs), that enable carcinogenesis, stimulate tumour growth and contribute to invasion [1]. The CAFs
which surround the cancerous gland development from multiple sources, circulating marrow derived
progenitors, adipose tissue, and fibroblasts from distant organs, but a vast majority are reported to
develop from the resident fibroblast population [2,3]. Indeed, the extent of transformation of the
fibroblasts can associate with disease progression, potentially through providing paracrine cues to
disrupt and disaffect homeostasis. The prostate provides a compelling example of intra-compartmental
signalling that influences normal development and malignant cell behaviour. The growing appreciation
of the role played by prostate stroma in carcinogenesis, tumour behaviour and response to conventional
therapy is driving new innovation in research and treatment.

Prostate cancer remains the most commonly diagnosed non-skin malignancy and second leading
cause of cancer related death in US men, with invasion and metastasis from the primary site reducing
patient survival by 50%. Current clinical nomograms utilize imaging, clinico-pathological parameters
and serum leak of epithelial produced PSA to broadly stratify cancers according to risk of progression
following treatment, but cannot accurately predict tumour progression at the time of diagnosis, or the
timeframe in which progression might be clinically significant. As a consequence, it is believed
that many patients either incur treatments and their associated side effects unnecessarily, or are not
receiving the appropriate therapy or monitoring for aggressive disease.

Androgens are a key factor in prostatic development, homeostasis and malignancy. With respect
to the former, early in vivo studies showed that the absence of hormone responsive stroma prevented
epithelial cell differentiation and organ and glandular development [4,5]. Nonetheless, the vast
majority of androgen and androgen receptor (AR) research has been focussed on epithelial cancer cells
because of the response of these cells, and prostate tumours, to androgen deprivation. The purpose
of this review is to provide an emerging review of hormone signalling in the fibroblasts and
myofibroblasts of the prostate (the most prominent stromal cells in prostate cancer) and how it
controls stromal-epithelial interactions in the primary tumour setting, and to describe how changes in
this pathway are emerging as a key determinants of prostate cancer progression and outcome.

2. Stromal AR in Prostate Cancer Outcome

Continued growth of metastatic prostate cancer cells during complete androgen blockade, in both
clinical and experimental settings, is the result of mechanisms permissive for continued function of AR
and/or those of its activated pathways despite combined AR/androgen targeting. Although increased
AR expression in the epithelial cancer cells is one such mechanism, there is inconsistent evidence that it
contributes to development or progression of the primary tumour. As reviewed in Tamburrino et al. [6],
epithelial AR levels in primary prostate cancers has been inconsistently related to patient outcome,
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with 20% of studies suggesting high cancer AR as a prognostic marker of good outcome, 26% showing
high AR as a prognostic marker of poor outcome, and the majority showing no relationship (Table 1).
In comparison, for the smaller number of studies looking at stroma, a loss of stromal AR has universally
been related to the cancerous state, high risk clinical parameters, disease progression and/or poor
outcome (Table 2). In these studies, the term stroma refers to the cells directly adjacent to the epithelial
or cancerous cells, which are usually noted for their fibroblast appearance. In a study of twenty
patients, Mohler et al., showed lower intensity immunostaining of AR in cancer stroma compared
to regions of benign prostatic hyperplasia [7], but there was no correlation with cancer progression,
possibly due to the small cohort size. However, in larger studies, statistically significant associates
were made. In four studies, in cohorts of 53 patients (radical prostatectomy (RP) samples), 152 patients
(two separate cohorts, 78 transurethral resection of the prostate (TURP), and 74 biopsy), 96 patients
(RP), and 53 patients (RP), low stromal AP was significantly associated with biochemical relapse
and response to castration [8-11]. Other clinical parameters were also associated, including Gleason
score and disease stage. We have shown in a cohort of 64 patients that low stromal AR expression
inversely associates with patient outcome, to which we later added that the using FKBP5 as a marker
of AR activity could be combined with AR levels to for an even stronger inverse relationship with
patient outcome [12,13]. Importantly, this cohort had benign and cancers samples taken from each
patient, which showed that the loss of AR was specific to the cancer associated stroma. Overall,
all currently published patient-based studies indicate that lower AR in prostate cancer stroma is
associated with disease progression and/or worse outcome, implying that stromal AR is protective.
It will be important to know if this has prognostic significance, both in terms of patients most at risk
of developing advanced disease and the potential response of an individual tumour to androgen
deprivation. These findings are distinct from the potential beneficial effects of stromal AR in preventing
caner initiation and development, which is discussed further below.

Table 1. Expression of AR in cancerous epithelial tissue and association with outcomes. RP = Radical
prostatectomy; TURP = Transurethral resection of the prostate; IHC = Immunohistochemistry;
RT-PCR = Real time polymerase chain reaction.

Authors Specimens Cohort Size Methods Effect on Prostate Cancer Outcome
[14] Biopsies 62 IHC Higher AR, better prognosis
[15] Biopsy, RP and TURP 42 IHC Higher AR, better prognosis
[16] Biopsies 90 IHC Higher AR, better prognosis
[17] RP 197 IHC Higher AR, better prognosis
[18] RP 105 IHC Higher AR, better prognosis
[19] mixed RP, TURP, Biopsy 42 IHC Higher AR, better prognosis

[9] RP 96 IHC Higher AR, biochemical relapse
[20] RP 115 RT-PCR Higher AR, biochemical relapse
[21] RP 340 THC Higher AR, biochemical relapse
[22] RP 52 THC Higher AR, biochemical relapse

[8] RP 53 IHC Higher AR, biochemical relapse
[22] RP 52 IHC Higher AR, worse prognosis
[23] RP 640 IHC Higher AR, worse prognosis
[24] mixed RP/biopsy 66 IF Higher AR, worse prognosis
[11] RP 56 IHC Not prognostic
[25] RP 232 IHC Not prognostic
[26] TURP 68 IHC Not prognostic
[27] RP 64 IHC Not prognostic
[28] Biopsies 17 IHC Not prognostic
[29] RP 121 RT-PCR Not prognostic
[30] TURP and RP 81 IHC Not prognostic
[31] RP and metastases 119 IHC Not prognostic
[32] RP 2805 IHC and RT-PCR Not prognostic
[33] RP 172 IHC Not prognostic
[34] TURP 24 IHC Not prognostic
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Table 1. Cont.

Authors Specimens Cohort Size Methods Effect on Prostate Cancer Outcome
[10] TURP + biopsy 154 IHC Not prognostic
[35] RP 43 IHC Not prognostic
[7] RP 20 IHC Not prognostic
[12] TURP 64 IHC Not prognostic
[36] RP 53 branched chain DNA Not prognostic
[37] RP 10 IHC Unavailable
[38] Biopsies 39 IHC Unavailable
[39] RP 26 HC Unavailable
[40] RP 50 HC Unavailable

Table 2. Expression of AR in cancerous stroma and association with patient outcomes. RP = Radical
prostatectomy; TURP = Transurethral resection of the prostate; IHC = Immunohistochemistry.

Authors Specimens Cohort Size Methods Effect on Prostate Cancer Outcome
[41] RP 44 IHC Low AR, biochemical relapse
[8] RP 53 IHC Low AR, biochemical relapse
[9] RP 96 IHC Low AR, biochemical relapse
[12] TURP 64 IHC Low AR, PCSM
[10] TURP + biopsy 152 THC Low AR, worse prognosis
[11] RP 56 IHC Low AR, worse prognosis
[7] RP 20 IHC (low AR, no association with Gleason)

3. Androgen Signalling

Androgens act primarily through their cognate receptor, the androgen receptor (AR), which is
a potent transcription factor with broad tissue distribution and a major mediator of cellular function and
homeostasis. Androgens are vital for growth and maturation of the prostate. However, the mechanism,
regulation, and outcomes of AR signalling are based primarily on whole body physiological responses,
and molecular studies in predominantly cancerous epithelial cells. AR signalling (Figure 1), in most
basic terms this starts with cellular internalization of circulating androgens such as testosterone
(T). Androgens then bind directly to the AR with variable affinity, or in the case of T may be
first metabolized to the more potent dihydrotestosterone (DHT) via the enzyme 5-alpha reductase.
Steroid binding to the AR occurs in the cytoplasm, where the receptor resides in an inactive state in
complex with molecular chaperones, such as HSP90, and other proteins. Binding and activation in the
initiation of genomic signalling pathways including PI3K-AKT, and ERK. Activation of AR also results
in alteration sin the interaction with chaperones, allowing for translocation to the nucleus via movement
along microtubules. Nuclearisation culminates in the interaction of the AR with chromatin, and
ultimately regulation of the cellular transcriptional profile. The transcriptional response to androgens
is modulated by the availability of steroid and the cellular complement of pioneer, coregulatory and
chaperone proteins.
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Figure 1. Schematic of androgen receptor (AR) signalling in fibroblasts/myofibroblasts. Serum testosterone
enters the cell, converts, via the 5x-reductase enzyme, into dihydrotestosterone (DHT). This then binds
to the AR which resides in the cytoplasm, bound to chaperones, causing a conformational change
and activation of the AR. The AR can then cause a series of non-genomic effects via kinase pathways,
but also shuttles via microtubules to the nucleus which it enters via nuclear pore complexes (NPC).
Concomitantly, activated AR also causes nuclear translocation of focal adhesion proteins such as Hic-5
(thus altering adhesiveness and movement of cells) which it uses as a co-regulator, along with a pool
of cofactors and other co-regulators (some of which are fibroblast/stroma specific) to combine with

transcriptional machinery and regulate gene expression.

4. How AR Signaling in the Stroma Works

Despite observations of AR in the stroma being important in all stages of prostate development
and carcinogenesis, until recently little was known about the mechanics of AR function in that cellular
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compartment. In the benign prostate the predominant stromal cells are smooth muscle cells, a majority
of which strongly express AR. Myofibroblasts are the predominant cell type present in the tumour
stroma, and although they can be seen to express AR and show physiological and molecular responses
to androgens in vivo [12], primary human fibroblasts shed AR expression within 1-2 passages in
culture. To overcome this limitation, two engineered human prostate myofibroblast cell lines have
been developed, WPMY-1 and PShTert-ARs [41,42]. Of these two, only PShTert-AR cells stably
express AR, which has a similar AR binding patterns and gene regulation to primary and in vivo
mesenchyme [12,43], as well as being able to inhibit fibroblast proliferation replicative of in vivo studies
of human prostate, as well as being able to excite epithelial cells proliferation just as mesenchyme in
mouse recombination studies [12]. Furthermore, androgen action in these myofibroblast cells lines
validates in patient NPF and CAFs [12].

In general terms, the molecular action of AR function in fibroblast lineage cells appears to follow
the same general basic principles as AR in epithelial cells, but with some key differences that radically
alter the cellular response (Figure 1). At the front end, HSP90 appears to be equally essential for
AR function in both cell types [44], and the receptor traffics to the nucleus only following steroid
binding [45]. Importantly however, when we recently compared the global transcriptional response
to androgens, only around 10% of genes regulated by androgens in prostate myofibroblasts were
common with those regulated in epithelial cells [12]. This appears to be the result of lineage-specific
differences in the expression of co-regulators and pioneer factors. Cofactors are a diverse set of proteins
that exert their effects on AR by influencing stability, ligand binding, interaction with other proteins,
DNA interactions via modification to histone acetylation, methylation and sumoylation, recruitment
of the transcriptional machinery or baseline activity. The expression and ratio of co-regulators are
different between epithelial cells and non-epithelial cells of the prostate [46]. As an example, we
have shown that the mesenchymal specific co-regulator, Hic-5 affects regulation of over 50% of genes
targeted by androgen receptor in fibroblasts [45]. Pioneer factors are proteins that regulate targeting
and/or activity of transcription factors to specific regions of DNA. Unlike epithelial cancer cells that
utilize the forkhead protein, FOXA1 as the primary AR pioneer factor [47-50], we have shown that
prostate fibroblasts appear to use the AP1 complex, and JUN in particular, leads to regulation of distinct
molecular pathways in fibroblasts [43]. As one example, JUN driven fibroblast specific regulation of
licensing factor FBXO32 by AR results in a switch to inhibiting of fibroblast proliferation by androgens.

5. Stromal AR in Prostate Development

In the embryonic/developing prostate the urogenital mesenchyme (UGM) is comprised of
AR positive precursors to fibroblast and smooth muscle cells, similar to myofibroblasts [51-53].
Supporting a role for stromal androgen signalling throughout prostate development, expression of
the AR occurs higher and earlier in this compartment than in epithelia, and is maintained throughout
maturation. This has been demonstrated in tissue recombination models, where AR positive UGM
leads to normal growth and glandular differentiation of urogenital epithelia (UGE). In contrast, AR
negative mesenchyme from skin results in differentiation of UGE to stratified squamous epithelia [4,54]
(Figure 2A). Studies utilizing cells extracted from testicular feminized (Tfm) mice, which have a
non-functional AR, further clarify the importance of stromal androgen signalling. When wild type (WT)
UGM is combined with UGE from Tfm mice, prostatic structures develop normally. In contrast, tissues
generated from Tfm UGM and either WT UGE or Tfm UGE fail to generate glandular architecture [55]
(Figure 2A). Additional studies demonstrate poor differentiation of prostatic ducts and glandular
acini in mice that lack stromal AR [56] (Figure 2A). Although androgen signalling in the mature
prostate epithelia is primarily responsible for secretion of seminal fluid constituents, including prostate
specific antigen (PSA) [57], this process can also be modulated by the prostatic stroma [58,59]. In the
mature prostate, AR positive smooth muscle cells are the predominant cell type. In vitro, AR action
in fibroblasts increases epithelial AR activity, as measured by in vitro assays of AR activity [60], and
results in increased in epithelial PSA production [61]. Collectively, these findings implicate stromal
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AR activity in development, maintenance and biological function of adjacent epithelia. More broadly,
there appears to be a universal role for mesenchymal hormone signalling in the development of
both male and female reproductive organs, with expression of the appropriate hormone receptors
in adjacent stroma critical for subsequent organ-specific responses to oestrogen, progesterone, and
testosterone [62-65].
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Figure 2. Impact of AR expression on prostate development and carcinogenesis. (A) Stromal AR is
required for prostate development. In mouse models combining embryonic urogenital epithelia (UGE)
with AR positive urogenital mesenchyme (UGM) results in normal epithelial structures, which doesn’t
occur when UGE is combined with AR negative or non-functionally AR containing mesenchyme;
(B) AR is needed in stroma for cancer initiation. When transformed BPH-1 cells are grown in mice
in the presence of AR positive mesenchyme cancer initiation and development can occur, but when
combined with AR negative stroma, only small, irregular, non-cancerous glands form.

6. Stromal AR in Carcinogenesis

The role of stromal androgen signalling in prostate carcinogenesis is becoming more and more
prominent [66-68]. Stromal AR activity is also required for tumour formation in prostatic epithelia in
recombinant mouse models [69]. AR negative initiated epithelial cells were implanted into castrate
mice flanks along with AR negative or positive UGM. Mice were then treated with or without androgen
and estrogen. In mice implanted with epithelia alone, there was no tumour formation under any
treatment condition. Where mice were implanted with initiated epithelium and AR positive UGM,
tumour formation occurred in 36% (n = 30/84) of hormone treated mice but <0.5% (n = 1/218) of
untreated mice [69]. Whilst that study did not specifically compare AR positive versus AR negative
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UG, it did demonstrated the importance of stroma in early stage cancer, and the potential role
of stromal AR signalling in tumour formation. A role in early transformation was addressed more
recently by implantation of initiated prostate epithelia (via knockdown of tumour suppressors PTEN
and p53) with wild-type or Tfm mesenchyme [70]. When initiated, epithelia were combined with WT
mesenchyme, tumour formation occurred following hormonal stimulation (Figure 2B). In contrast,
when combined with the AR negative Tfm mesenchyme, the result was merely the development of
small non-invasive growths (Figure 2B). Significantly, the presence of AR in the epithelial cells did
not affect those processes [70]. Similarly, the spontaneous development of prostatic intraepithelial
neoplasia seen in PTEN+/ — mice, was decreased in offspring bred with stromal AR knockout mice
(ARKO) [71]. Furthermore, inhibiting the AR chaperone, HSP90, in CAFs, thereby reducing the AR
activity, retards growth of patient derived cancer cell and CAF recombinant xenografts in mice [44].

AR positive stroma is also capable of inducing prostate tumour formation from grafted AR
negative benign prostatic hyperplasia (BPH)-1 cells [69], but is hindered in mice which lack stromal AR
in comparison to stromal AR positive mice [72]. Perhaps significantly, in men of African descent where
there is a higher incidence of prostate cancer compared to Caucasian men, there is reportedly higher
stromal AR expression [73]. Regardless, the evidence collectively supports stromal AR signalling acting
to induce prostate cancer cell proliferation and potentially play an important role in early prostate
carcinogenesis. Thus, it would appear that stromal AR plays an important and often overlooked role
in early prostate carcinogenesis. It is important, however, to distinguish this from the potential role of
decreased stromal AR in cancer progression and metastasis (see Section 2).

7. Why Is Stromal AR Lost?

Despite the relationship between clinical outcome and stromal AR loss highlighted in Table 2, the
mechanisms underpinning altered AR expression in this compartment in some, or perhaps all, prostate
tumours are unknown. One hypothesis is AR negative/low CAFs represent a subgroup of an initial
CAF population that undergoes clonal selection in some manner. We have previously reported that
AR action in myofibroblasts inhibits their intrinsic proliferation [12], which might provide a selective
pressure for the AR negative/low CAF population over those that highly express the receptor. A second
tier question is how variable AR expression occurs in stroma in the first place. Cellular variability in
ligand availability is one possibility. We know that AR signalling in stroma is less sensitive than in
epithelial cells, and thus more vulnerable to systemic changes in androgen levels, or on altered supply
based on local tumour microarchitecture and/or vascular supply. Decreased ligand availability will
manifest as decreased AR stabilization and increased receptor turnover. An alternative and relatively
unexplored possibility is that of stromal mutagenesis occurring distinct from genetic alterations within
the cancer cells themselves. Some studies using mixed prostate tumour samples have, for example,
paradoxically identified inactivating AR mutations that have been difficult to rationale in the context
of almost invariable AR driven epithelial disease [74]. It is tempting to speculate that some of those
mutations may have been captured from stromal components. Epigenetic regulation could also be
involved, as changes in methylation state are known to regulate AR expression [75]. Alternatively, p53
has been show to negatively affect AR interactions leading to receptor stabilization and activity [76],
and forms part of a stromal signature in prostate cancer associated with biochemical relapse [77].
However, down regulated genes weren’t assessed as part of that study, so it is currently unclear if
there is a direct relationship.

There is a clear need for a more contemporary analysis of cancer cells associated with high and low
stromal AR content, and to track mutational and transcription events within each compartment. It is
likely that events in one or both compartments of a tumour will can change the way cancer cells interact
with their microenvironment. Paracrine factors such as interleukins, interferons, and miRNAs have all
been reported to reduce AR levels [78-82]. Nitric oxide is a product of certain events within cancer
cells, inhibits AR expression and activity, and plays a role in cancer progression and metastasis [83-85].
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Given the potential prognostic importance of stromal AR expression, studies need to extend beyond
speculative hypotheses to address in real time how AR levels fluctuate within a tumour sample.

8. Possible Mechanisms for the Involvement of Stromal AR Signalling in Cancer Progression
and Outcome

The mechanisms by which stromal AR action influences response of adjacent epithelia are slowly
emerging. Secretion of factors by fibroblasts in response to androgens activate intracellular signalling
pathways in epithelia as well as post translational modification of AR, increased AR activity [12,86],
and stimulation of epithelial proliferation [87,88]. In contrast however, in transgenic adenocarcinoma
of the mouse prostate (TRAMP) mice co-inoculated with AR negative highly metastatic human prostate
cancer PC3 cells and human WMPY fibroblasts, knockdown of fibroblast AR with a specific siRNA
did not alter cancer cell proliferation based on Ki67 index [89]. Reconciling the paradox between
the apparent need for stromal AR signalling in the initial stages of cancer development versus the
apparent importance of lost stromal AR signalling with cancer progression and outcome may have
previously been problematic as there has been limited research into the function of AR in stromal cells.
This dichotomy can now be recognized as not mutually exclusive as detailed below and surmised in
Figure 3.

KEY
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Figure 3. Potential mechanism for fibroblast AR influence on prostate cancer outcomes. AR signalling
in fibroblasts regulates growth factors, chemoattractants, cytokines and ECM production. By regulating
growth factors AR creates a hospitable environment for cancer, thus when AR is lost the local
environment may drive cancer cells to metastasise elsewhere. AR regulates chemoattractant production,
disruption of this may excite the migratory capacity of cancer cells. By regulating cytokine production,
AR signalling in fibroblasts my influence immune response which may have significant effects on
tumour cells. AR signalling in fibroblasts controls fibroblast production of ECM, when AR is lost, this
could dysregulate the ECM and enhance the migratory potential of cancer by providing a transversable
ECM microenvironment.

8.1. Loss of Stromal AR Creating Less Favourable Conditions

Fibroblasts produce a number of paracrine factors favourable for cancer cell growth (Table 3).
A number of these paracrine factors are reported to be influential in cancer initiation and growth and
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their inhibition in fibroblasts is reported to alter cancer progression in vivo [90,91]. We and others have
recently shown how fibroblast androgen action leads to regulation of a number of these paracrine
factors in vitro, at least at an RNA level (Table) [12,87]. During prostate development moreover,
androgen drives mesenchyme secretion of paracrine factors including FGFs, BMPs, WNTs, TGFBs
and EPHs [92]. Furthermore stromal specific AR knockdown reduces mesenchymal production of
key paracrine factors, IGF1, FGF7, FGF10, and HGF [56,71,93]. Indeed mouse models of androgen
deprivation therapy (ADT) have reported marked reduction in stromal expression of FGF2 116, IGF1
and TGFB [91,94-96], all of which are capable of significantly increasing cancer cell proliferation and
tumour growth [97], and acting to maintain terminal differentiation of the glandular epithelia [98].
An increased abundance of stimulatory growth factors by mesenchymal androgen action might
thus contribute to the tumourigenic process. For initiated cancer cells however, decreased in local
availability of paracrine mediators as the result of declining mesenchymal AR signalling could result
in (i) de-differentiation and/or epithelial-mesenchymal transition (EMT); (ii) reduced epithelial AR
function and PSA production that has implications for clinical monitoring via PSA and response to
androgen deprivation therapy; and (iii) a less hospitable environment for epithelial cells thus driving
pathways for epithelial movement and metastasis to more favourable sites.

Table 3. Stromal produced paracrine factors. Proliferative effect (P), Differential effect (D) supported
by [97,99,100]. Androgen regulation (Y = yes, regulated by androgen, N = no, not regulated by
androgen) determined from microarray data from [12,45,87].

Paracrine Factor Effect Androgen Regulation
CTGF P Y
FGF (2,5,7,8,9,10) P D Y (2,5,7),N (8),N/A(9,10)
HGF P, D Y
IGF (1, 2) P,D Y (1,2)
IL-6 P Y
PDGF P, D Y
TGFb (1, 2, 3) P, D Y (1,2,3)
VEGEF (A, B, Q) P Y (A,C), N (B)
WNT P Y
CXCL12 P N
EGF P,D N/A
TGFa P, D N/A

8.2. A Role for Stromal in AR Inflammatory Processes

A high abundance of inflammatory cells is associated with development of prostate cancer and
with poor outcome [101], and there is an association between age induced decline in testosterone
and increased prostatic inflammation [102-104]. Although an anti-inflammatory effect of androgens
has been demonstrated for the whole prostate [105], the role of fibroblasts, and indeed fibroblast AR
signalling, in this process is unclear. Significantly however, fibroblasts are known to interact with
inflammatory immune cells [106], and testosterone action in synovial fibroblasts has been suggested
to have an anti-inflammatory role by inhibition of pro-inflammatory cytokine production [107,108].
Moreover, CAFs themselves have been reported to activate immune responses via NFKB secretion,
while AR in prostatic fibroblasts is believed to modulate the release of pro-inflammatory cytokines that
affect initiation and development of BPH and PIN [71]. The above data are collectively compelling for
immune regulation in the prostate and a role in the tumour process, but the specific mechanisms and
role of fibroblast AR need direct elucidation.

8.3. AR in CAF Movement and a Subsequent Role in Cancer Invasion

Compared to normal fibroblasts, CAFs have been shown to modulate movement of cancer cells
through a variety of distinct mechanisms and effectors [90,109-113], and in themselves are more
migratory than NPFs [114]. On one level, changes in fibroblast maintenance of ECM can serve to
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enhance movement of cancerous epithelia directly via independent matrix interactions [115,116].
On another, the ability of fibroblasts to move, create guidance structures, and dictate cancer cell
movement may a key determinant in cancer progression and metastasis [115,117,118]. We have
previously reported in fibroblasts a non-genomic role for AR and its co-regulator, Hic-5, in controlling
fibroblast movement. With decreased androgen action, Hic-5 associates preferentially with the focal
adhesion complex to inhibit its activity, facilitating fibroblasts detachment from the extracellular matrix
and increased movement. It can be predicted therefore, that the loss of fibroblast AR might increase
fibroblast movement and stimulate direct guidance of cancer cells. Furthermore, chemotactic cues
are reported to outweigh any other conflicting stimuli, and drive migration [119]. Androgen also
regulates the fibroblast expression of the potent chemo attractant, CXC12 [12,87]. The role of CXCL12 in
controlling cancer cell movement is well known [120]. Additionally there are a host of other chemokines
produced by CAFs which may similarly be regulated any androgen [56,88,121,122], and could provide
an avenue by which disruption of AR signaling in fibroblasts may change the migrationary potential
of cancer cells thus affecting patient outcomes.

8.4. Stromal AR Regulation of ECM

We recently hypothesised that the inverse relationship between stromal AR level and prostate
cancer outcome is the result, in part, of changes in the production and regulation of fibroblast ECM [12].
The ECM is an intricate matrix of proteins and glycans that provide structural support for tissue
and organs, and acts as a repository of hormones, enzymes and second messengers. It has been
shown that the ECM can stimulate tumour growth and encourage cell cycle progression of cancer
cells through proliferative checkpoints [123]. The ECM can also drive cancer cell gene expression,
signal transduction, cell morphology, cell survival, and motility [124]. Changes in ECM can also cause
CAFs to secret pro-inflammatory markers, thereby enhancing cancer progression [125,126]. In physical
terms, it appears that the ECM can regulate cancer cell invasion via multiple parameters, including
density, orientation, stiffness, and organisation of the matrix fibres. Whilst the effects of these different
ECM characteristics can be interdependent or combine to create effects, it should be noted that they
are independently able to affect cancer cell behaviour [127].

The role of ECM density is potentially complicated as well as controversial. Accompanying the
switch from benign to malignant tissue for a number of different cancers is an increase in certain
ECM proteins such as collagen 1. However, these reactive changes also coincide with a change from
a mainly smooth muscle stroma that doesn’t produce much ECM, to one composed predominantly of
high-ECM producing /maintaining fibroblasts and myofibroblast. These changes occur with all solid
tumours, but nevertheless not every cancer will metastasise. In breast cancer, high collagen production
is associated with cancer development and is reported to excite tumourigenesis and proliferation,
and to alter intracellular processes to excite cancer cell movement [128-130]. While increased density
may contribute to cancer initiation, it might conversely oppose tumour progression. As an example,
hypoxia is a known driver of cancer progression and is associated with the ECM acquiring a loose
and porous phenotype [131]. Although early 2-D ECM models suggested a relationship between
density and cancer cell motility, more recent 3-D models show that cancer cells move more rapidly
and easily through low density ECM [132-134]. The idea of androgen regulation is confirmed in vivo
with a number of observations in ADT studies, noting changes in ECM volume [135-138] as well as
changes in MMP levels [138,139]. Furthermore androgen regulates ECM component genes expression,
and produces an ECM capable of altering cancer cell adhesion and migration [12].

The firmness or rigidity of the ECM fibres is also reported to affect cell movement. Traditionally,
increased stiffness was believed to enhance migration by encouraging mesenchymal-type cell
invasion [140], and by regulating cellular arrangement of integrins to control cell movement
processes [129]. Conversely, increased stiffness and rigidity inhibits the ability of ECM fibres to
be degraded by proteolytic enzymes such as MMP [141]. The recent move towards 3-D modelling
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has shed greater light on this process, specifically that maximal cell movement of cancer cells, such as
human prostate DU145 cells, occurs in matrices exhibiting lesser stiffness [142].

Another aspect of the ECM that is accruing evidence for a major role in cancer progression is
the orientation of the ECM fibres. In both in vitro and in vivo systems, cancer cells exhibit increased
invasion and metastasis if ECM is arranged linearly to provide tunnels and tracts for cell movement.
Similarly, the pore size, or space between ECM fibres can modulate cancer cell movement [132,134,143].
In in vitro 3D modelling, testing different poor sizes, widths, and arrangements, suggests that increased
density and constricted poor sizes have an inhibitory effect on cell migration [140,144].

In summary, movement of cancer cells appears to be the culmination of intrinsic changes within
the cell combined with the external influence and guidance of the ECM [145]. Fibroblasts AR has the
ability to regulate the ECM, which when lost will create an environment favourable for cancer cell
invasion and metastasis. This ability of AR signalling within fibroblasts to regulate the ECM may be
key factor in stromal AR correlation with outcome and worthy of further investigation.

9. Potential Importance of Stromal AR in Neoadujant Hormone Therapy

As prostate cancers progress to hormone refractory metastatic disease, usually under conditions
of androgen deprivation or complete androgen blockade, the epithelial AR is widely believed to
have acquired the capacity to drive tumour growth. In early stage disease however, it appears as if
the stromal AR is required in both tumour initiation and conversely as an inhibitor of progression
and metastasis, and unlike its epithelial counterpart holds prognostic information. Additionally,
in mouse recombinant models where patient cancer tissue is grown in the presence of either AR
positive or negative fibroblasts, the apoptotic response of cancer cells to castration is significantly
modulated by AR in the surrounding fibroblasts [12]. Given this dichotomy, we reviewed the use of
ADT in a neoadjuvant setting for primary prostate cancer (Table 4). Despite ADT not usually deemed
a standard treatment for organ confined prostate disease, the CaPSURE registry showed increasing
trends since 1990 for the use of ADT in a neoadjuvant setting either alone or in conjunction with
of other forms of treatment [146]. Neoadjuvant use of ADT does reduce primary tumour size by
25%-30% [147,148]. However, recent studies using pre-existing patient cohort information showed that
neoadjuvant ADT as a front-line therapy led to greater relative mortality when compared to surgery
or radiation in a cohort of 7538 prostate cancer patients [149]. In a second population-based study of
over 1900 men with T1-T2 prostate cancer, the use of ADT as primary therapy was associated with
a lower rate of prostate cancer-specific survival [150]. In a study of 16,000 men with well-to-moderately
differentiated tumours, the use of primary ADT within the first six months of diagnosis was associated
with worse rates of overall survival and prostate cancer specific mortality, regardless of any additional
treatment after this first 6 months [151]. A similar finding was reported by the European Organization
for Research and Treatment of Cancer (EORTC) clinical trial, which investigated immediate and
delayed use of ADT for treatment of locally defined tumours [152]. The use of ADT for localized
prostate cancer increased the subsequent need for chemotherapy [153]. Nonetheless, there have been
other reports suggesting either no or a slight beneficial effect of primary ADT [154,155], but these have
had significantly smaller cohorts of 176 and 57 patients, respectively. Likewise, in a larger study of
1006 patients with low to intermediate prostate cancer treated with low dose brachytherapy (LDB),
the use of ADT either three months prior to or concomitantly with LDB did not affect disease free
or overall patient survival [156]. Furthermore, studies that have reported unconventional forms of
primary ADT (i.e., diethylstilbestrol) have had inconsistent results with benefit for T2 tumours but
deleterious effects for T1 disease [157]. Overall, the evidence suggests that neoadjuvant use of ADT
may produce harmful effects through unknown mechanisms. However as discussed above, ADT is
of well proven benefit in metastatic disease so the adverse response of this treatment when used in
a primary setting must be due to adverse targeting/response of the early stage tumours. It is entirely
possible that this paradox is due to effects of androgen signalling in cancer fibroblasts associating with
the primary /early stage lesions.



Cancers 2017, 9, 10 13 of 24

Table 4. Outcomes from studies investigating effects of neoadjuvant ADT and outcomes of patients with localized prostate cancer.

References N Pca Staging ADT Use Comparison Outcome
[149] 7538 T1-T3 Neo ADT vs. surgery or radiation ADT increases hazard ratio
[150] 19,271 T1-T2 Neo (<180 days) ADT vs. conservative management Decreased PCSS
[151] 16,000 T1-T2 Neo (<first 6 months) ADT in first 6months vs. no ADT in first 6 months  Increased PCSM
[153] 29,775  Localized Neo ADT vs. noADT ADT increases need for subsequent treatments
[158] 844 Neo (<first 6 months) Neo compared to WW, RP, radiotherapy Neo had worse 10 year PCSS of all treatments
[159] 10,179  Localised Neo Neo compared to no treatment, RP, BT, ERBT ADT worse PCSS
[160] 402 Localised Neo (<first 3 months) Neo compared to RP alone Neo = pathological downstaging and lowers % of patients with positive margins
[161] 547 Localised Neo 3-month vs. 8-month neo Positive margin rates were significantly lower in the 8 than 3-month group
[162] 167 Tla-T2b Neo (<first 3 months) 3-month neo vs. RP alone Neo had less lymph node involvement, less positive margins
[163] 393 T2-T3 Neo (3—-6 months) Neo vs. RP alone Neo had better positive margin rates
[164] 119 T2-T3a Neo (<first 4 months) 4-month neo vs. RP alone Neo had better positive margin rates
[154] 176 B2/T2-T3 Neo 1-year ADT vs. long term ADT No measurable significant benefit
[155] 57 Neo No benefit
[156] 1006 Low-intermediate = Neo ADT + LDB ADT prior to or after LDB No effect of PCSS
[165] 282 T2b Neo (<first 3 months) 3-month neo vs. RP alone No difference in 5 year BCR
[166] 126 T1b-T3aNXMO Neo (<first 3 months) 3-month neo vs. RP alone No difference in PSA progression-free survival (7 year follow up)
[167] 148 T1b-T3 Neo (<first 3 months) 3-month neo vs. RP alone No significant difference in BCR-free (8 year followup)
[152] 985 Localized g]ﬁ{?ﬂiegg?i}é;rssgﬁn Immediate ADT vs. delayed ADT Delayed ADT increased risk of mortality
[157] 1903 T1-T2 Neo (diethylstilbesterol) ADT in T1 vs. ADT in T2 benefit T2, deletrious in T1
[168] 213 T1b/c-T2c Neo Neo prior to surgery vs. surgery alone Neo = less organ confinement, lower 7-year survival
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10. Future of Stromal AR

10.1. Prognostic Tool

There is growing appreciation for the influence of stroma in cancer, so much so that a number of
studies have looked to the stroma for prognostic utilisation. Morphological characterisation of prostate
cancer has used the degree of desmoplatic stroma to predict biochemical recurrence and cancer related
death [169-171]. Stromal signatures and protein profiles have been investigated, and have been used to
predict relapse post prostatectomy and clinical outcome [77,172-174]. Clinically, no protein expression
or gene profiles are used to aid prognosis, despite the various immunohistochemical markers used in
other cancers, such as breast cancer where oestrogen and progesterone receptors are used to inform on
disease coarse and management. Along these lines we, and others have studied the benefit of using
stromal AR in clinical settings. Despite inconsistent findings for the prognostic values for epithelial
AR, a loss of stromal AR is consistently associated with disease relapse and outcome [7-12,41] (Table 2).
We have also found using FKBP51 in addition to AR, as a marker of functional AR activity is even more
robust prognostic tool [13]. These studies have focus on tissue samples, development of serum markers
for stromal AR changes may also be useful tool. From whole genome studies we know a number of
genes targeted by AR fibroblasts code for secreted proteins so with further work there may be potential
for development of serum markers.

10.2. Therapeutic Targets

Just like in the prognostic setting, the cancer stroma is being investigated for its therapeutic
influence and even as a target. The important role of CAFs have led to monoclonal antibodies and drugs
which target the CAF marker, fibroblast activated protein (FAP) [175-177]. The stroma surrounding
the tumour is exposed to any serum administered therapeutic agent before said therapeutic agent
reacts with the cancer. Indeed it has been postulated that the stroma will mediate the influence of the
therapeutic agent [178].

Therapeutic antibodies and small molecule inhibitors delivered in nanoparticles as well as extracts
from natural compounds are being investigated for disrupting paracrine communication between the
stroma and cancer cells to treat solid cancers [179,180]. A number of stromal produced paracrine factors,
regulated by AR have been targeted therapeutically to varying degrees of success. Androgen regulated
paracrine factors such as TGFs, FGFs, EGF, HGFs produced by the stroma having agents capable
of targeting them [178]. FGF targeting has been reported to be effective in both in vitro and in vivo
studies for treating prostate cancer [181,182]. Similarly, agents targeting HGF in prostate cancer are in
different phases of clinical trial [183,184].

However, no therapeutic agents have been developed to specifically target stromal AR. Indeed in
cases of neoaduvent ADT or use of AR antagonists the effect on stromal AR and the subsequent
effects of stromal AR inhibition is rarely considered. In review of studies investigating the use of ADT
on primary prostate tumors, the neoadjuvant use of ADT predominantly produces worse outcomes
for the patients, with relapse free survival and overall survival reduced. Given the relationship
between reduced stromal AR and cancer related progression and death, it may be more important
to investigate either anti-androgen which affect only epithelial cells, or developing drugs which will
decrease epithelial AR but enrich stromal AR signalling. As we have previously shown a single
co-regulator can have vast effects on global gene expression with the cell. One way to ensure specificity
would be to target AR co-regulators and pioneer factors, a number of which are specific for one cell
type or the other [46]. In comparison of prostatic and skin fibroblasts to cancer cell lines, a panel
of 33 co-regulators were differentially expressed between the two cell types [46]. Cancer cell type
specific co-regulators included SP1, NCOA1, NCOAZ2, and PIAS1. Importantly these are potentially
targetable [185,186]. Pioneer factors are also targetable, and as we have shown FOXA1 is expressed
and active only in epithelial cells and not fibroblasts [43,186]. However targeting Hic-5, AP-1, or other
proteins which is also or highly expressed in the stroma should be avoided as inhibiting stromal AR
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may have detrimental side-effects. Taking into account stromal AR should become an important step
in future development of treatments targeting AR signalling, especially in a neoadjuvent setting.
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