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Abstract: Despite the initial efficacy of androgen deprivation in prostate cancer, virtually all
patients progress to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) signaling
is critically required for CRPC. A new generation of medications targeting AR, such as abiraterone
and enzalutamide, has improved survival of metastatic CRPC (mCRPC) patients. However,
a significant proportion of patients presents with primary resistance to these agents, and in the
remainder, secondary resistance will invariably develop, which makes mCRPC the lethal form of
the disease. Mechanisms underlying progression to mCRPC and treatment resistance are extremely
complex. AR-dependent resistance mechanisms include AR amplification, AR point mutations,
expression of constitutively active AR splice variants, and altered intratumoral androgen biosynthesis.
AR-independent resistance mechanisms include glucocorticoid receptor activation, immune-mediated
resistance, and neuroendocrine differentiation. The development of novel agents, such as seviteronel,
apalutamide, and EPI-001/EPI-506, as well as the identification and validation of novel predictive
biomarkers of resistance, may lead to improved therapeutics for mCRPC patients.

Keywords: castration-resistant prostate cancer; androgen receptor; progression; resistance mechanisms;
enzalutamide; abiraterone

1. Introduction

In the United States, prostate cancer is the most commonly diagnosed malignancy (aside from
skin cancer), where approximately one out of every seven men will be diagnosed with the disease
during their lifetime [1]. It is estimated that 161,360 new cases of prostate cancer will be diagnosed in
2017 [1,2]. Overall survival (OS) for prostate cancer has improved over the past four decades, likely
due to a combination of early detection and diagnoses with improved treatment options. The 5-year
survival rate for prostate cancer (all stages combined) has risen from 68% to 99% [1,3]. The 10-year
survival rate is 98%, while the 15-year survival rate is 95% [3].

However, prostate cancer is still the third leading cause of cancer-related death among men
in the US. It is estimated that 26,730 deaths will occur in 2017 due to prostate cancer [2]. Despite
surgery or radiation, some patients (perhaps up to 20–30%) with clinically localized prostate cancer
will have recurrence of their disease after treatment and will progress to the metastatic stage over
time. For metastatic prostate cancer, androgen deprivation therapy (ADT) is the standard treatment,
and ADT can be achieved either by surgical castration through bilateral orchiectomy or medical
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castration through the use of luteinizing hormone-releasing hormone (LH-RH) agonists (i.e., leuprolide
acetate) or LH-RH antagonists (i.e., degarelix acetate). Despite its initial effectiveness in stabilizing
or causing regression of metastatic prostate cancer, progression to the lethal form of the disease,
known as castration-resistant prostate cancer (CRPC), is essentially inevitable for these patients.
CRPC can be defined as either progressively rising levels of serum tumor marker prostate-specific
antigen (PSA) or detection of new or progressive metastatic tumors by radiographic scans, despite
castrate testosterone levels (≤50 ng/dL). Based on recent preclinical and clinical data, it is now
evident that CRPC is not “androgen-independent” despite systemic depletion of androgens, but rather
continues to be dependent on the androgen receptor (AR) signaling axis [4,5]. Two new agents,
abiraterone and enzalutamide, have been recently approved by the U.S. Food and Drug Administration
(FDA), and have proven to be effective in the treatment of metastatic CRPC (mCRPC) [6–10].
However, many patients treated with these two agents will not experience a PSA response [6–9],
and nearly all of the remaining patients will eventually develop progression despite treatment [11].
Reactivation of the AR is central to the development and pathogenesis of CRPC, and treatment
resistance mechanisms may also be mediated by the AR signaling axis. Mechanisms that ultimately
alter AR axis signaling, disease progression, and/or lead to treatment resistance in CRPC can be
stratified into AR-dependent and AR-independent resistance mechanisms. AR-dependent resistance
mechanisms include AR amplification, AR point mutations, expression of constitutively active AR splice
variants, and altered intratumoral androgen biosynthesis. AR-independent resistance mechanisms
include glucocorticoid receptor overexpression, neuroendocrine differentiation, and immune-mediated
resistance mechanisms.

Ultimately, metastatic CRPC (mCRPC) remains incurable, and novel treatment resistance
mechanisms continue to be identified, implicating numerous, complex dysregulated molecular
signaling pathways that underlie the progression and lethality of the disease. The primary objective of
this review article is to discuss the etiologies underlying clinically-relevant mechanisms that lead to
drug resistance in mCRPC, and the potential treatment strategies designed to overcome resistance.

2. The Human Androgen Receptor

Normal differentiation of prostate cells is completely dependent on the AR, and in both
androgen-dependent prostate cancer and CRPC, the AR signaling axis plays a central role in disease
pathogenesis. The AR is a protein coding gene that is located on the X chromosome at Xq11–12,
is >90 kb in length, and consists of eight exons. It encodes the human AR protein, which is a member of
the steroid hormone receptor superfamily, and a ligand-activated nuclear transcription factor. The AR
is 110 kD, comprised of approximately 919 amino acids, and consists of four functional domains: (1) the
N-terminal transactivation domain (NTD); (2) the DNA-binding domain (DBD); (3) the hinge region;
and (4) the ligand-binding domain (LBD) [12–14]. The NTD (amino acids 1–537, encoded by exon 1) is
generally considered to be constitutively active, harbors transcriptional activation function-1 (AF-1),
and is critical for engaging the cellular transcription complex. Within the AF-1 are two transactivation
units (TAU): TAU-1 (amino acids 142–485) and TAU-5 (amino acids 351–528) [15]. Among the two,
TAU-5 is responsible for the majority of constitutive transcriptional activity, and has been associated
with aberrant AR activation in CRPC cells [16,17]. The DBD (amino acids 538–624, encoded by
exons 2 and 3) consists of two zinc finger domains that coordinate AR protein binding to specific DNA
sequences, and facilitate receptor homodimerization. The hinge region (amino acids 625–669, encoded
by exon 4) separates the DBD from the LBD, and contains the nuclear translocation signal, which is
necessary for AR nuclear import. The LBD (amino acids 626–919, encoded by exons 5–8), contains the
AF-2, and facilitates binding of androgen ligands, which act as the primary control mechanism of the
AR signaling axis (Figure 1) [12,16].
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Figure 1. The human androgen receptor gene and protein. This figure depicts the gene and protein 
structures for the AR-FL. The AR is located on the X chromosome (Xq11.2) and is comprised of eight 
exons. AR-FL contains the NTD (encoded by exon 1), the DBD (encoded by exons 2–3), the hinge 
region (encoded by exon 4) and the LBD (encoded by exons 5–8). The strong transcriptional activity 
in the NTD can be attributed to the AF-1, while the LBD contains the weaker AF-2. Two major 
transactivation units are present in the AF-1: TAU-1 and TAU-5. Abbreviations: AF-1, activation 
function 1; AF-2, activation function 2; AR-FL, androgen receptor full length; DBD, DNA-binding 
domain; LBD, ligand-binding domain; NTD, N-terminal transactivation domain; TAU-1, 
transactivation unit 1; TAU-5, transactivation unit 5; UTR, untranslated region. 

In the absence of dihydrotestosterone (DHT) binding to the AR, it remains isolated in an inactive 
form within the cytoplasm where it is bound to chaperone proteins (i.e., heat shock protein 90 or 
HSP90) [18]. In the absence of DHT activation, a nuclear export signal (NESAR) helps maintain 
cytoplasmic localization [19]. However, upon DHT-induced activation of the AR by binding to the 
LBD, NESAR activity is suppressed, and the AR disassociates from the chaperone complex, undergoes 
homodimerization, and translocates into the nucleus where it binds to androgen response elements 
(ARE) in cis-regulatory regions of target genes. AR binding to the AREs regulates transcription of 
genes that elicit biological responses as well as genes responsible for increased growth and survival 
of the prostate cancer (Figure 2) [18,20]. PSA transcription is predominantly regulated by the AR and 
therefore, serum PSA levels could be regarded as a surrogate marker of AR activity in tumor cells. 
When ADT is initiated, reduction in circulating testosterone reduces AR activity in prostate cancer 
cells and, correspondingly, the serum PSA level decreases. 

3. FDA-Approved Pharmacotherapeutics for mCRPC 

For over seven decades, ADT has been the cornerstone treatment for metastatic prostate cancer, 
and remains an indispensable treatment paradigm in mCRPC. Although ADT is initially effective in 
the majority of prostate cancer patients, its effects on tumor growth are transient, and most patients 
progress within 18–30 months [21]. AR reactivation, manifested by increasing PSA levels or disease 
progression despite effective testosterone suppression, drives progression to the lethal CRPC 
phenotype in virtually all patients. 

Prior to the FDA approval of abiraterone in 2011 and enzalutamide in 2012, mCRPC patients 
were traditionally treated with the microtubule-stabilizing taxane, docetaxel. Docetaxel was 
approved for the treatment of mCRPC based on two seminal phase III clinical trials (TAX 327 and 
SWOG 9916), both of which demonstrated a modest 2–3-month survival benefit to mCRPC patients 
[22,23]. After the approval of abiraterone and enzalutamide, docetaxel has largely been relegated to 
a second- or third-line treatment option for mCRPC. However, the recent ECOG 3805/CHAARTED 
and STAMPEDE phase III clinical trials demonstrated the effectiveness of docetaxel as a front-line 
option in patients with metastatic castration-sensitive prostate cancer [24,25]. 

Figure 1. The human androgen receptor gene and protein. This figure depicts the gene and protein
structures for the AR-FL. The AR is located on the X chromosome (Xq11.2) and is comprised of eight
exons. AR-FL contains the NTD (encoded by exon 1), the DBD (encoded by exons 2–3), the hinge region
(encoded by exon 4) and the LBD (encoded by exons 5–8). The strong transcriptional activity in the NTD
can be attributed to the AF-1, while the LBD contains the weaker AF-2. Two major transactivation units
are present in the AF-1: TAU-1 and TAU-5. Abbreviations: AF-1, activation function 1; AF-2, activation
function 2; AR-FL, androgen receptor full length; DBD, DNA-binding domain; LBD, ligand-binding
domain; NTD, N-terminal transactivation domain; TAU-1, transactivation unit 1; TAU-5, transactivation
unit 5; UTR, untranslated region.

In the absence of dihydrotestosterone (DHT) binding to the AR, it remains isolated in an inactive
form within the cytoplasm where it is bound to chaperone proteins (i.e., heat shock protein 90 or
HSP90) [18]. In the absence of DHT activation, a nuclear export signal (NESAR) helps maintain
cytoplasmic localization [19]. However, upon DHT-induced activation of the AR by binding to the
LBD, NESAR activity is suppressed, and the AR disassociates from the chaperone complex, undergoes
homodimerization, and translocates into the nucleus where it binds to androgen response elements
(ARE) in cis-regulatory regions of target genes. AR binding to the AREs regulates transcription of
genes that elicit biological responses as well as genes responsible for increased growth and survival of
the prostate cancer (Figure 2) [18,20]. PSA transcription is predominantly regulated by the AR and
therefore, serum PSA levels could be regarded as a surrogate marker of AR activity in tumor cells.
When ADT is initiated, reduction in circulating testosterone reduces AR activity in prostate cancer
cells and, correspondingly, the serum PSA level decreases.

3. FDA-Approved Pharmacotherapeutics for mCRPC

For over seven decades, ADT has been the cornerstone treatment for metastatic prostate cancer,
and remains an indispensable treatment paradigm in mCRPC. Although ADT is initially effective
in the majority of prostate cancer patients, its effects on tumor growth are transient, and most
patients progress within 18–30 months [21]. AR reactivation, manifested by increasing PSA levels or
disease progression despite effective testosterone suppression, drives progression to the lethal CRPC
phenotype in virtually all patients.

Prior to the FDA approval of abiraterone in 2011 and enzalutamide in 2012, mCRPC patients were
traditionally treated with the microtubule-stabilizing taxane, docetaxel. Docetaxel was approved for
the treatment of mCRPC based on two seminal phase III clinical trials (TAX 327 and SWOG 9916),
both of which demonstrated a modest 2–3-month survival benefit to mCRPC patients [22,23]. After
the approval of abiraterone and enzalutamide, docetaxel has largely been relegated to a second- or
third-line treatment option for mCRPC. However, the recent ECOG 3805/CHAARTED and STAMPEDE
phase III clinical trials demonstrated the effectiveness of docetaxel as a front-line option in patients
with metastatic castration-sensitive prostate cancer [24,25].
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Figure 2. AR signaling axis, and mechanisms of AR targeted inhibition. CYP17A1 is the enzyme 
responsible for the conversion of androgen precursors (i.e., pregnenolone and progesterone; 
represented by the light purple circles) to DHEA, while HSD3β1 converts DHEA to AD, AKR1C3 
converts AD to testosterone (represented by the blue circles) and finally 5α-reductase converts 
testosterone to dihydrotestosterone (DHT; represented by the green circles). DHT-mediated 
activation of the AR causes a conformational change where the AR dimerizes, which then triggers AR 
translocation into the nucleus. Abiraterone selectively and irreversibly inhibits intratumoral 
androgen biosynthesis by potently blocking CYP17A1. As a result, less ligand is available for AR 
activation and AR axis signaling. Seviteronel (VT-464) is also an inhibitor of CYP17A1. Seviteronel 
has also been shown in preclinical models to have direct inhibitor effects on the AR. Enzalutamide is 
a potent second-generation antiandrogen that antagonizes the AR, prevents AR translocation into the 
nucleus, and inhibits AR-mediated transcription. Apalutamide (ARN-509) and darolutamide (ODM-
201) are also potent, competitive AR inhibitors with similar mechanisms of action to enzalutamide. 
EPI-506 reduces AR transcriptional activity by inhibiting protein-protein interactions between the AR 
and its transcriptional co-regulators. JQ1 is a bromodomain inhibitor that limits AR transcriptional 
ability by targeting its coactivators. Abbreviations: AD, androstenedione; AKR1C3, aldo-keto 
reductase family 1 member C3; AR, androgen receptor; CYP17A1, cytochrome P450 c17; DHEA, 
dehydroepiandrosterone; D, dihydrotestosterone; HSP, heat shock protein; HSD3β1, human 3-beta-
hydroxysteroid dehydroxynase/delta5-4 isomerase type 1; P, androgen precursors; PSA, prostate-
specific antigen; T, testosterone. 

Abiraterone blocks the production of intratumoral androgen biosynthesis by potently, 
selectively, and irreversibly inhibiting cytochrome P450 c17 (CYP17A1). CYP17A1 is central to 
androgen biosynthesis through both 17α-hydroxylase and C17,20-lyase activity [26]. Perhaps most 
importantly, CYP17A1 is the enzyme responsible for converting pregnenolone to 
dehydroepiandrosterone (DHEA; Figure 2) [27]. Potent and effective CYP17A1 inhibition ultimately 
limits the amount of circulating androgens available to activate the AR. Data from two seminal phase 
III clinical trials (COU-AA-301 and COU-AA-302) led to the FDA approval of abiraterone. The 
double-blinded, placebo-controlled COU-AA-301 trial was conducted in chemotherapy-pretreated 
mCRPC patients (n = 1195) [6]. COU-AA-301 met its primary endpoint by demonstrating that there 
was a 3.9-month longer median overall survival (OS) for patients treated with abiraterone (14.8 
versus 10.9 months), and a 35% reduction in the risk of death (hazard ratio (HR) = 0.65; 95% 
confidence interval (CI), 0.54–0.77; p < 0.001), when compared to placebo. Patients treated with 
abiraterone also exhibited significant improvements for all secondary endpoints such as radiographic 

Figure 2. AR signaling axis, and mechanisms of AR targeted inhibition. CYP17A1 is the enzyme
responsible for the conversion of androgen precursors (i.e., pregnenolone and progesterone; represented
by the light purple circles) to DHEA, while HSD3β1 converts DHEA to AD, AKR1C3 converts AD
to testosterone (represented by the blue circles) and finally 5α-reductase converts testosterone to
dihydrotestosterone (DHT; represented by the green circles). DHT-mediated activation of the AR
causes a conformational change where the AR dimerizes, which then triggers AR translocation into
the nucleus. Abiraterone selectively and irreversibly inhibits intratumoral androgen biosynthesis
by potently blocking CYP17A1. As a result, less ligand is available for AR activation and AR
axis signaling. Seviteronel (VT-464) is also an inhibitor of CYP17A1. Seviteronel has also been
shown in preclinical models to have direct inhibitor effects on the AR. Enzalutamide is a potent
second-generation antiandrogen that antagonizes the AR, prevents AR translocation into the nucleus,
and inhibits AR-mediated transcription. Apalutamide (ARN-509) and darolutamide (ODM-201)
are also potent, competitive AR inhibitors with similar mechanisms of action to enzalutamide.
EPI-506 reduces AR transcriptional activity by inhibiting protein-protein interactions between
the AR and its transcriptional co-regulators. JQ1 is a bromodomain inhibitor that limits AR
transcriptional ability by targeting its coactivators. Abbreviations: AD, androstenedione; AKR1C3,
aldo-keto reductase family 1 member C3; AR, androgen receptor; CYP17A1, cytochrome P450
c17; DHEA, dehydroepiandrosterone; D, dihydrotestosterone; HSP, heat shock protein; HSD3β1,
human 3-beta-hydroxysteroid dehydroxynase/delta5-4 isomerase type 1; P, androgen precursors; PSA,
prostate-specific antigen; T, testosterone.

Abiraterone blocks the production of intratumoral androgen biosynthesis by potently, selectively,
and irreversibly inhibiting cytochrome P450 c17 (CYP17A1). CYP17A1 is central to androgen
biosynthesis through both 17α-hydroxylase and C17,20-lyase activity [26]. Perhaps most importantly,
CYP17A1 is the enzyme responsible for converting pregnenolone to dehydroepiandrosterone (DHEA;
Figure 2) [27]. Potent and effective CYP17A1 inhibition ultimately limits the amount of circulating
androgens available to activate the AR. Data from two seminal phase III clinical trials (COU-AA-301
and COU-AA-302) led to the FDA approval of abiraterone. The double-blinded, placebo-controlled
COU-AA-301 trial was conducted in chemotherapy-pretreated mCRPC patients (n = 1195) [6].
COU-AA-301 met its primary endpoint by demonstrating that there was a 3.9-month longer median
overall survival (OS) for patients treated with abiraterone (14.8 versus 10.9 months), and a 35%
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reduction in the risk of death (hazard ratio (HR) = 0.65; 95% confidence interval (CI), 0.54–0.77;
p < 0.001), when compared to placebo. Patients treated with abiraterone also exhibited significant
improvements for all secondary endpoints such as radiographic progression free survival (PFS), time to
PSA progression and PSA response rate. COU-AA-302 was a double-blinded, placebo-controlled trial
that was conducted in chemotherapy-naive mCRPC patients (n = 1088) [7]. COU-AA-302 achieved its
co-primary endpoints (OS and radiographic PFS). Investigators observed a 25% reduced risk of death
(HR = 0.75; 95% CI, 0.61–0.93; p = 0.01), a 47% reduced risk of progression (HR = 0.53; 95% CI, 0.45–0.62;
p < 0.001), and an increased median PFS by 8.3 months (16.5 versus 8.2 months) in abiraterone-treated
patients, when compared to placebo. Again, significant improvements were observed for all secondary
endpoints in patients treated with abiraterone. In both trials, excess mineralocorticoid-mediated
toxicities were significantly more common among the patients treated with abiraterone. Two recently
published clinical trials demonstrated that addition of abiraterone to ADT in metastatic prostate cancer
patients who are initiating ADT treatment resulted in substantial benefit, including increased OS and
PFS [28,29]. These data may lead to a major shift in standard of care treatment paradigms, where
abiraterone is initiated in hormone-sensitive patients. However, as more patients are exposed to
abiraterone during earlier stages of disease, complications related to secondary resistance will become
even more prominent in clinical practice.

Enzalutamide is a second-generation AR inhibitor that was developed to overcome resistance to
first-generation agents (i.e., bicalutamide or flutamide). Enzalutamide has a tri-modal mechanism of
action: (1) it potently binds to the AR LBD to prevent ligand binding and AR activation; (2) it inhibits
AR translocation into the cell nucleus; and (3) it prevents binding of AR to DNA to effectively inhibit
transcription of target genes (Figure 2). One of the main advantages of enzalutamide in mCRPC is that
is possesses no agonist properties in mCRPC with AR overexpression [30]. Data from two seminal
phase III clinical trials (AFFIRM and PREVAIL) led to the FDA approval of enzalutamide. AFFIRM
was a double-blinded, placebo-controlled trial conducted chemotherapy-pretreated mCRPC patients
(n = 1199) [8]. AFFIRM met its primary endpoint by demonstrating that median OS was 4.8 months
longer in patients treated with enzalutamide (18.4 versus 13.6 months), and the risk of death was
decreased by 37%, when compared to placebo (HR = 0.63; 95% CI, 0.53–0.75; p < 0.001). Significant
improvements in all secondary endpoints were also observed among patients in the enzalutamide arm.
PREVAIL was a double-blinded, placebo-controlled trial conducted in chemotherapy-naıve mCRPC
patients (n = 1717) [9]. PREVAIL achieved both of its co-primary endpoints (OS and radiographic PFS).
Investigators observed a 2.2 month longer median OS (32.4 versus 30.2 months), and a 29% reduced
risk of death (HR = 0.71; 95% CI, 0.60–0.84; p < 0.001). Second, radiographic PFS was also superior
for patients in the enzalutamide arm, with an 81% reduced risk of progression (HR = 0.19; 95% CI,
0.15–0.23; p < 0.001). Similar to AFFIRM, patients in the PREVAIL enzalutamide arm also achieved
significant improvements in all secondary endpoints.

The pharmacotherapeutic landscape for the treatment of mCRPC has been further expanded
over the last decade with the FDA approval of three new agents. Options for the treatment of
mCRPC now include: (1) the autologous cellular immunotherapy, sipuleucel-T, for asymptomatic or
minimally symptomatic mCRPC patients (approved by the FDA in 2010) [31]; (2) the semi-synthetic
taxane, cabazitaxel, which was shown to be effective in overcoming secondary resistance to docetaxel
(approved by the FDA in 2010) [32]; and (3) the α-emitting radiopharmaceutical, radium-223 (approved
by the FDA in 2013) [33]. However, resistance mechanisms for these agents will not be discussed,
as they are beyond the focus of this review. Despite the availability of enzalutamide and abiraterone
for CRPC patients, secondary resistance mechanisms inevitably result in clinical progression. Novel
therapeutics that target altered intratumoral androgen biosynthesis (i.e., seviteronel [34]) or the AR with
greater affinity and potency (i.e., apalutamide and darolutamide [35,36]), as well as those that degrade
the AR (i.e., niclosamide [37]) or target the AR NTD (i.e., EPI-506 [38,39]) are currently in development
for the treatment mCRPC (Figure 2). These currently investigational pharmacotherapeutics will be
discussed in more detail in the following sections.
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4. AR-Dependent Resistance Mechanisms

Although abiraterone and enzalutamide have advanced the treatment of mCRPC patients,
approximately 20–40% of patients present with primary resistance to these agents (e.g., no initial
PSA response) [6–8,40]. Moreover, patients who do experience a clinical or biochemical response after
treatment with these two agents will eventually develop secondary resistance to the drug [11]. Despite
distinct mechanisms of drug action, there may be significant cross-resistance between abiraterone
and enzalutamide [41,42]. One plausible hypothesis of cross-resistance between the two drugs
centers on the recent finding that an active metabolite of abiraterone (∆4-abiraterone) has potent
AR antagonist properties. The mechanisms of drug action that are similar between ∆4-abiraterone and
enzalutamide could also be shared resistance mechanisms that explain the cross-resistance between
the two drugs [43].

Primary and secondary resistance to abiraterone and enzalutamide are extremely complex [44].
Mechanisms of resistance that are mediated by the AR include (but are likely not limited to):
AR amplification, AR overexpression, AR somatic point mutations, constitutively active AR splice
variants, and altered intratumoral androgen biosynthesis [18,45–47].

4.1. AR Amplification and Overexpression

AR amplification and overexpression are two primary etiologies for progression to the mCRPC
phenotype, and are likely important to the development of treatment resistance. While not generally
present in hormone-sensitive cells, up to 80% of CRPC cells exhibit AR amplification, AR mRNA
overexpression, or AR protein overexpression [48,49]. AR amplification, leading to AR overexpression,
enables progression to CRPC even in the setting of low circulating androgens due to ADT
treatment [50].

In addition to its role in mCRPC progression, there is mounting evidence that AR
amplification could also be an important resistance mechanism. Preclinical in vitro studies using
enzalutamide-resistant LNCaP cells express higher levels of AR (and AR splice variants) when
compared to naïve LNCaP cells [51]. One in vivo study showed 3-fold increased AR expression
after CRPC xenografts were treated with abiraterone [52]. Finally, a recent study that utilized liquid
biopsies and circulating tumor DNA (ctDNA) to probe the AR genomic landscape discovered that
patients with AR amplification were less likely to respond to treatment. A total of 50% of patients
who were pretreated with either enzalutamide or orteronel (a CYP17A1 inhibitor) prior to abiraterone
treatment showed evidence of AR amplification, and only 13% of those with AR gain demonstrated a
response with ≥50% PSA decline after being treated with abiraterone [53]. A separate study, using
circulating tumor cells (CTCs), examined AR amplification as a resistance mechanism in mCRPC
patients treated with abiraterone or enzalutamide, and who had received previous docetaxel treatment.
Among the patients in the study discovery cohort who had received docetaxel (n = 98), AR amplification
was associated with a worse rate of PSA decline of ≥50%, shorter PFS (HR = 1.95; 95% CI, 1.23–3.11;
p < 0.01), and shorter OS (HR = 3.81; 95% CI, 2.28–6.37; p < 0.001). These results were confirmed in
their replication cohort of enzalutamide-treated patients from the PREMIERE trial (n = 100), where
patients with AR amplification experienced shorter PSA PFS (HR = 4.33; 95% CI, 1.94–9.68; p < 0.001),
and OS (HR = 11.08; 95% CI, 2.16–56.95; p < 0.004) [54]. Additional studies of liquid biopsies have
also demonstrated that AR amplification in ctDNA is associated with resistance to abiraterone and
enzalutamide [55,56].

4.2. AR Point Mutations

In CRPC, AR mutations are found in 5–30% in tumors, CTCs, and ctDNA [53,55,57]. AR point
mutations confer resistance to enzalutamide and abiraterone, but currently there is some ambiguity as
to whether the spectrum of somatic mutations that confer drug resistance are different for abiraterone
and enzalutamide. The majority of clinically-relevant somatic point mutations in the AR is located in
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the LBD. These include four main somatic missense mutations: (1) a leucine to histidine substitution
at amino acid 702 (L702H); (2) a histidine to tyrosine substitution at amino acid 875 (H875Y);
(3) a phenylalanine to leucine substitution at amino acid 877 (F877L); and (4) a threonine to alanine
substitution at amino acid 878 (T878A) (Figure 3).Cancers 2017, 9, 67 7 of 18 

 

 

Figure 3. AR somatic missense mutations. The main four missense mutations that are focused on in 
this review all occur in the AR LBD (AR exons 5–8) and include: L702H, H875Y, F877L (previously 
published as F876L), and T878A (previously published as T877A). Abbreviations: DBD, DNA binding 
domain; LBD, ligand binding domain; NTD, N-terminal transactivation domain. 

One of the most frequently reported AR point mutations is T878A (previously reported in the 
literature as T877A), which is a gain of function mutation, and can be activated by both steroid 
hormones (e.g., progesterone) and first-generation antiandrogens (e.g., bicalutamide or flutamide). It 
most commonly arises after treatment with abiraterone because when CYP17A1 is effectively 
inhibited, intracellular progesterone levels increase, while DHEA and testosterone are suppressed. 
Intuitively, it would appear that this mutation would effectively limit AR activation; however, the 
T878A mutation broadens ligand binding specificity of the AR so that it can be activated by 
progesterone, glucocorticoids, and estrogen [58]. Thus, the T878A mutation creates malignant clones 
that are able to overcome abiraterone inhibition [59]. A recent study of abiraterone-treated mCRPC 
patients revealed that the T878A mutation was detected in 3 of 18 patients at high frequency [60]. 

A second frequently reported somatic mutation, F877L (previously reported in the literature as 
F876L), arises in patients after treatment with enzalutamide or apalutamide. Apalutamide (formerly 
ARN-509) and darolutamide (formerly ODM-201) have a similar mechanism of action to 
enzalutamide [35,36]. There is evidence that darolutamide could more potently antagonize the AR 
than enzalutamide [36]. In preclinical models, both have shown less blood–brain barrier penetration 
than enzalutamide, which could therefore spare patients the central nervous system-mediated 
adverse events (i.e., seizures) associated with enzalutamide [35,36]. Preclinical data from prostate 
cancer cell lines and patient tumor tissues revealed that F877L can effectively convert enzalutamide 
from a potent antagonist into a partial agonist [61–63]. Another preclinical study demonstrated that 
F877L can occur spontaneously in enzalutamide-treated cells, suggesting that this could be an 
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Figure 3. AR somatic missense mutations. The main four missense mutations that are focused on in
this review all occur in the AR LBD (AR exons 5–8) and include: L702H, H875Y, F877L (previously
published as F876L), and T878A (previously published as T877A). Abbreviations: DBD, DNA binding
domain; LBD, ligand binding domain; NTD, N-terminal transactivation domain.

One of the most frequently reported AR point mutations is T878A (previously reported in the
literature as T877A), which is a gain of function mutation, and can be activated by both steroid
hormones (e.g., progesterone) and first-generation antiandrogens (e.g., bicalutamide or flutamide).
It most commonly arises after treatment with abiraterone because when CYP17A1 is effectively
inhibited, intracellular progesterone levels increase, while DHEA and testosterone are suppressed.
Intuitively, it would appear that this mutation would effectively limit AR activation; however,
the T878A mutation broadens ligand binding specificity of the AR so that it can be activated by
progesterone, glucocorticoids, and estrogen [58]. Thus, the T878A mutation creates malignant clones
that are able to overcome abiraterone inhibition [59]. A recent study of abiraterone-treated mCRPC
patients revealed that the T878A mutation was detected in 3 of 18 patients at high frequency [60].

A second frequently reported somatic mutation, F877L (previously reported in the literature
as F876L), arises in patients after treatment with enzalutamide or apalutamide. Apalutamide
(formerly ARN-509) and darolutamide (formerly ODM-201) have a similar mechanism of action
to enzalutamide [35,36]. There is evidence that darolutamide could more potently antagonize the AR
than enzalutamide [36]. In preclinical models, both have shown less blood–brain barrier penetration
than enzalutamide, which could therefore spare patients the central nervous system-mediated adverse
events (i.e., seizures) associated with enzalutamide [35,36]. Preclinical data from prostate cancer
cell lines and patient tumor tissues revealed that F877L can effectively convert enzalutamide from a
potent antagonist into a partial agonist [61–63]. Another preclinical study demonstrated that F877L
can occur spontaneously in enzalutamide-treated cells, suggesting that this could be an important
secondary resistance mechanism for second-generation AR antagonists [62]. Spontaneous F877L
mutations were also detected in ctDNA of patients treated with apalutamide or enzalutamide [55,61].
However, darolutamide has been shown, preclinically, to be resistant to both T878A and F877L point
mutations [36], which might make it an attractive option for patients who develop secondary resistance
to enzalutamide. Additional preclinical data has revealed that the nonsteroidal CYP17 inhibitor
seviteronel (formerly VT-464) cannot only potently antagonize the AR, but it can also overcome F877L
mutations that arise after treatment with enzalutamide or abiraterone [34,64,65].

Interestingly, L702H is a mutation that can result in glucocorticoid-mediated activation of the AR.
In one study, the L702H mutation was associated with primary resistance to abiraterone [66]. Another
study demonstrated that both L702H and T878A point mutations were associated with poor PSA
response after abiraterone or enzalutamide treatment. Among patients with aberrant AR who were
treated with enzalutamide, only 13% experienced a ≥50% PSA decline after abiraterone treatment [53].
Another recent study demonstrated that abiraterone-treated patients harboring either the T878A or
the L702H mutation experienced shorter OS (HR = 3.26; 95% CI, 1.47–not reached; p < 0.004), when
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compared to patients without detectable point mutations. In this study, T878A and L702H mutations
were only found in patients who had received prior docetaxel treatment [54].

4.3. AR Splice Variants

Approximately 20 AR mRNA splice variants (AR-V) have been identified since 2008. While
select AR-Vs are only conditionally active (i.e., AR-V1 and AR-V9) [67], many are constitutively active
(i.e., androgen-independent nuclear localization to promote transcription of target genes) [68], and are
likely to be a clinically-relevant mechanism of secondary resistance in mCRPC patience who have
been treated with abiraterone or enzalutamide. While most AR-Vs retain the NTD and DBD domains,
alternative splicing of AR-V7 results in the addition of a cryptic exon 3. In ARv567es, alternate splicing
leads to skipping of exon 5, 6, and 7, and a frameshift that causes a premature stop codon in exon 8.
Both splice variants cause the loss of the LBD domain, and the formation of the C-terminal truncated
protein (Figure 4) [69–71].
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Figure 4. Clinically-relevant splice variants. This figure depicts the gene and protein structures for
the AR-V7 and ARv567es splice variants. Alternate splicing of the AR leads to the formation of the
constitutively active, and clinically-relevant, AR-V7 and ARv567es splice variants. AR-V7 is a variant
with a cryptic exon 3 instead of exons 4–8. This alternative splicing leads to a protein that has lost
the hinge region and LBD. ARv567es is a variant that contains full sequences of exons 1–4, and exon 8;
however, exons 5–7 are skipped. As a result of alternative splicing, a frameshift causes the creation
of a premature stop codon in exon 8. Both splice variants are constitutively active proteins that can
bind to DNA to promote transcription without the need for ligand binding. Abbreviations: ARv567es,
androgen receptor splice variant with exons 5–7 skipped; AR-V7, androgen receptor splice variant
V7; CE3, cryptic exon 3; NTD, N-terminal transactivation domain; S, premature stop codon; UTR,
untranslated region.

AR-V expression has been associated with both enzalutamide and abiraterone resistance.
In preclinical xenograft models, it was shown that expression of AR-V7 and ARv567es can be
induced by abiraterone. In one study that demonstrated an OS advantage in mice treated with
abiraterone, AR-V7 and ARv567es expression was increased 3.1-fold and 5.2-fold, respectively [52].
Similarly, increased splice variant mRNA expression was discovered in mouse xenograft models of
enzalutamide-resistance [52,72].

Clinically, ARv567es and AR-V7 are likely to be the active in mCRPC, and most relevant to
enzalutamide and abiraterone resistance. Early studies revealed that expression levels of ARv567es

and AR-V7 were correlated with poorer survival in patients [73]. Moreover, AR-V7 may be a
predictive biomarker of secondary resistance and poor outcomes in mCRPC that will inform treatment
selection, and aid in future development of therapeutics. A recent study (n = 62), utilizing a CTC
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assay, demonstrated that AR-V7 mRNA expression is associated with enzalutamide and abiraterone
secondary resistance [11]. In this study, CTCs from 31% of the enzalutamide-treated patients and 19% of
the abiraterone-treated patients demonstrated detectable AR-V7 mRNA expression. Patients who were
treated with either enzalutamide or abiraterone, and were positive for AR-V7, achieved significantly
lower rates of PSA response, and experienced significantly shorter PFS and OS. This observation could
also provide an additional mechanism of cross-resistance between these two agents. Interestingly,
AR-V7 mRNA expression can increase from baseline in patients treated with either taxanes, abiraterone,
or enzalutamide, but a decline in AR-V7 levels was only observed in patients treated with a taxane [74].
Additionally, a separate study that used CTCs to detect AR-V7 mRNA revealed that patients with
detectable AR-V7 may benefit more from taxane treatment, when compared to either abiraterone or
enzalutamide treatment [75]. These data suggest that patients maintain sensitivity to taxanes, despite
the presence of detectable AR-V7 mRNA, which means that taxanes remain a viable treatment option
for patients who progress on abiraterone and/or enzalutamide.

All of the current FDA-approved medications target the LBD, but it is the NTD that
contains the transcriptionally active portion of the AR (AF1). Because clinically-relevant
AR-Vs, such as ARv567es and AR-V7, confer resistance, compounds that degrade the AR
(i.e., niclosamide [37,76], or even galeterone [77] as a proof of concept), prevent AR-mediated
transcription (i.e., bromodomain-containing protein 4 (BRD4) inhibitors like JQ1 [78]), or target the
AR NTD (i.e., sintokamides [79] or EPI-506 [38,39]) could be viable treatment options after patients
progress on abiraterone and/or enzalutamide.

Niclosamide is an FDA-approved anti-helminthic drug that was shown in preclinical models
to be particularly effective at targeting AR-V7 through proteasome-dependent downregulation of
AR-V7 protein expression, and inhibition of AR-V7 transcriptional activity through reduced AR-V7
recruitment to the PSA promoter. In addition, the combination of niclosamide and enzalutamide was
shown to inhibit tumor growth in enzalutamide-resistant in vitro models, indicating that niclosamide
may be a viable option to overcome secondary resistance to enzalutamide in mCRPC [37]. Moreover,
the combination of niclosamide and abiraterone was also shown to resensitize abiraterone-resistant
AR-V7 cells in both in vitro and in vivo preclinical models of CRPC [76].

EPI-506 is a prodrug of one of the four stereoisomers of its predecessor, EPI-001. EPI-506 binds to
the AF1 region, and thereby effectively blocks the NTD, inhibits AR transcriptional activity by reducing
protein–protein interactions between the AR and co-activators, and prevents NTD transactivation [38,
39]. This mechanism conceivably allows EPI-506 to overcome the common secondary resistance
mechanisms germane to agents that target the LBD. Preclinically, analogs of EPI-001 were able to
inhibit transcription of cells with full-length AR, as well as those with the ARv567es splice variant.
These analogs of EPI-001 inhibited the growth of xenograft tumors that express AR splice variants
lacking the LBD [39]. Currently, a phase I/II study with EPI-506 is underway to evaluate the safety
and efficacy or EPI-506 in treatment-naïve mCRPC patients, and also those who have progressed on
enzalutamide or abiraterone (NCT02606123). Correlative studies using CTCs will assess the efficacy of
EPI-506 in patients with detectable levels of AR-V7 mRNA.

An alternative approach to bypass secondary resistance mechanisms involving AR splice variants
is to target co-activators or co-repressors involved in AR-mediated transcription. Numerous molecules
that act as either co-activators or co-repressors of the AR, to modulate its transcriptional activity, have
been identified [80]. Specifically, the AR co-activator BRD4 is a potential pharmacotherapeutic target
in mCRPC. BRD4 recruits RNA polymerase II (RNA PolII) and the transcription elongation factor
P-TEFb to promote transcription. JQ1 competitively binds to BRD4, displaces it from active chromatin,
and removes RNA PolII from target genes [81]. One preclinical study showed that JQ1 prevented
BRD4 binding to the AR NTD, and thus mediated inhibition of AR binding to chromatin enhancer
sites. But more importantly, this study demonstrated that JQ1 effectively inhibited AR-V7 and ARv567es

mRNA and protein expression [82]. Then, in a second preclinical study, a panel of prostate cancer
cell lines were shown to be sensitive to JQ1-mediated cell cycle arrest and apoptosis. Treatment of
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enzalutamide-resistant VCaP cells resulted in transcriptional downregulation of AR target genes.
Perhaps most importantly, in mouse xenograft models of treatment resistance where elevated levels of
AR-V7 were detected, JQ1 monotherapy (or in combination with enzalutamide) effectively delayed
tumor progression, and showed robust silencing of AR-V7 [81]. These data point to the potential
of bromodomain inhibitors to overcome secondary treatment resistance mechanisms mediated by
expression of AR splice variants.

4.4. Altered Steroidogenesis

It is likely that extended treatment with either abiraterone or enzalutamide induces alterations
to intratumoral androgen biosynthesis. As a result, increased circulating androgens, combined with
mutations (germline and/or somatic) that affect metabolizing enzyme expression or function, promote
AR reactivation and progression to mCRPC. For instance, enzalutamide-resistant cell lines were found
to have upregulated androgens, and over-expressed genes involved in androgen biosynthesis [83].
Multiple gene expression studies have identified significantly increased levels of SRD5A1, HSD3β1,
and AKR1C3 in CRPC tissues [84–86]. Enzalutamide-resistant xenograft tumors revealed increased
protein aldo-keto reductase family 1 member C3 (AKR1C3) protein expression [83]. Abiraterone-treated
xenografts with the gain-of-function N367T missense mutation (asparagine to threonine substitution
at amino acid 367) in HSD3B1 were resistant to ubiquitination and degradation, which led to DHT
accumulation [87]. Finally, abiraterone-treated tumor xenografts revealed 2-fold upregulation of
CYP17A1 [52], and cell-free CYP17A1 copy number variations were associated with poorer outcomes
in abiraterone-treated patients [88].

5. AR-Independent Resistance Mechanisms

In addition to AR-mediated resistance mechanisms, there are several AR-independent resistance
mechanisms that lead to treatment failure, as well as progression of mCRPC. Glucocorticoid receptor
overexpression, neuroendocrine differentiation, and immune-mediated resistance have also been
implicated in treatment resistance in CRPC [58,89,90].

5.1. Glucocorticoid Receptor Activation

The role of glucocorticoids and the glucocorticoid receptor (GR) in prostate cancer is complex
because glucocorticoids can be both beneficial and harmful. However, in mCRPC where ADT is
used to antagonize AR signaling, GR upregulation and activation can be another clinically-relevant
mechanism of resistance to therapeutics that target the AR signaling axis.

The AR and GR are both members of the same class of nuclear steroid receptors, share common
structures and mechanisms of action [58], have highly homologous DBDs [91], and have overlapping
transcriptomes [92].

As patients progress to mCRPC, the reliance on direct AR signaling is bypassed as a result of
potent receptor inhibition, which causes subsequent activation of the GR. Activated GR is then able to
bind to nuclear AREs and regulate a subset of AR target genes that promote cell survival and tumor
progression [92,93]. One recent preclinical study provided evidence showing GR-driven resistance in
two independent in vitro models (LNCaP/AR and VCaP cells). This study also showed increased GR
expression was associated with both enzalutamide and apalutamide resistance. In addition, the authors
also demonstrated that GR knockout in VCaP cells could restore sensitivity to enzalutamide [92].
A separate preclinical study using chromatin immunoprecipitation (ChIP) combined with deep DNA
sequencing revealed that GR protein expression is negatively controlled by AR signaling. In addition,
xenograft models from this study also showed that GR mRNA and GR protein expression increased in
the presence of AR knockdown or AR antagonists [91]. Moreover, in vitro models have also revealed
that GR overexpression was associated with docetaxel resistance, and that GR antagonism could
resensitize docetaxel-resistant prostate cancer cells [94].
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Data from these publications support the hypothesis that GR activation and upregulation,
secondary to AR antagonism, is a potential resistance mechanism to therapies targeting the AR
axis. Further investigations with analyses of pre-treatment patient samples (i.e., blood), as well as
samples at the point of treatment progression, are necessary to characterize the extent to which GR
activation and upregulation contributes to secondary resistance in mCRPC.

5.2. Immune-Mediated Resistance Mechanisms

Despite FDA approval of several immunotherapies for a variety of malignancies within the
past three years, the role of checkpoint inhibitors for the treatment of mCRPC has yet to be fully
elucidated. Primarily, this was based on negative results from studies involving the CTLA-4
inhibitor, ipilimumab [95]. However, a recent analysis of PD-L1 expression was performed in two
independent, well-characterized prostate cancer cohorts. In the discovery cohort (n = 209), moderate
to high PD-L1 expression in prostatectomy specimens was associated with tumor progression (Ki-67,
p < 0.001), Gleason score (p = 0.004), AR expression (p < 0.001), and was prognostic for biochemical
recurrence (HR = 2.37; 95% CI, 1.32–4.25; p = 0.004). In the replication cohort (n = 611), associations
between PD-L1 and AR expression, and proliferation were confirmed (p < 0.001). Furthermore,
the association between PD-L1 expression and biochemical recurrence was confirmed in a multivariate
model (HR = 1.46; 95% CI, 1.11–1.92; p = 0.007) [96]. Recent preclinical in vitro and in vivo studies
have revealed that PD-L1 is significantly expressed in enzalutamide-resistant cell lines, and that
mice with enzalutamide-resistant tumors also experienced detectable circulating PD-L1 levels [97].
Results from these studies support the hypothesis that mCRPC progression and resistance to AR
signaling axis inhibitors may be mediated by PD-L1 and PD-1. To further support this hypothesis,
a phase II clinical trial is underway to investigate the use of the PD-1 inhibitor pembrolizumab
(in combination with enzalutamide) in mCRPC patients who developed secondary resistance to
enzalutamide (NCT02312557). Initial results from the first 10 patients enrolled on the trial have
recently been published, and showed that three of these patients experienced rapid PSA reductions
(≤0.2 ng/mL), and two of the three achieved a partial response [98].

There are two additional ongoing phase II trials exploring the role of immunotherapy in mCRPC.
One of the two trials is evaluating ipilimumab in combination with abiraterone in treatment-naïve
mCRPC patients (NCT01848067), and could conceivably answer important hypotheses pertaining to
primary resistance. More importantly, the second trial is evaluating combination immune checkpoint
blockade with ipilimumab and the PD-1 inhibitor nivolumab in mCRPC patients positive for AR-V7
(NCT02601014). This second trial has the potential to be informative from the perspective of using a
predictive biomarker for the purpose of treatment selection, and also for understanding the role of
immunotherapy in pre-treated mCRPC patients.

5.3. Neuroendocrine Differentiation

While only approximately 1% of all primary prostate cancers are diagnosed as neuroendocrine
prostate cancer (NEPC), up to 30% of mCRPCs are NEPC [99]. The progression of prostate cancer
adenocarcinoma (PCA) to NEPC has become increasingly appreciated recently as an important
mechanism of treatment resistance, which ultimately results in transition to an extremely lethal
prostate cancer subtype. This profound phenotypic switch, as a consequence of selective pressure from
ADT or potent antiandrogens, from tumors with adenocarcinoma histologic features that express AR to
AR-negative neuroendocrine prostate tumors, has been termed lineage plasticity. This situation
is somewhat analogous to the emergence of small cell lung cancer in epidermal growth factor
receptor-mutant adenocarcinoma treated with the inhibitor of epidermal growth factor receptor [100].
In a study of metastatic biopsies from 81 prostate cancer patients (n = 51 PCA, and n = 30 NEPC), whole
exome sequencing showed that molecular signatures and gene copy numbers were similar between
the two prostate cancer subtypes, confirming that NEPC is derived from PCA precursors [101]. Until



Cancers 2017, 9, 67 12 of 19

recently, selection of appropriate and effective treatments for NEPC has been thwarted by a poor
understanding of molecular drivers of lineage plasticity in prostate cancer.

Loss or mutation of both TP53, which encodes the p53 tumor suppressor protein, and RB1, which
encodes the retinoblastoma tumor suppressor protein, have emerged as two important factors in
NEPC differentiation [102,103]. In one study, RB1protein loss was observed in 90% of NEPC tumors,
and RB1 deletions in 85% of cases [104]. A recent preclinical in vivo mouse study revealed that Rb1
loss facilitates lineage plasticity and metastasis in PCA with Pten loss, and Trp53 causes secondary
resistance to therapies targeting the AR signaling axis [105]. A second preclinical study, using in vitro
and in vivo human prostate cancer models, demonstrated evidence of lineage plasticity, and a shift
from androgen-dependent PCA to androgen-independent NEPC after treatment with enzalutamide.
This phenotypic switch was facilitated by loss of TP53 and RB1, and was mediated by increased
expression of a transcription factor named SOX2. They also showed that inhibition of SOX2 restored
TP53 and RB1 function [106].

Genomic amplification and overexpression of MYCN, which encodes N-Myc, and AURKA, which
encodes Aurora kinase A, are also associated with differentiation from PCA to NEPC [104,107,108].
Two studies showed that amplifications of both MYCN and AURKA occurred in between 40–86% of
pretreated NEPC samples and metastases, compared to only 5% of PCAs [107,108]. Another recent
study showed that PCA and NEPC arise from a common epithelial clone, that N-Myc is an NEPC
driver, and that inhibition of Aurora kinase A destabilizes N-Myc [109]. In another preclinical study,
N-Myc abrogated AR signaling, and N-Myc protein overexpression drove an aggressive cancer that is
molecularly similar to human NEPC. In this study, Aurora kinase A knockdown, or treatment with the
Aurora kinase A inhibitor alisertib (formerly MLN8237) resulted in decreased N-Myc protein levels,
N-Myc target gene expression, and cell viability [110].

There are currently no therapeutics in the drug development pipeline that target TP53 or RB1
genomic loss or mutations. However, a phase II trial is underway, which is evaluating the safety and
effectiveness of alisertib in mCRPC and NEPC patients (NCT01799278). A second Aurora kinase A
inhibitor, CD532, was shown to reduce N-Myc protein levels in preclinical models driven by MYCN,
which indicates this could conceivably be a viable treatment option for NEPC patients in the future if
the drug is moved into clinical trials [109].

6. Conclusions

Nearly all patients with metastatic prostate cancer who are initially treated with ADT will
progress to mCRPC, mainly due to reactivation of the AR signaling axis. Because of myriad
adaptive resistance mechanisms, mCRPC remains incurable despite the development and FDA
approval of novel agents that target the AR signaling axis. However, the identification and a
more comprehensive understanding of AR-dependent (i.e., AR amplification, AR point mutations,
expression of constitutively active AR splice variants, and altered intratumoral androgen biosynthesis),
and AR-independent mechanisms (i.e., glucocorticoid receptor activation and upregulation,
neuroendocrine differentiation, and immune-mediated resistance) will allow for the design and
implementation of novel pharmacotherapeutic treatment paradigms in patients with mCRPC.
Moreover, the development, validation and clinical implementation of assays (i.e., liquid biopsies) will
be useful in identifying mechanisms of resistance, can conceivably provide clinically relevant predictive
biomarkers, and will become essential tools that help clinicians identify the optimal treatment for a
given patient.
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Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate
cancer. N. Engl. J. Med. 2017. [CrossRef] [PubMed]

29. James, N.D.; de Bono, J.S.; Spears, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Ritchie, A.W.S.;
Amos, C.L.; Gilson, C.; Jones, R.J.; et al. Abiraterone for prostate cancer not previously treated with hormone
therapy. N. Engl. J. Med. 2017. [CrossRef] [PubMed]

30. Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.;
Kwon, A.; et al. Development of a second-generation antiandrogen for treatment of advanced prostate
cancer. Science 2009, 324, 787–790. [CrossRef] [PubMed]

31. Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.;
Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl.
J. Med. 2010, 363, 411–422. [CrossRef] [PubMed]

32. De Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.;
Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic
castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial.
Lancet 2010, 376, 1147–1154. [CrossRef]

33. Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fossa, S.D.; Chodacki, A.; Wiechno, P.;
Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl.
J. Med. 2013, 369, 213–223. [CrossRef] [PubMed]

34. Toren, P.J.; Kim, S.; Pham, S.; Mangalji, A.; Adomat, H.; Guns, E.S.; Zoubeidi, A.; Moore, W.; Gleave, M.E.
Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate
cancer. Mol. Cancer Ther. 2015, 14, 59–69. [CrossRef] [PubMed]

35. Clegg, N.J.; Wongvipat, J.; Joseph, J.D.; Tran, C.; Ouk, S.; Dilhas, A.; Chen, Y.; Grillot, K.; Bischoff, E.D.;
Cai, L.; et al. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res. 2012, 72, 1494–1503.
[CrossRef] [PubMed]

36. Moilanen, A.M.; Riikonen, R.; Oksala, R.; Ravanti, L.; Aho, E.; Wohlfahrt, G.; Nykanen, P.S.;
Tormakangas, O.P.; Palvimo, J.J.; Kallio, P.J. Discovery of ODM-201, a new-generation androgen receptor
inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep.
2015, 5, 12007. [CrossRef] [PubMed]

37. Liu, C.; Lou, W.; Zhu, Y.; Nadiminty, N.; Schwartz, C.T.; Evans, C.P.; Gao, A.C. Niclosamide inhibits androgen
receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer.
Clin. Cancer Res. 2014, 20, 3198–3210. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ctrv.2012.09.005
http://www.ncbi.nlm.nih.gov/pubmed/23107383
http://dx.doi.org/10.1056/NEJMoa041318
http://www.ncbi.nlm.nih.gov/pubmed/15470214
http://dx.doi.org/10.1056/NEJMoa040720
http://www.ncbi.nlm.nih.gov/pubmed/15470213
http://dx.doi.org/10.1016/S0140-6736(15)01037-5
http://dx.doi.org/10.1056/NEJMoa1503747
http://www.ncbi.nlm.nih.gov/pubmed/26244877
http://dx.doi.org/10.1021/jm00013a022
http://www.ncbi.nlm.nih.gov/pubmed/7608911
http://dx.doi.org/10.1158/0008-5472.CAN-08-4531
http://www.ncbi.nlm.nih.gov/pubmed/19509232
http://dx.doi.org/10.1056/NEJMoa1704174
http://www.ncbi.nlm.nih.gov/pubmed/28578607
http://dx.doi.org/10.1056/NEJMoa1702900
http://www.ncbi.nlm.nih.gov/pubmed/28578639
http://dx.doi.org/10.1126/science.1168175
http://www.ncbi.nlm.nih.gov/pubmed/19359544
http://dx.doi.org/10.1056/NEJMoa1001294
http://www.ncbi.nlm.nih.gov/pubmed/20818862
http://dx.doi.org/10.1016/S0140-6736(10)61389-X
http://dx.doi.org/10.1056/NEJMoa1213755
http://www.ncbi.nlm.nih.gov/pubmed/23863050
http://dx.doi.org/10.1158/1535-7163.MCT-14-0521
http://www.ncbi.nlm.nih.gov/pubmed/25351916
http://dx.doi.org/10.1158/0008-5472.CAN-11-3948
http://www.ncbi.nlm.nih.gov/pubmed/22266222
http://dx.doi.org/10.1038/srep12007
http://www.ncbi.nlm.nih.gov/pubmed/26137992
http://dx.doi.org/10.1158/1078-0432.CCR-13-3296
http://www.ncbi.nlm.nih.gov/pubmed/24740322


Cancers 2017, 9, 67 15 of 19

38. Andersen, R.J.; Mawji, N.R.; Wang, J.; Wang, G.; Haile, S.; Myung, J.K.; Watt, K.; Tam, T.; Yang, Y.C.;
Banuelos, C.A.; et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the
amino-terminus domain of the androgen receptor. Cancer Cell 2010, 17, 535–546. [CrossRef] [PubMed]

39. Myung, J.K.; Banuelos, C.A.; Fernandez, J.G.; Mawji, N.R.; Wang, J.; Tien, A.H.; Yang, Y.C.; Tavakoli, I.;
Haile, S.; Watt, K.; et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer.
J. Clin. Investig. 2013, 123, 2948–2960. [CrossRef] [PubMed]

40. Scher, H.I.; Beer, T.M.; Higano, C.S.; Anand, A.; Taplin, M.E.; Efstathiou, E.; Rathkopf, D.; Shelkey, J.; Yu, E.Y.;
Alumkal, J.; et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: A phase 1–2 study.
Lancet 2010, 375, 1437–1446. [CrossRef]

41. Schrader, A.J.; Boegemann, M.; Ohlmann, C.H.; Schnoeller, T.J.; Krabbe, L.M.; Hajili, T.; Jentzmik, F.;
Stoeckle, M.; Schrader, M.; Herrmann, E.; et al. Enzalutamide in castration-resistant prostate cancer patients
progressing after docetaxel and abiraterone. Eur. Urol. 2014, 65, 30–36. [CrossRef] [PubMed]

42. Noonan, K.L.; North, S.; Bitting, R.L.; Armstrong, A.J.; Ellard, S.L.; Chi, K.N. Clinical activity of abiraterone
acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide.
Ann. Oncol. 2013, 24, 1802–1807. [CrossRef] [PubMed]

43. Li, Z.; Bishop, A.C.; Alyamani, M.; Garcia, J.A.; Dreicer, R.; Bunch, D.; Liu, J.; Upadhyay, S.K.; Auchus, R.J.;
Sharifi, N. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 2015, 523,
347–351. [CrossRef] [PubMed]

44. Crona, D.J.; Milowsky, M.I.; Whang, Y.E. Androgen receptor targeting drugs in castration-resistant prostate
cancer and mechanisms of resistance. Clin. Pharmacol. Ther. 2015, 98, 582–589. [CrossRef] [PubMed]

45. Mitsiades, N. A road map to comprehensive androgen receptor axis targeting for castration-resistant prostate
cancer. Cancer Res. 2013, 73, 4599–4605. [CrossRef] [PubMed]

46. Scher, H.I.; Sawyers, C.L. Biology of progressive, castration-resistant prostate cancer: Directed therapies
targeting the androgen-receptor signaling axis. J. Clin. Oncol. 2005, 23, 8253–8261. [CrossRef] [PubMed]

47. Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate cancer progression after androgen deprivation therapy:
Mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013, 32, 5501–5511.
[CrossRef] [PubMed]

48. Edwards, J.; Krishna, N.S.; Grigor, K.M.; Bartlett, J.M. Androgen receptor gene amplification and protein
expression in hormone refractory prostate cancer. Br. J. Cancer 2003, 89, 552–556. [CrossRef] [PubMed]

49. Taplin, M.E.; Bubley, G.J.; Shuster, T.D.; Frantz, M.E.; Spooner, A.E.; Ogata, G.K.; Keer, H.N.; Balk, S.P.
Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med.
1995, 332, 1393–1398. [CrossRef] [PubMed]

50. Chen, C.D.; Welsbie, D.S.; Tran, C.; Baek, S.H.; Chen, R.; Vessella, R.; Rosenfeld, M.G.; Sawyers, C.L.
Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 2004, 10, 33–39. [CrossRef]
[PubMed]

51. Yamamoto, Y.; Loriot, Y.; Beraldi, E.; Zhang, F.; Wyatt, A.W.; Al Nakouzi, N.; Mo, F.; Zhou, T.; Kim, Y.;
Monia, B.P.; et al. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice
variants suppress enzalutamide-resistant prostate cancer cell growth. Clin. Cancer Res. 2015, 21, 1675–1687.
[CrossRef] [PubMed]

52. Mostaghel, E.A.; Marck, B.T.; Plymate, S.R.; Vessella, R.L.; Balk, S.; Matsumoto, A.M.; Nelson, P.S.;
Montgomery, R.B. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer:
Induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 2011, 17, 5913–5925.
[CrossRef] [PubMed]

53. Romanel, A.; Gasi Tandefelt, D.; Conteduca, V.; Jayaram, A.; Casiraghi, N.; Wetterskog, D.; Salvi, S.;
Amadori, D.; Zafeiriou, Z.; Rescigno, P.; et al. Plasma AR and abiraterone-resistant prostate cancer. Sci. Transl.
Med. 2015, 7, 312re310. [CrossRef] [PubMed]

54. Conteduca, V.; Wetterskog, D.; Sharabiani, M.T.A.; Grande, E.; Fernandez-Perez, M.P.; Jayaram, A.; Salvi, S.;
Castellano, D.; Romanel, A.; Lolli, C.; et al. Androgen receptor gene status in plasma DNA associates with
worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution
correlative biomarker study. Ann. Oncol. 2017. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ccr.2010.04.027
http://www.ncbi.nlm.nih.gov/pubmed/20541699
http://dx.doi.org/10.1172/JCI66398
http://www.ncbi.nlm.nih.gov/pubmed/23722902
http://dx.doi.org/10.1016/S0140-6736(10)60172-9
http://dx.doi.org/10.1016/j.eururo.2013.06.042
http://www.ncbi.nlm.nih.gov/pubmed/23849416
http://dx.doi.org/10.1093/annonc/mdt138
http://www.ncbi.nlm.nih.gov/pubmed/23585511
http://dx.doi.org/10.1038/nature14406
http://www.ncbi.nlm.nih.gov/pubmed/26030522
http://dx.doi.org/10.1002/cpt.256
http://www.ncbi.nlm.nih.gov/pubmed/26331358
http://dx.doi.org/10.1158/0008-5472.CAN-12-4414
http://www.ncbi.nlm.nih.gov/pubmed/23887973
http://dx.doi.org/10.1200/JCO.2005.03.4777
http://www.ncbi.nlm.nih.gov/pubmed/16278481
http://dx.doi.org/10.1038/onc.2013.206
http://www.ncbi.nlm.nih.gov/pubmed/23752182
http://dx.doi.org/10.1038/sj.bjc.6601127
http://www.ncbi.nlm.nih.gov/pubmed/12888829
http://dx.doi.org/10.1056/NEJM199505253322101
http://www.ncbi.nlm.nih.gov/pubmed/7723794
http://dx.doi.org/10.1038/nm972
http://www.ncbi.nlm.nih.gov/pubmed/14702632
http://dx.doi.org/10.1158/1078-0432.CCR-14-1108
http://www.ncbi.nlm.nih.gov/pubmed/25634993
http://dx.doi.org/10.1158/1078-0432.CCR-11-0728
http://www.ncbi.nlm.nih.gov/pubmed/21807635
http://dx.doi.org/10.1126/scitranslmed.aac9511
http://www.ncbi.nlm.nih.gov/pubmed/26537258
http://dx.doi.org/10.1093/annonc/mdx155
http://www.ncbi.nlm.nih.gov/pubmed/28472366


Cancers 2017, 9, 67 16 of 19

55. Azad, A.A.; Volik, S.V.; Wyatt, A.W.; Haegert, A.; Le Bihan, S.; Bell, R.H.; Anderson, S.A.; McConeghy, B.;
Shukin, R.; Bazov, J.; et al. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of
therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 2015, 21, 2315–2324. [CrossRef]
[PubMed]

56. Wyatt, A.W.; Azad, A.A.; Volik, S.V.; Annala, M.; Beja, K.; McConeghy, B.; Haegert, A.; Warner, E.W.; Mo, F.;
Brahmbhatt, S.; et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant
prostate cancer. JAMA Oncol. 2016, 2, 1598–1606. [CrossRef] [PubMed]

57. Coutinho, I.; Day, T.K.; Tilley, W.D.; Selth, L.A. Androgen receptor signaling in castration-resistant prostate
cancer: A lesson in persistence. Endocr. Relat. Cancer 2016, 23, T179–T197. [CrossRef] [PubMed]

58. Boudadi, K.; Antonarakis, E.S. Resistance to novel antiandrogen therapies in metastatic castration-resistant
prostate cancer. Clin. Med. Insights Oncol. 2016, 10, 1–9. [PubMed]

59. Cai, C.; Chen, S.; Ng, P.; Bubley, G.J.; Nelson, P.S.; Mostaghel, E.A.; Marck, B.; Matsumoto, A.M.; Simon, N.I.;
Wang, H.; et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant
prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 2011, 71, 6503–6513.
[CrossRef] [PubMed]

60. Chen, E.J.; Sowalsky, A.G.; Gao, S.; Cai, C.; Voznesensky, O.; Schaefer, R.; Loda, M.; True, L.D.; Ye, H.;
Troncoso, P.; et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone
responsive mutant androgen receptors. Clin. Cancer Res. 2015, 21, 1273–1280. [CrossRef] [PubMed]

61. Joseph, J.D.; Lu, N.; Qian, J.; Sensintaffar, J.; Shao, G.; Brigham, D.; Moon, M.; Maneval, E.C.; Chen, I.;
Darimont, B.; et al. A clinically relevant androgen receptor mutation confers resistance to second-generation
antiandrogens enzalutamide and ARN-509. Cancer Discov. 2013, 3, 1020–1029. [CrossRef] [PubMed]

62. Korpal, M.; Korn, J.M.; Gao, X.; Rakiec, D.P.; Ruddy, D.A.; Doshi, S.; Yuan, J.; Kovats, S.G.; Kim, S.;
Cooke, V.G.; et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to
MDV3100 (enzalutamide). Cancer Discov. 2013, 3, 1030–1043. [CrossRef] [PubMed]

63. Balbas, M.D.; Evans, M.J.; Hosfield, D.J.; Wongvipat, J.; Arora, V.K.; Watson, P.A.; Chen, Y.; Greene, G.L.;
Shen, Y.; Sawyers, C.L.; et al. Overcoming mutation-based resistance to antiandrogens with rational drug
design. Elife 2013, 2, e00499. [CrossRef] [PubMed]

64. Moore, W.R.; Norris, N.J.; Wardell, S.; Eisner, J.R.; Hoekstra, W.J.; Schotzinger, R.J.; McDonnell, D.P. Direct
effects of the selective CYP17 lyase (L) inhibitor, VT-464, on the androgen receptor (AR) and its oral activity
in an F876L tumor mouse xenograft model. J. Clin. Oncol. 2015, 33, 263. [CrossRef]

65. Norris, J.D.; Ellison, S.J.; Baker, J.G.; Stagg, D.B.; Wardell, S.E.; Park, S.; Alley, H.M.; Baldi, R.M.; Yllanes, A.;
Andreano, K.J.; et al. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in
prostate cancer. J. Clin. Investig. 2017, 127, 2326–2338. [CrossRef] [PubMed]

66. Carreira, S.; Romanel, A.; Goodall, J.; Grist, E.; Ferraldeschi, R.; Miranda, S.; Prandi, D.; Lorente, D.;
Frenel, J.S.; Pezaro, C.; et al. Tumor clone dynamics in lethal prostate cancer. Sci. Transl. Med. 2014, 6,
254ra125. [CrossRef] [PubMed]

67. Lu, C.; Luo, J. Decoding the androgen receptor splice variants. Transl. Androl. Urol. 2013, 2, 178–186.
[PubMed]

68. Chan, S.C.; Dehm, S.M. Constitutive activity of the androgen receptor. Adv. Pharmacol. 2014, 70, 327–366.
[PubMed]

69. Hu, R.; Dunn, T.A.; Wei, S.; Isharwal, S.; Veltri, R.W.; Humphreys, E.; Han, M.; Partin, A.W.; Vessella, R.L.;
Isaacs, W.B. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify
hormone-refractory prostate cancer. Cancer Res. 2009, 69, 16–22. [CrossRef] [PubMed]

70. Ware, K.E.; Garcia-Blanco, M.A.; Armstrong, A.J.; Dehm, S.M. Biologic and clinical significance of androgen
receptor variants in castration resistant prostate cancer. Endocr. Relat. Cancer 2014, 21, T87–T103. [CrossRef]
[PubMed]

71. Sun, S.; Sprenger, C.C.; Vessella, R.L.; Haugk, K.; Soriano, K.; Mostaghel, E.A.; Page, S.T.; Coleman, I.M.;
Nguyen, H.M.; Sun, H.; et al. Castration resistance in human prostate cancer is conferred by a frequently
occurring androgen receptor splice variant. J. Clin. Investig. 2010, 120, 2715–2730. [CrossRef] [PubMed]

72. Hu, R.; Lu, C.; Mostaghel, E.A.; Yegnasubramanian, S.; Gurel, M.; Tannahill, C.; Edwards, J.; Isaacs, W.B.;
Nelson, P.S.; Bluemn, E.; et al. Distinct transcriptional programs mediated by the ligand-dependent
full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res.
2012, 72, 3457–3462. [CrossRef] [PubMed]

http://dx.doi.org/10.1158/1078-0432.CCR-14-2666
http://www.ncbi.nlm.nih.gov/pubmed/25712683
http://dx.doi.org/10.1001/jamaoncol.2016.0494
http://www.ncbi.nlm.nih.gov/pubmed/27148695
http://dx.doi.org/10.1530/ERC-16-0422
http://www.ncbi.nlm.nih.gov/pubmed/27799360
http://www.ncbi.nlm.nih.gov/pubmed/27013902
http://dx.doi.org/10.1158/0008-5472.CAN-11-0532
http://www.ncbi.nlm.nih.gov/pubmed/21868758
http://dx.doi.org/10.1158/1078-0432.CCR-14-1220
http://www.ncbi.nlm.nih.gov/pubmed/25320358
http://dx.doi.org/10.1158/2159-8290.CD-13-0226
http://www.ncbi.nlm.nih.gov/pubmed/23779130
http://dx.doi.org/10.1158/2159-8290.CD-13-0142
http://www.ncbi.nlm.nih.gov/pubmed/23842682
http://dx.doi.org/10.7554/eLife.00499
http://www.ncbi.nlm.nih.gov/pubmed/23580326
http://dx.doi.org/10.1200/jco.2015.33.7_suppl.263
http://dx.doi.org/10.1172/JCI87328
http://www.ncbi.nlm.nih.gov/pubmed/28463227
http://dx.doi.org/10.1126/scitranslmed.3009448
http://www.ncbi.nlm.nih.gov/pubmed/25232177
http://www.ncbi.nlm.nih.gov/pubmed/25356377
http://www.ncbi.nlm.nih.gov/pubmed/24931201
http://dx.doi.org/10.1158/0008-5472.CAN-08-2764
http://www.ncbi.nlm.nih.gov/pubmed/19117982
http://dx.doi.org/10.1530/ERC-13-0470
http://www.ncbi.nlm.nih.gov/pubmed/24859991
http://dx.doi.org/10.1172/JCI41824
http://www.ncbi.nlm.nih.gov/pubmed/20644256
http://dx.doi.org/10.1158/0008-5472.CAN-11-3892
http://www.ncbi.nlm.nih.gov/pubmed/22710436


Cancers 2017, 9, 67 17 of 19

73. Hornberg, E.; Ylitalo, E.B.; Crnalic, S.; Antti, H.; Stattin, P.; Widmark, A.; Bergh, A.; Wikstrom, P. Expression of
androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance
and short survival. PLoS ONE 2011, 6, e19059. [CrossRef] [PubMed]

74. Nakazawa, M.; Lu, C.; Chen, Y.; Paller, C.J.; Carducci, M.A.; Eisenberger, M.A.; Luo, J.; Antonarakis, E.S.
Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann. Oncol. 2015, 26, 1859–1865.
[CrossRef] [PubMed]

75. Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C.J.; Denmeade, S.R.;
Carducci, M.A.; et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients
with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015, 1, 582–591. [CrossRef] [PubMed]

76. Liu, C.; Armstrong, C.; Zhu, Y.; Lou, W.; Gao, A.C. Niclosamide enhances abiraterone treatment via inhibition
of androgen receptor variants in castration resistant prostate cancer. Oncotarget 2016, 7, 32210–32220.
[CrossRef] [PubMed]

77. Kwegyir-Afful, A.K.; Ramalingam, S.; Purushottamachar, P.; Ramamurthy, V.P.; Njar, V.C. Galeterone and
VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c
release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 2015, 6,
27440–27460. [CrossRef] [PubMed]

78. Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.;
Dhanireddy, S.; Engelke, C.; et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant
prostate cancer. Nature 2014, 510, 278–282. [CrossRef] [PubMed]

79. Banuelos, C.A.; Tavakoli, I.; Tien, A.H.; Caley, D.P.; Mawji, N.R.; Li, Z.; Wang, J.; Yang, Y.C.; Imamura, Y.;
Yan, L.; et al. Sintokamide a is a novel antagonist of androgen receptor that uniquely binds activation
function-1 in its amino-terminal domain. J. Biol. Chem. 2016, 291, 22231–22243. [CrossRef] [PubMed]

80. Heemers, H.V.; Tindall, D.J. Androgen receptor (AR) coregulators: A diversity of functions converging on
and regulating the ar transcriptional complex. Endocr. Rev. 2007, 28, 778–808. [CrossRef] [PubMed]

81. Asangani, I.A.; Wilder-Romans, K.; Dommeti, V.L.; Krishnamurthy, P.M.; Apel, I.J.; Escara-Wilke, J.;
Plymate, S.R.; Navone, N.M.; Wang, S.; Feng, F.Y.; et al. BET bromodomain inhibitors enhance efficacy and
disrupt resistance to ar antagonists in the treatment of prostate cancer. Mol. Cancer Res. 2016, 14, 324–331.
[CrossRef] [PubMed]

82. Chan, S.C.; Selth, L.A.; Li, Y.; Nyquist, M.D.; Miao, L.; Bradner, J.E.; Raj, G.V.; Tilley, W.D.; Dehm, S.M.
Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer
resistance to endocrine-based therapies. Nucleic Acids Res. 2015, 43, 5880–5897. [CrossRef] [PubMed]

83. Liu, C.; Lou, W.; Zhu, Y.; Yang, J.C.; Nadiminty, N.; Gaikwad, N.W.; Evans, C.P.; Gao, A.C. Intracrine
androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 2015, 75,
1413–1422. [CrossRef] [PubMed]

84. Mitsiades, N.; Sung, C.C.; Schultz, N.; Danila, D.C.; He, B.; Eedunuri, V.K.; Fleisher, M.; Sander, C.;
Sawyers, C.L.; Scher, H.I. Distinct patterns of dysregulated expression of enzymes involved in androgen
synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 2012, 72, 6142–6152. [CrossRef]
[PubMed]

85. Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S.
Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant
tumor growth. Cancer Res. 2008, 68, 4447–4454. [CrossRef] [PubMed]

86. Stanbrough, M.; Bubley, G.J.; Ross, K.; Golub, T.R.; Rubin, M.A.; Penning, T.M.; Febbo, P.G.; Balk, S.P.
Increased expression of genes converting adrenal androgens to testosterone in androgen-independent
prostate cancer. Cancer Res. 2006, 66, 2815–2825. [CrossRef] [PubMed]

87. Chang, K.H.; Li, R.; Kuri, B.; Lotan, Y.; Roehrborn, C.G.; Liu, J.; Vessella, R.; Nelson, P.S.; Kapur, P.; Guo, X.;
et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 2013, 154,
1074–1084. [CrossRef] [PubMed]

88. Salvi, S.; Casadio, V.; Conteduca, V.; Burgio, S.L.; Menna, C.; Bianchi, E.; Rossi, L.; Carretta, E.; Masini, C.;
Amadori, D.; et al. Circulating cell-free AR and CYP17A1 copy number variations may associate with
outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br. J. Cancer
2015, 112, 1717–1724. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0019059
http://www.ncbi.nlm.nih.gov/pubmed/21552559
http://dx.doi.org/10.1093/annonc/mdv282
http://www.ncbi.nlm.nih.gov/pubmed/26117829
http://dx.doi.org/10.1001/jamaoncol.2015.1341
http://www.ncbi.nlm.nih.gov/pubmed/26181238
http://dx.doi.org/10.18632/oncotarget.8493
http://www.ncbi.nlm.nih.gov/pubmed/27049719
http://dx.doi.org/10.18632/oncotarget.4578
http://www.ncbi.nlm.nih.gov/pubmed/26196320
http://dx.doi.org/10.1038/nature13229
http://www.ncbi.nlm.nih.gov/pubmed/24759320
http://dx.doi.org/10.1074/jbc.M116.734475
http://www.ncbi.nlm.nih.gov/pubmed/27576691
http://dx.doi.org/10.1210/er.2007-0019
http://www.ncbi.nlm.nih.gov/pubmed/17940184
http://dx.doi.org/10.1158/1541-7786.MCR-15-0472
http://www.ncbi.nlm.nih.gov/pubmed/26792867
http://dx.doi.org/10.1093/nar/gkv262
http://www.ncbi.nlm.nih.gov/pubmed/25908785
http://dx.doi.org/10.1158/0008-5472.CAN-14-3080
http://www.ncbi.nlm.nih.gov/pubmed/25649766
http://dx.doi.org/10.1158/0008-5472.CAN-12-1335
http://www.ncbi.nlm.nih.gov/pubmed/22971343
http://dx.doi.org/10.1158/0008-5472.CAN-08-0249
http://www.ncbi.nlm.nih.gov/pubmed/18519708
http://dx.doi.org/10.1158/0008-5472.CAN-05-4000
http://www.ncbi.nlm.nih.gov/pubmed/16510604
http://dx.doi.org/10.1016/j.cell.2013.07.029
http://www.ncbi.nlm.nih.gov/pubmed/23993097
http://dx.doi.org/10.1038/bjc.2015.128
http://www.ncbi.nlm.nih.gov/pubmed/25897673


Cancers 2017, 9, 67 18 of 19

89. Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding
and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in
castration resistant prostate cancer. Cancer Treat. Rev. 2015, 41, 884–892. [CrossRef] [PubMed]

90. Chism, D.D.; De Silva, D.; Whang, Y.E. Mechanisms of acquired resistance to androgen receptor targeting
drugs in castration-resistant prostate cancer. Expert Rev. Anticancer Ther. 2014, 14, 1369–1378. [CrossRef]
[PubMed]

91. Xie, N.; Cheng, H.; Lin, D.; Liu, L.; Yang, O.; Jia, L.; Fazli, L.; Gleave, M.E.; Wang, Y.; Rennie, P.; et al.
The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in
prostate tumors. Int. J. Cancer 2015, 136, E27–E38. [CrossRef] [PubMed]

92. Arora, V.K.; Schenkein, E.; Murali, R.; Subudhi, S.K.; Wongvipat, J.; Balbas, M.D.; Shah, N.; Cai, L.;
Efstathiou, E.; Logothetis, C.; et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing
androgen receptor blockade. Cell 2013, 155, 1309–1322. [CrossRef] [PubMed]

93. Isikbay, M.; Otto, K.; Kregel, S.; Kach, J.; Cai, Y.; Vander Griend, D.J.; Conzen, S.D.; Szmulewitz, R.Z.
Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer.
Horm. Cancer 2014, 5, 72–89. [CrossRef] [PubMed]

94. Kroon, J.; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.;
Grimm, S.; Storm, G.; et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human
prostate cancer. Endocr. Relat. Cancer 2016, 23, 35–45. [CrossRef] [PubMed]

95. Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.; Krainer, M.; Houede, N.;
Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic
castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184–043):
A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [CrossRef]

96. Gevensleben, H.; Dietrich, D.; Golletz, C.; Steiner, S.; Jung, M.; Thiesler, T.; Majores, M.; Stein, J.; Uhl, B.;
Muller, S.; et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate
cancer. Clin. Cancer Res. 2016, 22, 1969–1977. [CrossRef] [PubMed]

97. Bishop, J.L.; Sio, A.; Angeles, A.; Roberts, M.E.; Azad, A.A.; Chi, K.N.; Zoubeidi, A. PD-L11 is highly
expressed in enzalutamide resistant prostate cancer. Oncotarget 2015, 6, 234–242. [PubMed]

98. Graff, J.N.; Alumkal, J.J.; Drake, C.G.; Thomas, G.V.; Redmond, W.L.; Farhad, M.; Cetnar, J.P.; Ey, F.S.;
Bergan, R.C.; Slottke, R.; et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer.
Oncotarget 2016, 7, 52810–52817. [CrossRef] [PubMed]

99. Carver, B.S. Defining and targeting the oncogenic drivers of neuroendocrine prostate cancer. Cancer Cell
2016, 29, 431–432. [CrossRef] [PubMed]

100. Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.;
Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and histological evolution of lung cancers acquiring
resistance to EGFR inhibitors. Sci. Transl. Med. 2011, 3, 75ra26. [CrossRef] [PubMed]

101. Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; Giannopoulou, E.;
Chakravarthi, B.V.; Varambally, S.; et al. Divergent clonal evolution of castration-resistant neuroendocrine
prostate cancer. Nat. Med. 2016, 22, 298–305. [CrossRef] [PubMed]

102. Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.;
Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell
2015, 161, 1215–1228. [CrossRef] [PubMed]

103. Aparicio, A.M.; Shen, L.; Tapia, E.L.; Lu, J.F.; Chen, H.C.; Zhang, J.; Wu, G.; Wang, X.; Troncoso, P.; Corn, P.;
et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers.
Clin. Cancer Res. 2016, 22, 1520–1530. [CrossRef] [PubMed]

104. Tan, H.L.; Sood, A.; Rahimi, H.A.; Wang, W.; Gupta, N.; Hicks, J.; Mosier, S.; Gocke, C.D.; Epstein, J.I.;
Netto, G.J.; et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res.
2014, 20, 890–903. [CrossRef] [PubMed]

105. Ku, S.Y.; Rosario, S.; Wang, Y.; Mu, P.; Seshadri, M.; Goodrich, Z.W.; Goodrich, M.M.; Labbe, D.P.; Gomez, E.C.;
Wang, J.; et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and
antiandrogen resistance. Science 2017, 355, 78–83. [CrossRef] [PubMed]

106. Mu, P.; Zhang, Z.; Benelli, M.; Karthaus, W.R.; Hoover, E.; Chen, C.C.; Wongvipat, J.; Ku, S.Y.; Gao, D.;
Cao, Z.; et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient
prostate cancer. Science 2017, 355, 84–88. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ctrv.2015.08.002
http://www.ncbi.nlm.nih.gov/pubmed/26342718
http://dx.doi.org/10.1586/14737140.2014.928594
http://www.ncbi.nlm.nih.gov/pubmed/24927631
http://dx.doi.org/10.1002/ijc.29147
http://www.ncbi.nlm.nih.gov/pubmed/25138562
http://dx.doi.org/10.1016/j.cell.2013.11.012
http://www.ncbi.nlm.nih.gov/pubmed/24315100
http://dx.doi.org/10.1007/s12672-014-0173-2
http://www.ncbi.nlm.nih.gov/pubmed/24615402
http://dx.doi.org/10.1530/ERC-15-0343
http://www.ncbi.nlm.nih.gov/pubmed/26483423
http://dx.doi.org/10.1016/S1470-2045(14)70189-5
http://dx.doi.org/10.1158/1078-0432.CCR-15-2042
http://www.ncbi.nlm.nih.gov/pubmed/26573597
http://www.ncbi.nlm.nih.gov/pubmed/25428917
http://dx.doi.org/10.18632/oncotarget.10547
http://www.ncbi.nlm.nih.gov/pubmed/27429197
http://dx.doi.org/10.1016/j.ccell.2016.03.023
http://www.ncbi.nlm.nih.gov/pubmed/27070695
http://dx.doi.org/10.1126/scitranslmed.3002003
http://www.ncbi.nlm.nih.gov/pubmed/21430269
http://dx.doi.org/10.1038/nm.4045
http://www.ncbi.nlm.nih.gov/pubmed/26855148
http://dx.doi.org/10.1016/j.cell.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/26000489
http://dx.doi.org/10.1158/1078-0432.CCR-15-1259
http://www.ncbi.nlm.nih.gov/pubmed/26546618
http://dx.doi.org/10.1158/1078-0432.CCR-13-1982
http://www.ncbi.nlm.nih.gov/pubmed/24323898
http://dx.doi.org/10.1126/science.aah4199
http://www.ncbi.nlm.nih.gov/pubmed/28059767
http://dx.doi.org/10.1126/science.aah4307
http://www.ncbi.nlm.nih.gov/pubmed/28059768


Cancers 2017, 9, 67 19 of 19

107. Beltran, H.; Rickman, D.S.; Park, K.; Chae, S.S.; Sboner, A.; MacDonald, T.Y.; Wang, Y.; Sheikh, K.L.; Terry, S.;
Tagawa, S.T.; et al. Molecular characterization of neuroendocrine prostate cancer and identification of new
drug targets. Cancer Discov. 2011, 1, 487–495. [CrossRef] [PubMed]

108. Mosquera, J.M.; Beltran, H.; Park, K.; MacDonald, T.Y.; Robinson, B.D.; Tagawa, S.T.; Perner, S.; Bismar, T.A.;
Erbersdobler, A.; Dhir, R.; et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal
treatment-related neuroendocrine prostate cancer. Neoplasia 2013, 15, 1–10. [CrossRef] [PubMed]

109. Lee, J.K.; Phillips, J.W.; Smith, B.A.; Park, J.W.; Stoyanova, T.; McCaffrey, E.F.; Baertsch, R.; Sokolov, A.;
Meyerowitz, J.G.; Mathis, C.; et al. N-Myc drives neuroendocrine prostate cancer initiated from human
prostate epithelial cells. Cancer Cell 2016, 29, 536–547. [CrossRef] [PubMed]

110. Dardenne, E.; Beltran, H.; Benelli, M.; Gayvert, K.; Berger, A.; Puca, L.; Cyrta, J.; Sboner, A.; Noorzad, Z.;
MacDonald, T.; et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine
prostate cancer. Cancer Cell 2016, 30, 563–577. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/2159-8290.CD-11-0130
http://www.ncbi.nlm.nih.gov/pubmed/22389870
http://dx.doi.org/10.1593/neo.121550
http://www.ncbi.nlm.nih.gov/pubmed/23358695
http://dx.doi.org/10.1016/j.ccell.2016.03.001
http://www.ncbi.nlm.nih.gov/pubmed/27050099
http://dx.doi.org/10.1016/j.ccell.2016.09.005
http://www.ncbi.nlm.nih.gov/pubmed/27728805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Human Androgen Receptor 
	FDA-Approved Pharmacotherapeutics for mCRPC 
	AR-Dependent Resistance Mechanisms 
	AR Amplification and Overexpression 
	AR Point Mutations 
	AR Splice Variants 
	Altered Steroidogenesis 

	AR-Independent Resistance Mechanisms 
	Glucocorticoid Receptor Activation 
	Immune-Mediated Resistance Mechanisms 
	Neuroendocrine Differentiation 

	Conclusions 

