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Abstract: mTOR inhibitors have demonstrated remarkable anti-tumor activity in experimental
models, mainly by reducing cancer cell growth and tumor angiogenesis. Their use in cancer patients
as monotherapy has, however, generated only limited benefits, increasing median overall survival by
only a few months. Likewise, in other targeted therapies, cancer cells develop resistance mechanisms
to overcome mTOR inhibition. Hence, novel therapeutic strategies have to be designed to increase
the efficacy of mTOR inhibitors in cancer. In this review, we discuss the present and future relevance
of mTOR inhibitors in cancer therapy by focusing on their effects on tumor angiogenesis.
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1. Introduction

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that exerts its effect
by forming an integral part of two structurally and functionally distinct protein complexes, named
mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [1,2]. mTORC1 coordinates cell
growth in favorable extracellular conditions by stimulating protein, lipid, and nucleotide synthesis,
and by inhibiting autophagy [3]. mTORC2 is primarily activated by growth factors, and stimulates
cell proliferation and survival by activating members of the group of AGC protein kinases, such as
AKT [4,5]. The mTOR signaling pathway is frequently overactivated in cancer cells, either by mutations
of upstream components of the pathway or by mutations of mTOR itself [6,7]. In addition, the mTOR
pathway participates in tumor angiogenesis [8]. Hence, targeting mTOR has the potential to slow
down tumor progression.

Three different types of chemical inhibitors of mTOR have been tested in various cancer models
(Figure 1) [9,10]. Firstly, rapamycin and its analogs—generally termed rapalogs—which bind, together
with FKBP12 (FK506-binding 12 kDa protein), to the FRB domain of mTOR and exert a specific
inhibition of mTORCI. This inhibition is, however, incomplete, as some epitopes phosphorylated
by mTORC1 are resistant to rapalogs [11]. In addition, rapalogs do not directly block mTORC2,
but might inhibit it in certain cell types following prolonged treatment [12]. Secondly, ATP-competitive
inhibitors of mTOR that target the kinase domain of mTOR [13]. In contrast to rapalogs, these inhibitors
completely block the activity of mTORC1 and mTORC2. Some of these inhibitors block PI3K as well,
and are then named dual PI3K/mTOR inhibitors. Thirdly, and more recently, a compound composed
of rapamycin cross-linked with a kinase inhibitor of mTOR has been generated, aiming to overcome
resistance mutations to rapalogs or kinase inhibitors of mTOR [14].
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Figure 1. mTOR inhibitors. Three different types of mTOR inhibitors have been developed. Rapalogs,
such as rapamyecin, bind together with FKBP12 to the FRB domain of mTOR and block some functions
of mTORC1. Kinase inhibitors of mTOR bind to the kinase domain of mTOR and block both mTORC1
and mTORC2. Rapalinks are composed of rapamycin cross-linked to a kinase inhibitor of mTOR.

In 1981, the anti-cancer activity of rapamycin was reported in various cancer cell lines [15].
Since then, numerous pre-clinical studies have confirmed that blocking mTOR impairs tumor
progression [16,17]. Decreased cancer cell proliferation and reduced tumor angiogenesis are frequently
associated with this effect. mTOR inhibitors have also demonstrated anti-cancer activity in patients,
albeit limited, increasing median overall survival by a few months [18-20]. Hence, mTOR inhibitors
used as monotherapy do not provide the expected anti-cancer efficacy. Several resistance mechanisms
that dampen the effects of mTOR inhibitors have been identified [21]. The place of mTOR inhibitors in
cancer needs, therefore, to be reconsidered, and novel therapeutic strategies based on mTOR inhibition
have to be established. In this review, we discuss and speculate about the future use of therapies that
target mTOR in cancer by focusing mainly on their effects on tumor endothelial cells.

2. mTOR Inhibitors and Tumor Angiogenesis

Blood supply in tumors is primarily established by formation of new blood vessels from
pre-existing vascular networks in a process called angiogenesis [22]. A variety of cells, including tumor
and tumor-associated stromal cells, participate in this process, in part by secreting growth factors and
cytokines that stimulate tumor endothelial cells [23]. Tumor hypoxia is a key driver of angiogenesis,
as hypoxic tumor cells secrete vascular endothelial growth factor (VEGF), which represents a major
angiogenic factor [24,25]. Starving cancers by blocking tumor angiogenesis has been developed
extensively over the past two decades [26]. Based hereon, therapeutic strategies targeting VEGF have
shown clinical benefits that are, however, frequently not long-lasting [27].
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Similarly to anti-VEGF treatments, mTOR inhibitors display anti-angiogenic properties [8].
This observation is supported by several in vitro and in vivo studies (Figure 2). In vitro, rapamycin was
shown to markedly reduce spontaneous and growth factor-mediated endothelial cell proliferation [28-31].
This is associated with decreased cyclin D1 expression and a consequent reduction of S-phase entry by
endothelial cells [31,32]. MicroRNAs (miRs) also influence the anti-proliferative effects of mTOR inhibitors
in endothelial cells. Rapamycin increases expression of miR-21 in endothelial cells, and a downregulation
of miR-21 abolishes the anti-proliferative effects of rapamyecin [33]. Importantly, inhibition of mTOR by
rapamyecin also inhibits hypoxia-mediated endothelial cell proliferation [34].

Besides endothelial cell proliferation, rapamycin further influences other cell functions relevant
to tumor angiogenesis. For instance, growth factor stimulated endothelial cell sprout formation in
rat or mouse aorta is reduced by rapamycin [34]. In addition, rapamycin decreases endothelial cell
survival [35-37]. In serum and growth-factor deprived conditions, VEGF-induced endothelial cell
survival is inhibited by rapamycin as evidenced by flow cytometry analysis of annexin stainings or
cell cycle profile of endothelial cells [35,37]. Pro-apoptotic effects of rapamycin in endothelial cells
are mediated by its ability to inhibit mTORC2 activity and consequently AKT phosphorylation and
activation [37]. Rapamycin also reduces endothelial cell migration [36-38]. Molecular mechanisms
involved in this matter include increased expression of the cyclin-dependent kinase inhibitor p27,
as well as miR-21 by rapamycin [33,39]. Finally, rapamycin further reduces the ability of endothelial
cells to form tubular structures in vitro [40,41].

In addition to rapalogs, the effects of kinase inhibitors of mTOR on endothelial cell proliferation,
survival, migration, and tube formation have been tested. These inhibitors possess similar but stronger
activities than rapalogs on endothelial cells in vitro [42].

The anti-angiogenic properties of mTOR inhibitors have also been illustrated in various cancer
models in vivo. For instance, rapamycin decreases angiogenesis in dorsal skin fold chambers
transplanted with tumor cells, and in tumor xeno- and allografts [40]. The anti-angiogenic potential
of the rapalog CCI-779 was demonstrated in the matrigel plug assay, where CCI-779 inhibited
VEGF-stimulated vessel formation [43]. The latter further reduced microvessel density in two different
rhabdomyosarcoma xenografts [44]. Reduced vessel density in these models was associated with
decreased level of HIF-1 (hypoxia-inducible factor 1) and VEGE, confirming the role of mTOR in hypoxic
tumor response. Besides tumor xeno- and allografts, rapalogs also demonstrated anti-angiogenic efficacy
in a transgenic mouse model characterized by the development of ovarian serous adenocarcinomas [45].
In addition, rapalogs further decreased vascular density in patient-derived hepatocellular carcinoma
xenografts [46]. Interestingly, the rapalog RADO0O01 reduced the growth of tumor xenografts generated
from cancer cell lines that are either sensitive or insensitive to RADOO01 in vitro. In either case, RAD001
reduced the number of tumor blood vessels in tumor xenografts, highlighting the anti-angiogenic
effect of rapalogs as a major mechanism to decrease tumor xenograft growth [47]. The amount of
intra-tumoral VEGF was also reduced by RADO0O01. Besides histological analysis, the anti-angiogenic
activity of rapamycin has been evidenced by magnetic resonance imaging [48].

Finally, and more importantly, the anti-angiogenic effect of rapalogs has been reported in tumor
patients [49]. Lymph node biopsies retrieved before and after treatment of a patient suffering from
mantle cell lymphoma with CCI-779 revealed a decrease of tumor blood-vessel density.

Similarly to rapalogs, several studies have demonstrated anti-angiogenic effects of ATP-competitive
inhibitors of mTOR. The dual PI3K/mTOR inhibitor NVP-BEZ235 showed anti-angiogenic activity
in tumor mouse models of breast and renal cell cancers and glioma [50-52]. NVP-BEZ235 also
reduced intra-tumoral levels of VEGF [52]. The anti-angiogenic effects of NVP-BEZ235 were more
pronounced than with rapalogs [42,51,53]. Similarly, selective kinase inhibitors of mTOR reduced vessel
density in various models [42,54,55]. For instance, the mTORC1/mTORC?2 kinase inhibitor OXA-01
decreased tumor blood vessels and intra-tumoral levels of VEGF more potently than rapamycin [55].
Analogous findings were reported for PP242 [56].
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Despite a clear anti-angiogenic activity of mTOR inhibitors in tumor mouse models, few studies
have investigated their effects on tumor endothelial cells in vivo. Nevertheless, it was reported that
rapamycin increased tumor endothelial cell apoptosis in orthotopic pancreatic tumors using terminal
deoxynucleotidyl transferase nick end labeling (TUNEL) and CD31 double staining [35]. This was
associated with damaged vessels containing thromboses. Formation of vessel thrombosis following
rapamycin treatment was furthermore reported in lung cancer tumor xenografts [57].

Conditional cell depletion studies have partially confirmed the role of mTOR in endothelial cells
and tumor angiogenesis. Specific ablation of tuberous sclerosis complex-1 (TSC1), a negative regulator
of mTORC]1, in endothelial cells resulted in the formation of lymphangiosarcoma characterized
by sustained proliferation of endothelial cells [58]. Deletion of rictor, a component of mTORC?2,
in endothelial cells reduced VEGF-mediated endothelial cell proliferation. It also decreased the growth
of tumor allografts, which was associated with diminished tumor angiogenesis [59]. The role of
mTORC2 in VEGEF signaling in endothelial cells was further confirmed using a phosphoproteomic
approach [60]. Similarly, down-regulation of mMTORC2 reduced prostaglandin E;-mediated endothelial
cell responses and sprouting angiogenesis in vitro [61,62].

mTOR is ubiquitously expressed and its inhibition is not limited to endothelial cells. Accordingly,
besides acting directly on endothelial cells, mTOR inhibitors influence angiogenesis by regulating
the production of pro-angiogenic factors (Figure 2). Indeed, mTOR participates in the hypoxic
tumor response by stabilizing hypoxia-inducible factor 1oc and serves as a signaling intermediary in
inflammation-mediated angiogenesis [63-67]. Consequently, mTOR inhibitors reduce the expression
of VEGF [40,55].
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Figure 2. Mechanisms by which mTOR inhibitors affect tumor angiogenesis. mTOR inhibitors reduce
endothelial cell proliferation, survival and migration by blocking endothelial mTOR. In addition, they
decrease VEGF production, as mTORC1 is required to stabilize HIF1a during the hypoxic tumor
response and is activated by IKKf in inflammation-mediated angiogenesis. Finally, mTOR inhibitors
induce tumor associated macrophage polarization to an anti-angiogenic phenotype.

Several studies have demonstrated the complex interaction between mTORC1 and HIF-1«.
Different mechanisms responsible for the regulation of HIF-1a« by mTORC1 have been proposed
(Figure 3). For instance, in prostate cancer cells, rapamycin decreases protein levels of HIF-1x by
interfering with processes that promote HIF-1x protein stabilization [63]. In contrast, activation of
HER? receptor in breast cancer cells increases HIF-1x synthesis via stimulation of HIF-1a« mRNA
translation in a rapamycin-sensitive manner [68]. Up-regulation of HIF-1o« mRNA translation
was further observed either as a result of increased cap-dependent translation following 4E-BP1
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phosphorylation or via ribosomal protein S6 kinase-1 [69,70]. An additional mechanism involves
the promotion of the transcriptional activity of HIF-1oc by mTORC1 [71]. Finally, more recently, one
study specifically addressed the mechanisms driven by mTORC1 that induce HIF-1« signaling [72].
The role of mTORC1 and its downstream substrates 4E-BP1 and S6K1 in regulating HIF-1ac mRNA
translation was confirmed. In addition, the regulation of HIF-1oc mRNA transcription by mTORC1
was demonstrated, and appears to involve STAT3 [72].
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Figure 3. mTORCI1 regulates HIF-1« signaling via different mechanisms. mTORC1 controls HIF-1«
mRNA transcription and translation, HIF-1x protein stability and HIF-1« transcriptional activity.

Tumor angiogenesis is also influenced by tumor associated stromal cells [23]. In particular,
tumor associated macrophages play an important role in shaping the angiogenic response in tumors,
and can either sustain or, in contrast, repress angiogenesis [73,74]. Interestingly, mTOR activity in
macrophages has been shown to be an important factor in promoting the ability of macrophages
to stimulate angiogenesis [75]. Production of VEGF and interleukin-10 by human monocytes
following lipopolysaccharide stimulation was significantly reduced when monocytes were treated with
rapamycin, compared to untreated monocytes. Furthermore, in tumor xenograft models, depletion of
macrophages is sufficient to inhibit the anti-angiogenic activity of rapamyecin [75]. In contrast, infusion
of monocytes with increased mTORC1 activity following genetic ablation of TSC2 results in increased
tumor growth and angiogenesis in host mice bearing tumor xenografts [75]. Further evidence exists
for a role of mTOR as a regulator of macrophages polarization [76].

Finally, besides sprouting angiogenesis, five other modes of vessel formation in tumors have
been identified [77]. One is vascular mimicry, a process by which tumor cells acquire endothelial-like
characteristics and line tumor vessels [25,78,79]. The occurrence of vascular mimicry is not frequent,
but is nevertheless correlated with poor clinical outcome [80]. The observations that vascular mimicry
correlates with mTOR expression and that rapamycin inhibits the expression of endothelial cell
markers by tumor cells in vitro suggest that mTOR might further contribute to tumor blood supply by
regulating vascular mimicry [81,82]. Additional studies are, however, needed to fully characterize the
consequences of mTOR inhibition in this process.

3. Resistances to the Anti-Angiogenic Effects of mTOR Inhibitors

Several resistance mechanisms to anti-VEGF therapies have been characterized. For instance,
the stimulation of tumor endothelial cells by other growth factors than VEGF has been identified [83,84].
As mentioned above, alternate modes of vascularization to sprouting angiogenesis are employed by
tumors [85]. In addition to vascular mimicry, cancer cells can grow along pre-existing vessels by
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co-opting blood vessels [77]. Additionally, new blood vessels can be formed by intussusceptions,
the splitting of pre-existing vessels to give rise to two daughter vessels.

In contrast to anti-VEGF treatments, resistances to the anti-angiogenic effects of mTOR inhibitors
have barely been investigated. Nevertheless, emerging studies show that tumors are still able to
maintain blood supply despite mTOR inhibition. In this context, lack of anti-angiogenic effects by
mTOR inhibitors has been reported. Treatment of mice bearing human cervical carcinoma xenografts
with rapamycin does not decrease intra-tumoral mean vessel density despite decreasing tumor
growth [86]. It is of note that rapamycin treatment has no significant effect on plasma levels of
VEGF in this study. Likewise, rapamycin fails to alter microvessel density in a transgenic mouse model
of human epidermal growth factor receptor 2 (HER?2)-positive breast cancer, even though mTORC1
inhibition in tumor endothelial cells was documented by immunohistochemistry [87]. Absence of
anti-angiogenic effect has also been reported for the dual PI3K/mTOR inhibitor NVP-BEZ235, as well
as for the mTORC1/mTORC?2 inhibitor KU-0063794 [88,89]. In all these studies, tumor analysis was
performed at the end of treatment. It is therefore not possible to differentiate whether tumor blood
vessels were intrinsically resistant to rapamycin or, following an initial reduction of mean vessel
density, alternate signaling pathways were engaged to compensate for the inhibition of mTOR and
hence restore the formation of tumor blood vessels. Consistent with this latter hypothesis, it has been
shown that treatment of endothelial cells with rapamycin increases the activity of mitogen-activated
protein kinase (MAPK), which counteracts the anti-angiogenic efficacy of mTOR inhibitors [42].
Likewise, treatment of cultured endothelial cells with rapamycin increases the expression of the
serine/threonine-protein kinase Pim-1, which reduces the anti-proliferative efficacy of rapamycin [90].
Interestingly, compensatory mechanisms of tumor blood supply have been detected upon inhibition of
sprouting angiogenesis by rapalogs. In a rat model of hepatocellular carcinoma, electron microscopy
analysis of tumors revealed that RADO001 reduces sprouting angiogenesis, and that under these
circumstances, the main vascular growth mode is intussusception [91]. Hence, as for anti-VEGF
therapies, resistance mechanisms to the anti-angiogenic activity of mTOR inhibitors exist and need to
be thoroughly characterized.

4. Combined Therapies to Increase the Anti-Angiogenic Efficacy of mTOR Inhibitors

Since the anti-cancer efficacy of mTOR inhibitors used as monotherapy was limited in cancer
patients, pre-clinical studies have tested therapeutic approaches that combine mTOR inhibitors with
other anti-cancer agents. Several reports have investigated the effects of such combined treatments on
tumor angiogenesis. In this regard, the use of radiotherapy combined with mTOR inhibitors seems
particularly interesting. Radiation increases mTORC1 activity in endothelial cells, suggesting that
mTORCI1 might counteract the effects of radiation [41]. Consistent with this hypothesis, rapalogs
sensitize endothelial cells to radiation in culture by decreasing cell survival [41]. Combining rapalogs
with radiation increases endothelial cell apoptosis as demonstrated by increased cleaved caspase-3
expression. Tubule formation by endothelial cells is inhibited to a greater extent by rapalogs in
combination with radiation than by rapamycin or radiation alone [41]. Also, tumor growth of
glioma allografts is significantly reduced by rapamycin in combination with radiation compared
to either treatment alone. This effect is associated with reduced mean vessel density. Similar findings
were reported in models of colon and pancreatic cancers, where disruption of VEGF production in
cancer cells and VEGF-mediated signaling activation in endothelial cells induced by rapalogs were
proposed as the underlying mechanisms [92]. Likewise, in sarcoma and non-small cell lung tumor
xenografts, rapamycin treatment results in radio-sensitization, and reduction of tumor vessels is
maximal under combined rapamycin-radiation treatment [93,94]. Interestingly, rapalogs further
sensitize radio-resistant human oral squamous cell carcinoma tumor xenografts to fractionated
radiation [95]. Compared to single treatments, combining rapalogs with fractionated radiation induces
tumor endothelial cell apoptosis, which is associated with thrombus formation and tumor necrosis [95].
Dual PI3K/mTOR inhibitors demonstrated similar effects to rapalogs and radio-sensitized endothelial
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cells in vitro [96]. Based on these encouraging pre-clinical reports, phase I clinical trials combining
rapalogs with radiation are performed.

Besides radiotherapy, combining mTOR inhibitors with chemotherapies shows additional
anti-angiogenic activity. In the chick embryo chorioallantoic membrane, angiogenic response induced
by neuroblastoma cells derived from cell lines or patients is maximally inhibited when rapamycin
is combined with vinblastine [32]. Rapamycin also displays increased anti-angiogenic effects when
administered with doxorubicin in a rat model of hepatoma [97].

Additionally, mTOR inhibitors have been tested in combination with anti-VEGF treatments.
Co-administration of rapamycin and bevacizumab, a humanized recombinant monoclonal antibody
that targets VEGF, was tested in mice bearing hepatocellular carcinoma tumor xenografts [98].
Combined treatments significantly reduced mean vessel density in tumor xenografts generated
from six different cell lines. Importantly, the combination also decreased mean vessel density in
a tumor xenograft that did not respond to single treatment, suggesting that the combination could
overcome resistances to either treatment. The combination was also more efficient in decreasing VEGF
levels [98]. Such combinations exhibited substantial activity and reasonable toxicity in advanced renal
cell carcinoma and pancreatic neuroendocrine tumors in phase II trials [99,100]. In contrast, it was also
reported that bevacizumab combined with CCI-779 did not provide any survival benefits compared to
bevacizumab alone in advanced renal cell carcinoma [101].

Rapalogs were further tested with sorafenib and sunitinib, two small tyrosine kinase inhibitors
that non-specifically target VEGF receptors. Formation of capillary tubes by endothelial cells
was significantly more decreased by RAD001 in combination with sorafenib compared to single
therapy [102]. Co-administration of sorafenib and RADO001 also decreased angiogenesis in
osteosarcoma xenografts grown onto the chick embryo chorioallantoic membrane or in NOD/SCID
mice. This effect was, however, not significantly different from treatment with sorafenib alone [102].
Other investigators reported that combined sorafenib/RADO001 neither decreased capillary tube
formation nor significantly reduced endothelial cell proliferation compared to RADO0O1 alone [103].
However, combined treatment, when administered sequentially, significantly decreased endothelial
cell sprouting from aortic rings compared to single treatment [103]. Absence of sprouting angiogenesis
induced by combined sorafenib/RADO001 was further noted in a rat model of hepatocellular
carcinoma [103]. Additional studies have revealed the potentiated anti-angiogenic effects of rapalogs
combined with sunitinib. Association of rapamycin and sunitinib showed greater anti-angiogenic
effects than rapamycin or sunitinib alone, both in vitro and in vivo [104]. The anti-angiogenic effect of
RADO001 was also significantly increased in combination with TKI-258, another small tyrosine kinase
inhibitor, in hepatocellular carcinoma tumor xenografts [105]. It is of note that a phase I clinical
study revealed that sorafenib in combination with CCI-779 was associated with significant toxicity
in metastatic melanoma patients [106]. Sunitinib combined with RADO0O1 in advanced renal cell
carcinoma was also associated with toxicity and was only tolerated at attenuated doses.

As mentioned previously, treatment of endothelial cells with mTOR inhibitors results in increased
MEK/MAPK pathway activity, which counteracts the anti-angiogenic efficacy of mTOR inhibitors [42].
Hence, combining MEK inhibitors with mTOR inhibitors provides greater anti-angiogenic effects,
as evidenced in colon cancer and hepatocellular tumor xenografts [42,107]. Patients treated with such a
therapeutic approach showed however non-negligible side effects that greatly limit its application in
clinic [108].

Combining rapalogs with inhibitors of the insulin-like growth factor 1 receptor (IGF-1R) has
also been tested. The rationale for such a combination is the observation that blocking IGF-1R
abrogates rapamycin-mediated AKT activation in cancer cells [109]. Further evidence indicates that
inhibitors of IGF-1R potentiate the anti-angiogenic efficacy of rapalogs by decreasing VEGF levels [110].
Clinical trials show contrasting results. While combining IGF1-R inhibitors with rapalogs in advanced
sarcoma appears safe and provides anti-tumor activity [111-113], similar drug associations are no
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more effective than exemestane, an oral steroidal aromatase inhibitor, in estrogen receptor positive
advanced breast cancer but exhibit more adverse effects [114].

Vascular disrupting agents target established tumor vasculature, which is distinct from
anti-angiogenic agents that block neovascularization [115]. Hence, combining vascular disrupting
agents with anti-angiogenic drugs is meaningful, and should result in increased anti-tumor activity.
In this context, the effects of mTOR inhibitors combined with vascular disrupting agents have been
tested [116,117]. In a three-dimensional spheroid sprouting assay, co-treatment of RAD001 with the
vascular disrupting agent ASA404 significantly increased disruption of endothelial sprouts compared
to single treatments. In vivo, ASA404 combined with RAD001 markedly increased tumor necrosis
in a renal cell carcinoma model [116]. Similarly, NVP-BEZ235 combined with vascular-targeted
photodynamic therapy showed a strong synergism characterized by increased endothelial cell
apoptosis in vitro [117].

Finally, further pre-clinical studies showed that combined therapies can increase the
anti-angiogenic effects of mTOR inhibitors. For example, co-administration of the histone deacetylase
inhibitor LBH589 with rapamycin provides stronger anti-angiogenic effects in tumor xenografts
compared to LBH589 or rapamycin alone. At a molecular level, this therapeutic strategy significantly
reduces HIF-1o expression [118]. Likewise, methylnaltrexone, a peripheral-acting mu-opioid receptor
antagonist, exerts a synergistic effect with CCI-779 or rapamycin on VEGF-induced endothelial cell
proliferation and migration in cell culture and on angiogenesis in the matrigel plug assay [119].
Also, Toll-like receptor 9 agonist combined with RAD001 reduces VEGF production by renal cell
carcinoma cells and impairs endothelial cell functions [120].

5. mTOR Inhibitors and Normalization of Tumor Vasculature

Due to excessive growth stimulation, tumor blood vessels display an aberrant morphology and
poor functionality [121,122]. As a consequence, intra-tumoral fluid pressure is increased with areas of
hypoxia that contribute to resistance to chemo- and radiotherapy. Hence, normalization of vascular
abnormalities represents a therapeutic approach aiming to restore tumor blood perfusion and, thus,
increased drug accessibility and reduced resistances mediated by hypoxia [123,124]. Tumor vessel
normalization by anti-angiogenic drugs was initially observed with bevacizumab [125] and further
investigated for mTOR inhibitors. Rapamycin reduces vessel permeability in a tumor xenograft model
as evidenced by fluorescence tomography [126]. Similarly, rapamycin increases tumor perfusion and
oxygenation in a model of rhabdomyosarcoma and potentiates the efficacy of radiotherapy [127].
Hence, rapamycin administration before irradiation to normalize the tumor vasculature represents a
potential therapeutic strategy that needs to be precisely characterized. The observation that mTOR
inhibitors sensitize various tumor xenografts to radiotherapy and chemotherapy further support such
a therapeutic approach [93,128,129]. In addition, kinase inhibitors of mTOR provide similar effects
on tumor vasculature normalization as rapalogs. NVP-BEZ235 decreases vascular permeability and
accordingly intra-tumoral fluid pressure in a rat breast cancer model [50]. It further improves tumor
oxygenation and response to radiotherapy [96]. Also, the mTORC1/mTORC2 inhibitor Palomid
529 inhibits VEGF-mediated increase of vascular permeability [54]. It is of note that the absence of
effects of rapalogs on vascular permeability has also been reported, suggesting that the exact settings
in which mTOR inhibitors induce vessel normalization have to be clearly identified [47,116].

6. mTOR Inhibitors and Tumor Endothelial Barrier

Tumor endothelium, by its unique position, regulates the trafficking of leukocytes into tumors by
controlling the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1)
or vascular cell adhesion molecule-1 (VCAM-1) [130]. In addition, tumor endothelial cells are able to
modify the activity of T lymphocytes as they express MHC major histocompatibility complex (MHC)
class I and II as well as co-stimulatory and co-inhibitory molecules [131]. Hence, the tumor vasculature
actively participates in the host tumor immune response. In the context of cancer, the endothelium is,
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however, most frequently anergic, failing to upregulate adhesion molecules and to properly recruit
cytotoxic T cells. Moreover, tumor endothelium preferentially recruits T regulatory cells, further
contributing to immune escape [132]. Furthermore, through the expression of Fas ligand, tumor
endothelial cells are able to directly kill activated T lymphocytes [133]. Therefore, a therapeutic
opportunity exists to shape tumor endothelium to promote an appropriate recruitment and activation
of anti-tumor immune cells [134-136]. Emerging evidence suggests that mTOR inhibitors influence
functions of endothelial cells that are relevant to host immune response. Expression of inhibitory
molecules programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2) is upregulated
on endothelial cells both in vitro and in vivo upon rapamycin treatment [137]. Similarly, rapamycin
reduces the expression of VCAM-1 on endothelial cells [138]. Hence, future experiments are needed to
identify the effects of mTOR inhibitors on tumor endothelial barrier.

7. Biomarkers of Efficacy of mTOR Inhibitors

The identification of biomarkers that predict sensitivity or resistance to mTOR inhibitors would
be key to appropriately selecting patients likely to respond to these therapies. In this regard, molecular
alterations of PTEN, PI3K, KRAS or Bcl-2 overexpression have been associated with either sensitivity
or resistance to mTOR inhibitors [139-141]. The use of such biomarkers needs, however, to be
validated in clinical trials. While these studies have mostly focused on one or few predefined
molecules, the application of next generation sequencing represents a promising tool in the quest
of biomarkers [142]. In fact, it has already been successfully applied in a patient with anaplastic
thyroid cancer, who exhibited a near-complete response to the rapalog RADO01 for 18 months
followed by disease progression [143]. Pre-treatment whole exome sequencing revealed the presence
of a non sense mutation of TSC2, a negative regulator of mTORC1, resulting in overactivation
of mTORC1. Similar analysis following tumor progression demonstrated mTOR mutations that
render mTORC1 resistant to rapalogs. Likewise, activating mutations of mTOR were detected in
a patient with metastatic urothelial carcinoma who had a fourteen months complete response to
RADOO1 [144]. It would be interesting to further test whether such mutations can be detected in liquid
biopsies, which would provide an easy follow-up [145]. In addition, to date, no endothelial specific
biomarker exists that specifically predicts anti-angiogenic response to mTOR inhibitors. Nevertheless,
inhibition of endothelial Akt signaling has been identified as an important process responsible for the
anti-angiogenic effects of rapalogs [146]. Indeed, high levels of endothelial Akt activity is associated
with reduced anti-cancer effects of rapamycin.

8. Conclusions

mTOR inhibitors delay tumor progression in part by reducing tumor angiogenesis. This effect
is, however, limited, as resistance mechanisms developed by cancer cells assure tumor blood supply
despite mTOR inhibition. Thus, identification of these mechanisms is warranted to develop therapeutic
strategies that may increase the efficacy of mTOR inhibitors. In this context, combinatory strategies
have demonstrated interesting efficacy in pre-clinical studies. Translating these observations into
clinical trials might, however, be associated with significant toxicity. In addition, mTOR inhibitors
are able to normalize tumor blood vessels, suggesting a potential use as neo-adjuvant therapy prior
to chemo- or radiotherapy. The precise settings in which mTOR inhibitors provide vasculature
normalization effects need to be fully characterized. Finally, emerging evidence suggests that mTOR
inhibitors might influence endothelial functions that participate in the tumor immune response.
Future investigations are necessary to clarify this interrelation.
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