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Abstract: Alcoholic liver disease (ALD) is a leading health risk worldwide. Hepatic iron overload
is frequently observed in ALD patients and it is an important and independent factor for disease
progression, survival, and the development of primary liver cancer (HCC). At a systemic level,
iron homeostasis is controlled by the liver-secreted hormone hepcidin. Hepcidin regulation
is complex and still not completely understood. It is modulated by many pathophysiological
conditions associated with ALD, such as inflammation, anemia, oxidative stress/H2O2, or hypoxia.
Namely, the data on hypoxia-signaling of hepcidin are conflicting, which seems to be mainly due
to interpretational limitations of in vivo data and methodological challenges. Hence, it is often
overlooked that hepcidin-secreting hepatocytes are physiologically exposed to 2–7% oxygen, and that
key oxygen species such as H2O2 act as signaling messengers in such a hypoxic environment.
Indeed, with the recently introduced glucose oxidase/catalase (GOX/CAT) system it has been
possible to independently study hypoxia and H2O2 signaling. First preliminary data indicate that
hypoxia enhances H2O2-mediated induction of hepcidin, pointing towards oxidases such as NADPH
oxidase 4 (NOX4). We here review and discuss novel concepts of hypoxia signaling that could help to
better understand hepcidin-associated iron overload in ALD.

Keywords: ALD; HCC; hepatic iron overload; hepcidin; hydrogen peroxide; hypoxia; GOX/CAT
system; NOX4; oxidative stress

1. Introduction

In high-income countries, alcohol consumption is the sixth leading cause of premature death.
While the liver is the major target organ of alcohol consumption, liver cirrhosis and cirrhosis-associated
hepatocellular carcinoma (HCC) are the main causes of alcohol-attributed mortality [1,2]. The term
alcoholic liver disease (ALD) refers to the broad spectrum of liver damage caused by excessive alcohol
intake, ranging from benign steatosis to steatohepatitis and cirrhosis.

Alcohol-mediated carcinogenesis is complex and still poorly understood. The total comprehension
of carcinogenesis by alcohol is hampered by the lack of reliable models that can recapitulate human
alcohol metabolism. Notably, commonly used rodent models show significant differences with regard
to alcohol metabolism, sensitivity, and toxicity, leading to a less severe phenotype [3]. In fact, the end
liver stage cannot be induced solely by ethanol in rats and mice, but only in combination with other
toxicity models. However, one of the key features of ALD is the accumulation of carcinogenic iron
in the liver. Free iron in the presence of both enhanced oxidative stress and hypoxia can be highly
tumorigenic, eventually leading to HCC [4].

The underlying molecular mechanisms of differential iron deposition, however, remain unclear,
as is the role of hepcidin. For instance, acute exposure to alcohol drastically suppresses hepcidin,
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which could explain the ultimate accumulation of hepatic iron [5]. However, no significant hepcidin
differences have been observed between ALD patients with high and low iron. Moreover, iron sensing
by hepcidin is still not clear. It is also unclear as to why hepcidin responds differently in isolated liver
cells as compared to in vivo conditions. In addition, conflicting data has been published regarding
the impact of liver hypoxia on iron metabolism, as well as the effect of hypoxia in combination with
oxidative stress, mainly H2O2, which resembles a typical environment found in ALD. In this review we
will briefly summarize the recent knowledge on iron accumulation in ALD, with a focus on hypoxia
and H2O2 in the regulation of hepcidin.

2. Hepatic Iron Overload in ALD and Carcinogenesis

Hepatic iron accumulation and chronic alcohol consumption have long been linked (Figure 1) [6].
In ALD patients, iron has been identified as independent risk factor for survival and HCC
development [7]. Moreover, the correlation between excessive alcohol intake and reduced survival in
hemochromatosis patients has been established as well [8].
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The carcinogenic potential of tissue iron accumulation is highly attributed to Fenton-like 
reactions which occur in the presence of ferrous iron and H2O2, yielding to highly reactive hydroxyl 
radicals (Figure 2) [3]. Several enzymes are able to generate H2O2, predominantly during the 
inflammation typically observed in ALD, however cytochrome P450 2E1 (CYP2E1) and its induction 
by ethanol is regarded as a key player in alcohol-mediated reactive oxygen species (ROS) production 
[2]. Thus, chronic alcohol consumption results in an up to 20-fold increase in CYP2E1 expression, 
leading to the release of ROS such as H2O2, hydroxyl, superoxide and hydroxyethyl radicals via not 
completely understood mechanisms [9]. Furthermore, ethanol-induced oxidative stress is also the 
result of an impaired antioxidant defense mechanisms as well as impaired synthesis of mitochondria-
encoded constituents of the respiratory chain, particularly cytochrome b and the production of ROS 
by leakage from complex I and III of the respiratory chain [10]. In addition, activated phagocytes also 
contribute to ROS [10]. Excessive iron accumulates in lysosomes, originating from auto-phagocytosed 
ferritin and hemosiderin. It often leads to fragile membranes via lipid peroxidation and subsequent 
lysosomal dysfunction with the loss of free iron into the cytoplasm [11]. The iron-associated toxicity 
is due to mutagenic effects of free radicals resulting in DNA damage and structural alteration of lipids 
and proteins. An example is the cleavage of lipid hydroperoxides, resulting in aldehydes, such as 
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), which can react with the ε-NH2 group of 
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The carcinogenic potential of tissue iron accumulation is highly attributed to Fenton-like reactions
which occur in the presence of ferrous iron and H2O2, yielding to highly reactive hydroxyl radicals
(Figure 2) [3]. Several enzymes are able to generate H2O2, predominantly during the inflammation
typically observed in ALD, however cytochrome P450 2E1 (CYP2E1) and its induction by ethanol
is regarded as a key player in alcohol-mediated reactive oxygen species (ROS) production [2].
Thus, chronic alcohol consumption results in an up to 20-fold increase in CYP2E1 expression, leading to
the release of ROS such as H2O2, hydroxyl, superoxide and hydroxyethyl radicals via not completely
understood mechanisms [9]. Furthermore, ethanol-induced oxidative stress is also the result of
an impaired antioxidant defense mechanisms as well as impaired synthesis of mitochondria-encoded
constituents of the respiratory chain, particularly cytochrome b and the production of ROS by leakage
from complex I and III of the respiratory chain [10]. In addition, activated phagocytes also contribute
to ROS [10]. Excessive iron accumulates in lysosomes, originating from auto-phagocytosed ferritin
and hemosiderin. It often leads to fragile membranes via lipid peroxidation and subsequent lysosomal
dysfunction with the loss of free iron into the cytoplasm [11]. The iron-associated toxicity is due
to mutagenic effects of free radicals resulting in DNA damage and structural alteration of lipids
and proteins. An example is the cleavage of lipid hydroperoxides, resulting in aldehydes, such as
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malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), which can react with the ε-NH2 group
of lysine and histidine residues [12] and DNA bases [13] forming extremely mutagenic adducts.
Indeed, these adducts can specifically target the p53 tumor suppressor gene, conferring apoptotic
resistance to the cells [14]. Therefore, 4-HNE has been used as an indicator of radical-mediated
cellular damaged and oxidized hepatocytes. It is also significantly correlated with iron deposition
in the liver [15]. Recent in vitro studies indicate that mitophagy, the selective clearance of damaged
mitochondria by autophagy in the liver, may also play a role in mediating hepatocyte apoptosis [16].
Acute and chronic ethanol treatment in various animal models results in enhanced mitophagy which
is associated with mitochondrial translocation of cytosolic Parkin (an E3 ubiquitin ligase maintaining
mitochondrial homeostasis) caused by oxidative mitochondrial DNA damage. Parkin also co-localizes
with accumulated 8-Hydroxydesoxyguanosin a marker of oxidative mitochondrial DNA damage
in ethanol-exposed hepatocytes which may be a stimulus for DNA repair and the prevention of
carcinogenesis [17]. For these reasons and because the mitochondria is the main target organelle for
alcohol toxicity, modulation of Parkin translocation may be a new therapeutic option in ALD in the
future after further investigation.
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Figure 2. Schematic overview of current knowledge of mechanisms leading to ethanol and iron-induced
carcinogenesis. CYP2E1: Cytochrome P450 2E1; NOXs: NADPH oxidases.

Taken together, the actual role of iron (in particular non-protein iron complexes) and how alcohol
favors iron accumulation is still under investigation. It has been proposed that oxidative modifications
of the cytosolic iron regulatory protein 1 (IRP1) might cause dysregulations in ferritin synthesis and
induce the synthesis of the transferrin receptor, eventually leading to increased iron uptake combined
with impaired liver storage capability [10]. Overall, there is much evidence that iron overload and
oxidative stress in ALD is tightly linked with progression to hepatocellular damage, liver-related death,
and cancerogenesis.

3. Control of Iron Homeostasis

In the last decades, an enormous progress has been made to better comprehend the molecular
mechanisms of iron regulation and homeostasis at the systemic and the cellular level, however several
aspects remain unclear [18,19]. In humans, most of the body’s iron is found in the oxygen-carrying
hemoglobin of erythrocytes. The remaining iron is stored in hepatocytes and in reticuloendothelial
macrophages in the form of ferritin. The liver represents an important reservoir of excess iron,
while macrophages phagocyte the senescent erythrocytes and load the iron from hemoglobin onto
transferrin for iron recycling [20]. Dietary uptake of iron is carried out by duodenal enterocytes and
its efficient control is curtailed for maintenance of the homeostasis, since iron can also be passively
lost from regular sloughing of the mucosa and skin or during bleeding (Figure 3) [18]. Figure 3 also
highlights multiple sides of impaired iron regulation by alcohol [3].



Cancers 2017, 9, 145 4 of 17

Cancers 2017, 9, 145 2 of 17 

 

 

Figure 3. Iron homeostasis and utilization in the body (adapted from [3]). Dietary iron is absorbed in 
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Excess iron is stored in ferritin in the liver. Regulation of iron metabolism by hepcidin and factors 
which influence hepcidin expression are also shown. Black circles indicate potential sites of alcohol 
interference. BMP: Bone morphogenic protein; FPN: Ferroportin; HFE: hemochromatosis protein; IL: 
interleukin; LPS: lipopolysaccharide; SMAD: Suppressor of mothers against decapentaplegic; TNF: 
Tumor necrosis factor. 

3.1. Cellular Regulation of Iron 

Erythroid cells, as with all other cell types, depend on the delivery of iron via the iron carrier 
serum transferrin (Tf), a glycoprotein with two affinity sites for ferric iron. Diferric Tf binds with high 
affinity to cell surface transferrin receptor 1 (TfR1) and with lower affinity to transferrin receptor 2 
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regarded as a sensor of Tf saturation. Genetic deletion of TfR1 in mice demonstrates its endocytotic 
role and ability to import iron into several cell types [22]. In non-erythroid cells, iron is safely stored 
in ferritin complexes or can be incorporated into hemoglobin of erythrocytes, being later reused for 
various synthesis pathways [23]. Ferric iron stored in ferritin complexes (non-toxic form) must be 
subsequently released for biological use via lysosomal degradation of ferritin [24]. This mechanism 
of autophagy dominates during iron deficiency and is mediated by the nuclear receptor coactivator 
4 (NCOA4) [25]. It has been described that NCOA4 interacts with ferritin heavy chain targeting 
ferritin for degradation. In iron overloaded cells, NCOA4 expression decreases, leading to 
suppression of ferritin autophagy [26]. A recent study described the retention of iron within ferritin 
in NCOA4 knockout (KO) mice, which led to iron-deficiency anemia, highlighting the important role 
ferritin autophagy mechanism on cellular and systemic iron homeostasis [27]. 

At the cellular level, central regulators of iron homeostasis are controlled post-transcriptionally 
by iron responsive proteins (IRP1 and IRP2) which are able to bind to the iron-responsive elements 
(IREs) of the RNA encoding for various iron-related proteins. While binding to the IRE located in the 
5’ untranslated region of the mRNA results in a translational inhibition, the binding of IRPs to the 3’ 
untranslated region stabilizes and protects the transcripts from degradation. In particular, IRPs can 
cause upregulation of TfR1 or suppress the translation of mRNA encoding other proteins involved 
in iron metabolism, such as ferritins or ferroportin (FPN) [28]. During cellular iron deficiency, IRPs 
are in the active form (apo-IRP) and this results in TfR1 induction stimulating the acquisition of iron 
from plasma Tf. In contrast, to counteract iron overload, IRPs become inactive (holo-IRP) for IRE 
binding, leading to degradation of TfR1 mRNA and translation of ferritin mRNA [29]. 

Figure 3. Iron homeostasis and utilization in the body (adapted from [3]). Dietary iron is absorbed
in the duodenum and binds to transferrin. Iron is delivered to the bone marrow for erythropoiesis,
senescent erythrocytes are phagocytosed by the macrophages, and iron is recycled for heme synthesis.
Excess iron is stored in ferritin in the liver. Regulation of iron metabolism by hepcidin and factors
which influence hepcidin expression are also shown. Black circles indicate potential sites of alcohol
interference. BMP: Bone morphogenic protein; FPN: Ferroportin; HFE: hemochromatosis protein;
IL: interleukin; LPS: lipopolysaccharide; SMAD: Suppressor of mothers against decapentaplegic;
TNF: Tumor necrosis factor.

3.1. Cellular Regulation of Iron

Erythroid cells, as with all other cell types, depend on the delivery of iron via the iron carrier
serum transferrin (Tf), a glycoprotein with two affinity sites for ferric iron. Diferric Tf binds with high
affinity to cell surface transferrin receptor 1 (TfR1) and with lower affinity to transferrin receptor 2
(TfR2) [21]. Despite their homology, TfR2 does not significantly contribute to iron import and it is
regarded as a sensor of Tf saturation. Genetic deletion of TfR1 in mice demonstrates its endocytotic
role and ability to import iron into several cell types [22]. In non-erythroid cells, iron is safely stored
in ferritin complexes or can be incorporated into hemoglobin of erythrocytes, being later reused for
various synthesis pathways [23]. Ferric iron stored in ferritin complexes (non-toxic form) must be
subsequently released for biological use via lysosomal degradation of ferritin [24]. This mechanism of
autophagy dominates during iron deficiency and is mediated by the nuclear receptor coactivator 4
(NCOA4) [25]. It has been described that NCOA4 interacts with ferritin heavy chain targeting ferritin
for degradation. In iron overloaded cells, NCOA4 expression decreases, leading to suppression of
ferritin autophagy [26]. A recent study described the retention of iron within ferritin in NCOA4
knockout (KO) mice, which led to iron-deficiency anemia, highlighting the important role ferritin
autophagy mechanism on cellular and systemic iron homeostasis [27].

At the cellular level, central regulators of iron homeostasis are controlled post-transcriptionally
by iron responsive proteins (IRP1 and IRP2) which are able to bind to the iron-responsive elements
(IREs) of the RNA encoding for various iron-related proteins. While binding to the IRE located in the
5’ untranslated region of the mRNA results in a translational inhibition, the binding of IRPs to the
3’ untranslated region stabilizes and protects the transcripts from degradation. In particular, IRPs can
cause upregulation of TfR1 or suppress the translation of mRNA encoding other proteins involved in
iron metabolism, such as ferritins or ferroportin (FPN) [28]. During cellular iron deficiency, IRPs are in
the active form (apo-IRP) and this results in TfR1 induction stimulating the acquisition of iron from
plasma Tf. In contrast, to counteract iron overload, IRPs become inactive (holo-IRP) for IRE binding,
leading to degradation of TfR1 mRNA and translation of ferritin mRNA [29].



Cancers 2017, 9, 145 5 of 17

The interactions of IRE–IRP allow an autonomous independent control of iron homeostasis for
individual cells, however this network can be also overwritten by additional controls mechanisms.
Namely, TfR1 expression is also regulated at the transcriptional and translational level [30,31].
Interestingly, IRP1 is regulated in a complex manner by various ROS linking iron homeostasis to
oxygen metabolism [32–34].

3.2. Systemic Iron Control by Hepcidin

Systemically, iron is mainly controlled by the hormone hepcidin (Figure 3). This 25 amino-acid
peptide is secreted form the liver and is primarily expressed in hepatocytes, although low expression
levels have been also reported in macrophages [35,36]. By binding to the unique iron exporter,
ferroportin (FPN), hepcidin efficiently inhibits duodenal iron absorption, iron recycling from
macrophages, and iron mobilization from hepatic stores. Hepcidin blocks the iron efflux into the plasma
by binding FPN and consequently inducing the phosphorylation, internalization, and lysosomal
degradation of the complex by the proteasome [37]. Deletion of hepcidin in mice or hepcidin deficiency
in humans results in severe hepatic iron overload, increased serum iron levels, and loss of iron in
macrophage stores, caused by hyperabsorption of iron [38]. In contrast, transgenic overexpression of
hepcidin causes decreased serum iron leading to anemia by blocking the iron absorption in enterocytes
and the release of iron from the hepatic stores [39,40].

In mice models, acute exposure to ethanol rapidly suppresses hepcidin [41]. The exact mechanisms
of how alcohol per se regulates hepcidin expression in the liver are still unclear. First, it has been
shown that ethanol downregulates hepcidin promoter activity and the DNA binding activity of
CCAAT/enhancer-binding protein α (C/EBPα) but not β in mice [5], leading to downregulation of
hepcidin gene transcription, thereby increasing duodenal iron transport. Recently it has been shown
that alcohol exerted different effects on transforming growth factor (TGF-β)-mediated activation
of suppressor of mothers against decapentaplegic (SMAD) 2 and bone morphogenetic protein
(BMP)-mediated SMAD1 and SMAD5 activation [42]. Findings suggest the simultaneous inhibition of
BMP-mediated SMAD activation and stimulation of TGF-β-mediated SMAD activation by alcohol
in the involvement of hepcidin suppression in vivo. This fact, together with the conjugation of
multiple signals acting in concert in regulating hepcidin, makes research on hepcidin regulation
extremely complex. In patients with ALD, significantly suppressed hepcidin mRNA levels were
found in the liver which, however, was restricted to patients with preserved hepatic function [43].
More recently, Nahon and colleagues assessed the influence of serum hepcidin levels on the long-term
survival of patients with alcoholic cirrhosis. The risk of developing HCC was higher in patients with
lowered circulating hepcidin concentrations, which was suggested to be independently associated
with death [44]. In addition, we could recently demonstrate that hepcidin was at the very least not
adequately upregulated in those patients manifesting a histological iron overload [3,45].

4. Transcriptional Regulation of Hepcidin

The levels of circulating hepcidin are mostly controlled at the transcriptional level. Hepcidin promoter
activity can be induced by iron signals, including serum iron concentrations and liver stores,
or by inflammatory signals and suppressed during increased erythropoietic activity. In general,
the transcriptional control of hepcidin by iron occurs via BMP/SMAD pathway. High circulating
concentrations of transferrin-bound iron (Tf-Fe) are the extracellular signal for transcriptional induction
of hepcidin [46]. Tf-Fe modulates the interaction between the transferrin receptors (TFRs) 1 and 2 and
the hemochromatosis protein (HFE) by inhibiting the binding of HFE to TFR1. Consequently, HFE
stabilizes activin receptor-like kinase 3 (ALK3), which activates BMP/SMAD signaling cascade [47].
Increased Tf-Fe concentrations can also promote the association between HFE and TFR2 that can
further form a membrane complex with the BMP the co-receptor hemojuvelin (HJV), promoting
hepcidin transcription via the BMP/SMAD pathway [48]. Besides iron, inflammatory signals such as
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TGF-β, activin B, and BMPs are also inductors of BMP/SMAD signaling, while matripase-2 and furin
act as suppressors by cleavage of the cell surface hemojuvelin (HJV) protein [49–53].

Increased erythropoiesis, caused by exposure to high altitude, anemia, or other physiological
conditions, is so far described as the major inhibitory stimuli of hepcidin synthesis. Increased
erythropoietin (EPO) release by the kidney is the major feature of erythropoiesis, being the proposed
critical factor for erythropoiesis-mediated downregulation of hepcidin [54]. Despite many efforts over
the last decade, there are still many open questions on how EPO suppresses hepcidin. Years ago,
several studies have associated the suppression of hepcidin with two erythroid regulators (growth
differentiation factor 15 (GDF15) and twisted gastrulation BMP signaling modulator 1 (TWSG1)),
which are normally increased during erythropoiesis. However, the direct link between these proteins
and hepcidin regulation is still missing [46]. A more recent study has identified another erythroid
regulator as part of the hepcidin–EPO axis, called erythroferrone (ERFE) [55,56].

The induction of hepcidin during inflammation or infection constitutes an important evolutionary
conserved mechanism known as “anemia of chronic disease”. This mechanism describes a host defense
response against invading extracellular pathogens, in which interleukin-6 (IL-6) plays a key role as
a major upstream regulator via the signal transducer and activator of transcription 3 (STAT3) pathway,
leading to hepcidin induction [57]. Recently, H2O2 has been suggested as an additional important
inflammatory cofactor and second messenger capable of upregulating hepcidin by activation of the
STAT3 signaling cascade [58]. In particular, hepcidin can be strongly induced by exposing hepatoma
cells to sustained H2O2 concentrations similar to those released by inflammatory cells [58]. Subsequent
studies have confirmed the role of STAT3 in H2O2-mediated hepcidin induction [59,60]. Other studies
reported contrary findings and demonstrated a suppression of hepcidin in alcohol-fed mice by ROS [5].
However, no mechanistic details were provided, and we had earlier shown that the concentration
of peroxide is crucial for hepcidin transcription [58]. While low levels induce hepcidin, toxic levels
drastically block hepcidin, most likely through unspecific inhibition of the transcription machinery.

In the context of ALD, H2O2 has been shown to have a complex, concentration-dependent and
bivalent action on hepcidin. Since ethanol metabolism strongly affects hepatic oxygen homeostasis,
liver hypoxia is thought to have an important impact on hepcidin regulation in vivo and in vitro [61].

5. Regulation of Hepcidin by Hypoxia

The hypoxic response is mainly controlled by hypoxia-inducible factors (HIFs), which comprise
an oxygen-dependent α subunit (HIFα) and the constitutively expressed β subunit (HIFβ).
Under adequate oxygen levels, prolyl hydroxylase domain-enzymes (PHDs) allow the binding of HIFα
to the Von Hippel-Lindau protein (VHL) leading to proteasomal degradation of HIFα. In contrast,
decreased oxygen levels cause stabilization of HIFα by inhibition of PHDs and consequent block of
VHL action [62].

Over the last decade, the role of hypoxia and HIFs in hepcidin regulation has been extensively
investigated and the first reports in this field have shown the in vitro and in vivo inhibition of hepcidin
at the mRNA level under hypoxic conditions [63,64]. In order to elucidate the molecular mechanisms
involved in hypoxia-mediated hepcidin regulation, several authors have used HIF and VHL KO
mice models to dissect the role of HIFs in controlling hepcidin promoter activity. A genetic study
with iron deficient and VHL KO mice in conjugation with transcriptional assays have suggested that
HIF1 stabilization downregulates hepcidin, however, HIF1 alone was insufficient to explain hepcidin
suppression under hypoxia. The same study suggested the direct suppression of hepcidin via a putative
hypoxia response element located in the hepcidin promoter [65] but no further evidence could be
provided until now. Moreover, subsequent reports suggested that HIF does not directly suppress
the transcription of hepcidin [66,67]. Most recently, in vivo studies have shown that HIF-mediated
suppression of hepcidin occurs indirectly through EPO-induced erythropoiesis, highlighting the
contribution of HIF2 to hepcidin regulation [68,69]. Up to now, human studies have been published
investigating the circulating hepcidin levels during the exposure to hypobaric hypoxia in conditions
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simulating high altitude [70,71]. The role of a new factor, the platelet-derived growth factor BB
(PDGF-BB), was recently described in humans and mice. The circulating concentration of PDGF-BB
highly correlates with hepcidin but not with other parameters. In addition, PDGF-BB could suppress
hepcidin mRNA in hepatoma cells and primary hepatocytes [72].

While these reports clarified the regulation of hepcidin by systemic hypoxia, in which renal
EPO release induces erythropoiesis, depleting the serum iron, the in vivo response to specific liver
hypoxia is still lacking. The control of hepcidin by hepatospecific hypoxia has been extensively descried
in vitro, resulting in multiple contradictory findings (Table 1). In general, it has been suggested that
hypoxia induces the expression of hepcidin suppressors. Silvestri and colleagues identified HIF1α as
a downregulator of hepcidin transcription, through induction of furin [73]. Another study has identified
increased expression of matriptase-2 in conditions of severe hypoxia. The authors emphasized the role
of HIF1α and HIF2α for the hypoxia-mediated suppression of hepcidin, while subsequent experiments
performed in primary mouse hepatocytes discarded HIF2α as hepcidin regulator [69,74]. At the same
time, an in vivo study reported the ethanol-mediated hepcidin suppression by stabilization of HIF
in the liver. The direct role of HIF on hepcidin regulation was again suggested after experiments
performed in VHL KO mice [75]. In contrast to these findings, the upregulation of hepcidin under
hypoxia was also reported in vitro in hepatoma cell lines [67,76]. Moreover, downregulation of
hepcidin could be obtained by co-culturing hepatoma cells with macrophages, however, the co-culture
ratio used in this study did not reflect physiological conditions [76].

Table 1. Hypoxia-mediated hepcidin regulation in hepatoma cell lines.

Cell Line Conditions Hepcidin mRNA Suggested Mechanism Reference

HepG2

1% O2; 24 or 48 h ↓ - [63]
10, 2 or 0.1% O2; 24 h ↓ - [64]

1% O2; 12 or 24 h ↓ Independent of HIF1 [77]
1% O2; 16 h ↑ Independent of HIF1 and 2 [67]

Hep3B 0.5% O2; 48 h ↓
Inhibition of BMP/SMAD pathway

by HIF-mediated induction of
matriptase-2

[74]

Huh7
1% O2; 16 h ↑ Independent of HIF [67]

1% O2; 24 h ↑ ↓ 1 Hypoxia inhibits BMP/SMAD
signaling pathway [76]

1 Hypoxia-induced hepcidin mRNA in Huh7 monoculture but not in coculture with THP-1 macrophages. HIF:
hypoxia-inducible factor; THP-1: human monocytic cell line.

In summary, conflicting and partly confusing data have been represented so far with regard to
hepcidin regulation by hypoxia. We believe that these contradictions are mainly due to limitations in
the interpretation of in vivo models of hypoxia due to many adaptive responses at various regulatory
levels and to methodological limitations that will be discussed in the next chapter.

6. Hepatic Oxygen Levels and Methodological Challenges to Studying Hypoxia

Many studies are typically performed under aerobic conditions of 21% oxygen. However, under
physiological conditions, the average intracellular oxygen tensions in the liver are between 45 and
50 mm Hg (6–7% O2) in the periportal area and 15 to 20 mm Hg (2–3% O2) in perivenous tissue [78].
During acute or chronic alcohol consumption, liver oxygen levels are even lower due to the increased
hepatic metabolic activity as well as alterations in hepatic blood flow caused directly by alcohol [79,80].
The diverse effects of acute and chronic ethanol exposure on cellular signaling, cellular metabolism,
and organ physiology have been extensively reviewed elsewhere [81] as has the development of
hypoxia in alcohol-exposed liver [82]. In brief, acute alcohol causes a rapid increase in liver metabolism,
including the rapid activation of alcohol detoxifying enzymes, e.g. CYP2E1, and an increase in hepatic
oxygen consumption, as shown by enhanced staining of pimonidazole, a hypoxia-specific marker [83].
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This is accompanied by stabilization of HIF in the liver and increased hepatic steatosis in the setting
of alcohol [84]. Recent gene array data from ethanol and pair-fed mice showed an upregulation of
multiple genes involved in the glycolytic pathway as well as in lipid metabolism [85] with most of the
genes being HIF targets and thereby regulated, suggesting a complex regulatory circuit.

Cells respond both to oxygen levels and oxygen changes, which will be strongly affected by the
hypoxic system used in in vitro studies. Thus, mostly hypoxia chambers are commonly explored.
Unfortunately, due to diffusion barriers of the culture medium, this system presents significant
delays to reach oxygen equilibration on the bottom of the cell culture dishes. The definitive and
constant hypoxia levels are typically achieved after 4 to 24 h, which fail to be reproduced in an in vivo
situation [86]. The recently introduced glucose oxidase/catalase (GOX/CAT) system allows rapid
depletion of the oxygen in the culture medium and a stable maintenance of hypoxia along the time [87].
This system has already been successfully explored in hypoxia studies [86,88].

Another important problem is the interpretation and, most likely, overestimation of in vivo models.
Several genetically modified mouse models, such as liver-specific knockout (KO) mice, have been
used in order to elucidate the hypoxia-mediated hepcidin regulation, however they exhibit overlaid
adaptive responses difficult to interpret and may be developmentally lethal (Table 2). Additionally,
several in vivo models of experimental ALD are described, mostly murine and rat models, however
rodents differ from humans in terms of alcohol metabolism and do not develop severe cirrhosis [89].

Table 2. Genetically modified mouse models for the study of hepcidin regulation by hepatic hypoxia.

Mice Model Survival Implications for Iron
Metabolism Other effects Reference

Hif1α KO 1 Not evaluated No effect on hepcidin - [65]

Hif2α KO 1 Not evaluated No effect on hepcidin - [69]

Vhl KO 1 5 to 7 weeks
Decreased hepatic iron,

decreased hepcidin,
increased IL-6 and IL-1β

Growth deficiency, alopecia,
hepatomegaly and splenomegaly.

Liver necrosis and steatosis
[65]

Vhl/Hif1α KO 1 3 to 5 weeks Low serum iron,
decreased hepcidin

Alopecia, weight loss,
hepatomegaly and splenomegaly [69]

Hfe KO Not evaluated

Increases serum and
hepatic iron, decreased

splenic iron,
decreased hepcidin

- [90]

Hjv KO Not decreased Sterile males [91]

Tfr2 KO Not evaluated - [92]

Smad4 KO 1 Death during
development

Weight loss, fibrosis,
accumulation of neutrophiles and

macrophages in the liver
[93]

Bmp6 KO Not evaluated Delay in bone formation [94]

Tmprss6 KO
(matriptase-2) Not evaluated

Anemia, low iron stores,
iron accumulation in

enterocytes,
increased hepcidin

Growth retardation. alopecia [95]

Stat3 KO 1 Not evaluated 2
Increased hepcidin

without
developing anemia

Insulin resistance, increased
gluconeogenesis, higher

susceptibility to hepatic damaged
[96–99]

Prx2 KO Not evaluated No significant changes in
hepcidin expression

Cardiovascular disease,
splenomegaly, hemolytic anemia,

inflammation, decreased
immune function

[60,100]

1 Hepatocyte-specific genetically modified model; 2 Total STAT3 knockout (KO) mice that die during embryogenesis.
BMP6: Bone morphogenic protein 6; HJV: Hemojuvelin; Prx2: Peroxiredoxin 2; SMAD4: Suppressor of mothers
against decapentaplegic homolog 4; STAT3: Signal transducer and activator of transcription 3; TFR2: Transferrin
receptor 2; VHL: Von Hippel-Lindau protein.
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Moreover, many in vivo and in vitro studies do not acknowledge the fact that the HIF1 kinetic is
described as an HIF1–PHD feedback loop [86]. This feedback loop causes a permanent downregulation
of HIF1 by PHD, a HIF1-controlled negative regulator of HIF. Thus, constant hypoxia will only
transiently induce HIF1 while PHD upregulation eventually causes complete degradation of HIF.
In other words, HIF1 only temporarily responds to oxygen lowering but not to absolute hypoxia
per se [86]. For instance, despite low oxygen levels, HIF is usually not expressed in tissues and its
expression has a low correlation with human cancers [101,102].

Therefore, the use of reliable in vitro models could be a valuable alternative to study hepcidin
regulation by alcohol-induced hypoxia and H2O2 generation.

7. The GOX/CAT System Allows for Independent Study of Hypoxia and Hydrogen Peroxide

To overcome the limitations of the hypoxia chamber (delayed onset of hypoxia) and to study
H2O2 signaling under hypoxic conditions, the GOX/CAT system has been recently developed [87].
GOX/CAT consists of glucose oxidase (GOX) and catalase (CAT), and allows the independent control
and long-term maintenance of both hypoxia and H2O2 levels in cell culture (Figure 4A). GOX generates
hypoxia by consuming the oxygen present in the culture medium depending on the oxygen diffusion
distance to the adherent cells (Figure 4B). In contrast with the commonly used hypoxia chamber,
the oxygen levels in the medium could be lowered within minutes at a defined rate. CAT activity
controls the H2O2 concentration, allowing the generation of a wide range of sustained H2O2 levels
over 24 h, from very low signaling levels to high toxic levels. Thus, the system can mimic the release of
H2O2 by e.g., inflammatory cells or intracellular oxidases in a more realistic way than commonly used
H2O2 bolus treatments. The independent control of hypoxia and low steady state concentrations of
H2O2 makes the system suitable for studies of hypoxia or redox signaling.
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Figure 4. The principle of the glucose oxidase/catalase (GOX/CAT) system for independent control
of hypoxia and H2O2 levels (adapted from [87]). (A) Stoichiometry of the GOX/CAT system.
GOX converts 1 mol oxygen and glucose to 1 mol gluconolactone and H2O2, while CAT catalyzes
the dismutation of 1 mol H2O2 into 0.5 mol oxygen and water. This results in net consumption of
oxygen (hypoxia) and efficient control of H2O2. (B) The diffusion distance (x) from the medium
surface to the bottom of the culture dish determines the degree of hypoxia besides the activity of
oxygen-consuming GOX.

Indeed, we successfully used the system to study HIF1α regulation, which responds to hypoxia
and H2O2 [86]. Moreover, the GOX/CAT system has been previously applied in order to study signaling
functions of H2O2 in iron homeostasis. We were able to describe the activation of IRP1 by exposure of
cultured cells to sustained low levels of H2O2 [32,103,104]. As consequence of IRP1 activation several
proteins involved in iron metabolism, such as TfR1, were post-transcriptionally upregulated [33,105].
A subsequent work also using the GOX/CAT system has demonstrated the H2O2-mediated induction
of TfR1 also at the translational level [31]. Additionally, we have used the system to describe the
transcriptional induction of hepcidin by sustained submicromolar H2O2 levels [58].

Recently, we have analyzed, in vitro, the expression of hepcidin in response to physiologic hepatic
oxygen levels (5% O2) combined with low levels of H2O2 applying the GOX/CAT system [106].
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Surprisingly, we could show that hypoxia strongly enhanced the upregulation of hepcidin by low
non-toxic H2O2 (Figure 5). Further detailed studies demonstrated that HIF1 was not involved in
hepcidin induction by hypoxia but STAT3 (not shown). These findings let us to postulate that oxidases
could be potential important upstream inducers of hepcidin since they produce peroxide by consuming
oxygen. First preliminary data indicate that NOX4, an important NADPH oxidase expressed in
hepatocytes, is indeed able to induce hepcidin. Thus, hypoxia induced NOX4 and the upregulation of
NOX4 induced hepcidin [106].
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Figure 5. Hypoxia induces hepcidin alone or after co-exposure to low steady state (ss) levels of
H2O2. Notably, hypoxia further enhances the H2O2-mediated upregulation of hepcidin via STAT3 [58].
Preliminary data indicate that hypoxia-associated hepcidin upregulation is also STAT3-mediated,
pointing towards an oxidase as important upstream regulator of hepcidin. Hepcidin mRNA was
quantified by quantitative real-time PCR and the results are represented as mean of hepcidin mRNA
normalized to β2-microglobulin (β2mg) ± standard deviation.

The synergistic induction of hepcidin by hypoxia and H2O2 and the potential role of oxidases
as important upstream regulators of hepcidin are schematically shown in Figure 6. Taken together,
our recent novel and preliminary experimental insights suggest that hypoxia-mediated induction of
hepcidin requires STAT3 and is enhanced by H2O2. Thus, peroxide-signaling might be the actual
hypoxia sensitive pathway via oxidase. This concept will be discussed in more detail below.
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Figure 6. Role of oxidases in regulating hepcidin via hypoxia and H2O2 generation. The novel concept
postulates that oxidases are involved in hepcidin regulation and alcohol-mediated hepatic iron overload.
It remains to be studied whether this concept also explains iron-sensing of hepcidin (marked in red),
which is still insufficiently understood. Jak1: Janus kinase 1.



Cancers 2017, 9, 145 11 of 17

8. Could NOX4 Be Responsible for Iron Overload in ALD?

Our preliminary data provide first evidence that oxidases such as NOX4 could be important
upstream inducers of hepcidin. This could also explain why hepcidin is induced by hypoxia
via STAT3 signaling which is known to be induced by H2O2 [58]. NADPH oxidases (NOXs) are
multicomponent enzymes whose primary biological function is to produce ROS. NOXs are widely
distributed through different tissues and cell types being involved in the transfer of electrons from
NADPH to other molecules. NOX4 is mainly expressed in the liver and generates H2O2 in a highly
regulated manner, since NOX4 is as vulnerable as other oxidases to growth factors, cytokines, or other
stimuli. Additionally, NOX4 is the only NOX family enzyme constitutively active, dispensing the
interaction with cytosolic regulators for its function; thus the activity of this oxidase only depends on
its abundance [107].

Prior studies have described a hypoxia-mediated upregulation of NOX4 in lung tissue [108,109].
Regarding the liver, the co-localization of hypoxic, apoptotic, and NOX4-positive cells was already
demonstrated in vivo, in a model of acute liver failure [110]. The authors concluded that hypoxia
induced by the hepatic disorder leads to increased NOX4 expression, which caused increased oxidative
stress and apoptosis [111]. Furthermore, induction of NOX4 by alcohol exposure was recently
demonstrated in mice. Notably, the reversion of the alcohol-induced liver injury by administration of
a NOX4 inhibitor highlighted its role in progression of ALD to HCC [110]. However, a specific role of
NOX4 in hepatic iron accumulation has not been demonstrated so far.

Figure 7 updates our previous concept of iron overload in ALD [3] and incorporates novel
data with regard to NOX4 and hypoxia. Thus, low peroxide and hypoxia cause hepcidin induction
which could be responsible for the widely observed anemia in ALD patients. Under conditions of
excess hypoxia and peroxide, however, hepcidin will be suppressed most likely due to unspecific
inhibition of the transcription machinery [58]. These events would finally lead to iron overload and
drastically increase the risk of developing HCC since the presence of ROS and iron is highly mutagenic.
Interestingly, preliminary data from our laboratory suggest that other oxidases or an uncoupled
respiratory chain can also induce hepcidin.
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Figure 7. Scheme of molecular changes on iron metabolism mediated by alcohol and the role of
hepcidin (adapted from [3]). Hypoxia and oxidases, such as NADPH oxidase 4 (NOX4), both contribute
to H2O2-mediated hepcidin regulation. While low H2O2 levels could explain hepcidin induction via
STAT3 and anemia, toxic levels cause suppression of hepcidin, ultimately leading to iron accumulation.
The co-presence of hypoxia, reactive oxygen species, and iron are mandatory inducers of cancer.
The novel concept may help in developing novel targeted therapies e.g. against NOX using NOX
inhibitors. They could also explain the protective effects of i.v. N-acetylcysteine (NAC) infusions that
seem to improve alcohol-induced liver damage.
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9. Conclusions and Future Directions

Hepatic iron overload, hypoxia, and increased oxidative stress are key features present in patients
with ALD. Moreover, increasing clinical and experimental evidence suggest that hypoxia and hydrogen
peroxide contribute to hepatic iron overload via dedicated molecular signaling on hepcidin through
the STAT3 pathway. In the past decade, the lack of adequate models and multiple interpretational
limitations have provided conflicting findings regarding hypoxia and ROS. The development of the
GOX/CAT system allowed, for the first time, the independent control of the oxygen and H2O2 levels,
simulating a typical environment found in most chronic liver diseases, namely ALD. Preliminary
in vitro data indicate that hypoxia even enhances the peroxide-mediated upregulation of hepcidin
in a concentration-dependent manner. These data point towards oxidases as important upstream
regulators of hepcidin such as NOX4. Thus, NOX4 could represent a promising novel therapeutic
target for treating alcohol-induced liver damage. NOX inhibitors could be potential therapeutic agents
to prevent disease progression in selected patient cohorts. Moreover, the novel concept could provide
a molecular rationale to better explain recent advances in treating ALD, e.g. with intravenous infusions
of antioxidants such as N-acetylcysteine [112].
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