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Abstract: Poly-(ADP-ribose) polymerase (PARP) inhibitors act through synthetic lethality in cells
with defects in homologous recombination (HR) DNA repair caused by molecular aberrations such
as BRCA mutations, and is approved for treatment in ovarian cancer, with promising clinical activity
against other HR defective tumors including breast and prostate cancers. Three PARP inhibitors
have been FDA approved, while another two have shown promising activity and are in late stage
development. Nonetheless, both primary and secondary resistance to PARP inhibition have led
to treatment failure, and the development of predictive biomarkers and the ability to identify and
overcome mechanisms of resistance is vital for optimization of its clinical utility. Additionally, there
has been evidence that PARP inhibition may have a therapeutic role beyond HR deficient tumors
which warrants further investigation, both as single agent and in combination with other therapeutic
modalities like cytotoxic chemotherapy, radiation, targeted therapy and immunotherapy. With new
strategies to overcome resistance and expand its therapeutic utility, PARP inhibitors are likely to
become a staple in our armamentarium of drugs in cancer therapeutics.
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1. Introduction

The emergence of targeted therapy at the turn of the century has led to a paradigm shift in
cancer therapeutics from a “one size fits all” strategy to one with an emphasis on precision medicine.
Drugs are now being designed specifically to exploit molecular aberrations found in tumors, thus
maximizing therapeutic efficacy while minimizing systemic toxicity.

It has been more than 35 years since the role of adenosine-diphosphate(ADP)-ribose and its
effects was first described by Durkacz and colleagues [1], and our understanding of poly-(ADP-ribose)
polymerase (PARP) inhibition has greatly expanded since. PARP inhibitors profoundly sensitize cancer
cells to DNA damaging agents and act through synthetic lethality in cells with defects in homologous
recombination (HR) DNA repair caused by molecular aberrations such as BRCA1/2 mutations [2].
Olaparib was the first PARP inhibitor to be approved by the US Food and Drug Administration
(FDA) as monotherapy in a third line and beyond setting for patients with deleterious or suspected
germline BRCA1/2-mutant advanced ovarian cancer, and by the European Medical Agency (EMA)
as monotherapy maintenance therapy for patients with platinum-sensitive, relapsed germline or
somatic BRCA1/2-mutant epithelial ovarian, fallopian tube or primary peritoneal cancers who have
responded to platinum-based chemotherapy. Subsequently, rucaparin and niraparib have also been
FDA approved for similar indications, and PARP inhibition has shown clinical activity against other
HR defective tumors including breast and prostate cancers [3,4].
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Nonetheless, in the majority of patients, resistance to PARP inhibition inevitably develops, leading
to treatment failure. Additionally, a proportion of patients exhibit primary resistance to these drugs
despite harbouring genomic features of DNA repair deficiency. Contrarily, there are tumors without
known mutations in DNA damage repair genes that are also sensitive to and may benefit from PARP
inhibitors [5]. In this respect, the development of predictive biomarkers and the ability to identify and
overcome mechanisms of resistance will be crucial to enable further optimization of tis clinical utility.
Furthermore, recent preclinical data and early clinical studies suggest that there is scope to enhance
the efficacy of PARP inhibitors and extend the clinical utility of this class of compounds beyond DNA
repair deficient tumors.

In this review, we will discuss the mechanisms of action of PARP inhibitors, detail the current
status of PARP inhibitors that are currently FDA approved or have shown promising activity in clinical
studies, and explore the mechanisms of resistance to PARP inhibition and potential approaches to
overcome them, including combination strategies for treatment.

2. DNA Damage Repair (DDR) and Mechanisms of Action of PARP Inhibition

DNA damage involving single and double strand breaks, occur as part of routine cellular
response to environmental and metabolic impact on cellular tissue. Single-strand breaks (SSBs)
on DNA activates PARP, which then binds onto DNA and activates the C-terminal domain, initiating
a series of PARylation events that leads to DNA damage repair (DDR). Once DDR is completed,
PARP autoPARylates and is released from the repaired DNA strand [6]. Inhibition of PARP leads
to stalling of the DNA replication fork, converting SSBs to double-strand DNA breaks (DSBs).
DSBs are repaired through 2 major pathways, the high fidelity HR pathway, and the more error-prone
non-homologous end-joining (NHEJ) pathway [7]. Restoration of the DNA strand through the HR
pathway is mediated by proteins including BRCA 1/2, 53BP1, RAD51 among others, and BRCA
1/2 protein is a major player in HR repair of DNA. The interplay between the roles of PARP and HR
leads to the concept of synthetic lethality. In patients whose tumor exhibit HR deficiency, e.g., through
BRCA1/2 mutations, double-stranded DNA (dsDNA) repair is impaired, leading to cells becoming
increasingly reliant on PARP as a primary mechanism of DDR and in turn, making them exquisitely
sensitive to PARP inhibition [8] (Figure 1).

Emerging evidence also suggests that in addition to the catalytic action of PARP inhibitors leading
to synthetic lethality in HR deficient tumors, PARP inhibitors also causes trapping of PARP1 and
PARP2, forming PARP-DNA complexes with increased cytotoxicity leading to increased cell killing [9].
The potency of PARP trapping differs amongst different PARP inhibitors and does not seem to correlate
with its catalytic effect, potentially accounting for differential potency in some PARP inhibitors such as
talazoparib [10] (Table 1).

Table 1. Current PARP inhibitors approved or in late stage development.

Drug Company IC50/nM Relative PARP
Trapping Potency [9,11] Predominant Toxicities

Olaparib Astra Zeneca 6 1 GI toxicities, fatigue, anemia
Rucaparib Clovis 21 1 GI toxicities, fatigue, anemia, liver dysfunction
Niraparib Tesaro 60 ~2 Myelosuppression, GI toxicities, fatigue
Veliparib AbbVie 30 <0.2 Fatigue, alopecia, GI toxicities, myelosuppression

Talazoparib Pfizer 4 ~100 GI toxicities, fatigue, lymphopenia
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Figure 1. PARP inhibitors cause DNA DSB (double strand break) by via inhibition of PARP enzyme
activity and PARP trapping. In HR (homologous recombination) competent tumors, tumor cells with
intact homologous recombination repair will be able to survive. However, in BRCA1/2 mutant and
other HR deficient cancers that are reliant on base-excision repair based on the PARP pathway, blockade
of this pathway by PARP inhibition leads to synthetic lethality and cell death. Multiple resistance
mechanisms against PARP inhibitors have been elucidated, including somatic mutations in p53BP1
(a); upregulation of drug efflux transporters such as PgP (b); and somatic mutations in BRCA gene
leading to restoration of the open reading frame and thus BRCA function (c). Strategies to overcome
resistance include intermittent dosing, combination strategies and drug modification to reduce drug
efflux. Various combination strategies are currently underway to further exploit the role of PARP
inhibitors, including combination with chemotherapy (i); radiation therapy (ii); targeted agents (iii)
and immunotherapy (iv).

3. Currently Available PARP Inhibitors

There are currently three PARP inhibitors that have been FDA-approved for use—olaparib (Astra
Zeneca, London, UK), rucaparib (Clovis Oncology, Boulder, CO, USA), and niraparib (Tesaro Inc.,
Waltham, MA, USA). Other PARP inhibitors in active development include veliparib (AbbVie
pharmaceuticals, North Chicago, IL, USA) which obtained FDA orphan drug designation in 2016, and
talazoparib (Pfizer Pharmaceuticals, New York City, NY, USA) which has shown promising phase I
data (Table 1).

Olaparib was the first PARP inhibitor to be approved by the EMA and FDA authorities for
treatment of patients with BRCA1/2 mutant ovarian cancers. Olaparib was first shown in simultaneous
publications from two independent groups to successfully induce cell killing effects in BRCA-deficient
cancer cells through inhibition of DDR [12,13]. Phase I studies subsequently demonstrated good
safety and tolerability up to a dose of 400 mg twice daily, with dose limiting toxicities of grade 4
thrombocytopenia and grade 3 somnolence, and also showed early signals of antitumor activity with
a response rate of up to 46% in heavily pre-treated BRCA1/2-mutant cancers [14,15]. Following this,
paired phase II studies were then carried out which confirmed cell killing effect and demonstrated
dose response in BRCA1/2 mutant breast and ovarian cancers, with better patient outcomes observed
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for patients with platinum sensitive compared to platinum resistant disease [16,17]. While the phase
III trial of olaparib compared to Caelyx® (liposomal doxorubicin, Janssen Pharmaceuticals, Beerse,
Belgium) in ovarian cancer recurring within 12 months of platinum-based chemotherapy failed to show
an improvement in progression-free survival (PFS), possibly due to greater than expected efficacy in the
control arm [18], further studies of the role of olaparib as maintenance treatment in platinum-sensitive
ovarian cancer following platinum-based chemotherapy demonstrated improved progression and
overall survival [19–21], leading to its approval by the European Medicines Agency, and accelerated
FDA approval for advanced BRCA1/2-mutant ovarian cancer. Besides ovarian cancer, olaparib has also
shown potential efficacy in other cancers involving both germline and somatic BRCA1/2 mutations,
including that of prostate, breast, gastric and pancreatic cancer [3,22,23]. Most recently, the phase III
OLYMPIAD study randomizing metastatic germline BRCA-mutant breast cancer patients who have
progressed through two or more lines of chemotherapy to olaparib or treatment of physician’s choice
has shown superior PFS with olaparib [4].

Besides olaparib, rucaparib successfully obtained FDA approval in December 2016 for treatment
of patients with germline or somatic BRCA1/2-mutant ovarian cancers that have progressed on
two or more lines of chemotherapy. A phase I study of rucaparib investigated different dosing
schedules, and showed that continuous drug dosing was more effective than intermittent dosing
through quantification of loss of PAR chains through peripheral blood lymphocytes [24]. The phase II
ARIEL2 study confirmed that rucaparib prolonged PFS in patients with platinum-sensitive recurrent
ovarian cancers, and led to FDA approval of rucarapib [25]. Interestingly, the ARIEL2 study included
patients with germline BRCA1/2-wild type platinum sensitive recurrent ovarian cancers, but utilized a
next generation sequencing loss of heterozygosity (LOH) assay that as a biomarker for HR deficiency in
BRCA1/2-wild type platinum sensitive ovarian cancers. The hypothesis was that the extent of genome
wide loss of heterogeneity would be able to predict for response to PARP inhibition. As predicted,
BRCA1/2-mutant cancers had improved response (80% vs. 10%) and PFS compared to LOH low
subgroup (hazard ratio (HR) 0.27, p < 0.0001). The LOH high subgroup also had improved RECIST
response (29% vs. 10%) and longer duration of response (10.8 months vs. 5.6 months, p = 0.022)
compared to LOH low subgroup, although median PFS between the two subgroups were similar
(5.7 months vs. 5.2 months). A further planned post-hoc analysis subsequently showed that a cut
off of 16% compared to 14% for the LOH assay may be a better predictor of PFS [26], and this is
currently being validated in the ARIEL3 study (NCT01968213) which investigates the use of rucaparib
as maintenance therapy in platinum sensitive ovarian cancer.

The latest PARP inhibitor to be approved by the FDA is niraparib, based on the phase III NOVA
study that investigated the role of this PARP 1/2 inhibitor as maintenance therapy for patients with
platinum-sensitive, recurrent ovarian cancer. In this study, patients with platinum-sensitive disease
were included regardless of germline BRCA1/2 mutation and HR deficiency status, while results were
stratified to investigate role of HR deficiency biomarkers for response [27]. Definition of HR deficiency
was determined by the myChoice HRD test, a scoring system incorporating loss of heterozygosity
(LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) developed by Myriad
Genetics (Salt Lake City, UT, USA), and validated in patients undergoing neoadjuvant treatment for
triple negative breast cancer with platinum, gemcitabine and iniparib. Interestingly, on top of PFS, this
score was also found to predict for pathologic complete response rates [28]. Improvement in PFS was
observed regardless of germline BRCA1/2 mutation or HR deficiency status, although improvement
in PFS was most marked in the germline BRCA1/2 mutant group (HR 0.27, confidence interval (CI)
0.17–0.41). This was followed by the HR deficient group (HR 0.38, CI 0.24–0.59) and the non-germline
BRCA1/2 mutant cohort (HR 0.45, CI 0.34–0.61) [27].

Veliparib has been granted FDA orphan drug designation in 2016 based on a phase II BROCADE
study in breast cancer that showed improved response rate (77.8% vs. 61.3%) when veliparib was
combined with carboplatin and paclitaxel. although there was no difference in PFS. An ongoing phase
III BROCADE 3 study will further verify the phase II findings. Besides BRCA1/2 mutant cancers,
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veliparib has also been tested in other cancers such as non-small cell lung cancer (NSCLC) and
melanoma, although results have been disappointing [29,30].

Most recently, promising results have been published for talazoparib, an oral PARP inhibitor
with equivalent catalytic activity compared to olaparob and rucaparib, but superior PARP-trapping
capabilities that may account for its increased potency. In a phase I, two-part study of talazoparib in
treatment refractory tumors, including germline BRCA1/2 mutant and other selected sporadic cancers,
single agent antitumor activity was observed in BRCA1/2 mutation-associated breast and ovarian
cancers, and also patients with pancreatic and small cell lung cancers whose tumors harbor genomic
aberrations involving DNA repair mechanisms such as PALB2 mutations [31].

4. Understanding the Mechanisms of Resistance to PARP Inhibitors

Since the emergence of targeted therapy as a modality of treatment in cancer, the understanding
of resistance mechanisms has become vital in development of new strategies to overcome resistance
and resensitise tumor cells to therapy (Figure 1).

One of the first mechanisms of resistance to PARP inhibition that was discovered was that of
restoration of BRCA1/2 function through mutations that lead to restoration of open reading frames
(ORFs) of the gene. Studies from independent groups have shown that restoration of BRCA1/2 function
occurred in cell lines treated with PARP inhibitors through secondary mutations that restored the
ORF through formation of new isoforms encoding the RAD51 binding domain at the C-terminus [32].
This was subsequently verified in tumor samples from patients with BRCA1/2-mutant ovarian cancers,
and also BRCA1/2-mutant breast cancers. Interestingly, such mutations were observed not only in
patients with BRCA1/2-mutant breast cancers that were resistant to PARP inhibitors, but also patients
who had platinum resistant disease [33]. A study involving ovarian cancer patients treated with
carboplatin showed that one out of 60 patients (1.7%) harbored a BRCA1/2 mutation that restored
ORF in one cohort of patients, while in another cohort, the incidence of such mutations was 46.2% in
patients who had platinum-resistant disease, significantly higher when compared to 5.3% in patients
with platinum-sensitive disease (p = 0.003) [34].

Besides mutations that restore the ORF of the RAD51 binding domain, development of resistance
could also occur due to partial restoration of HR through somatic loss of 53BP1, a mechanism that
is unique to BRCA1 mutations and not BRCA2 deletions [35]. The 53BP1 protein is a NHEJ factor
that when deleted, promotes damaged DNA ends to produce recombinogenic ssDNA competent
for HR [36,37]. Other additional factors that are implicated with 53BP1-mediated PARP resistance
include that of the RAP1-interacting factor 1 (RIF1) and RNF8 ubiquitin ligase, which together with
53BP1, regulate HR in BRCA1/2 mutant cells. When 53BP1 function is lost, suppression of 53BP1 led to
decreased NHEJ and compensatory increased HR mediated DNA repair [38–40].

A third mechanism of resistance involves that of pharmacological resistance through multidrug
efflux transporters such as P-glycoprotein (Pgp). Pgp is encoded by the MDR1 gene, and upregulation
of Pgp expression has been known to be a mechanism of resistance to chemotherapy [41]. In BRCA1/2
mutant cancers that have been treated with PARP inhibitors, increased expression of MDR1 genes
have been observed, leading to increased expression of Pgp and a resultant higher rate of drug efflux,
diminishing the therapeutic intracellular effect of PARP inhibitors [42].

5. Overcoming PARP Resistance

Knowledge regarding the aforementioned resistance mechanisms to PARP inhibitors will facilitate
the development of strategies to overcome them. Tumor cells undergo complex evolutionary
mechanisms not unlike the Darwinian evolution of species, and exploitation of such evolutionary
models may allow for more efficacious cell killing effect [43,44]. This could potentially be achieved
through varying the dosing schedules of PARP inhibitors by intermittent or metronomic approaches.
While a phase II study exploring intermittent compared to continuous dosing of rucaparib concluded
that a continuous dosing of rucaparib is required for optimal response [24], intermittent dosing of
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PARP inhibitors in combination strategies with chemotherapy like cisplatin or caelyx was found to be
more tolerable with promising antitumor activity, and would benefit from further studies to verify
preliminary findings [45,46]. Besides improving tolerability, intermittent dosing of PARP inhibitors
may also prevent accelerated emergence of resistant clones, allowing for a patient to benefit from a
longer period of exposure to such drugs. In the context of reducing drug efflux, AZD2461, a PARP
inibitor that is a poor P-glycoprotein substrate, has been developed and has shown increased response
compared to olaparib in preclinical breast cancer models [47].

6. Expanding the Therapeutic Utility of PARP Inhibitors beyond BRCA Mutant Cancers

The presence of germline or somatic BRCA1/2 mutations currently remain the strongest predictive
biomarkers for response to PARP inhibitors, but studies have also shown that other mutations may
render sensitivity to single agent PARP activity. A systemic screen of cancer cell lines with a large
panel of drugs revelaed that Ewing’s sarcoma cells harboring the EWSR10FLI1 gene translocation was
exquisitely sensitive to PARP inhibitors [48]. A non-randomised phase II trial that was subsequently
conducted showed that treatment of metastatic Ewing’s sarcoma with olaparib was safe and well
tolerated, although single agent activity appeared to be minimal [49]. Combination strategies with
other drugs such as trabectadin used in treatment of Ewing’s sarcoma have showed promising results in
a preclinical setting, and clinical trials are currently underway to validate these findings in patients [50].
Unsurprisingly, there is a growing interest to explore strategies that exploit potential synergisms with
other therapeutic options that cause DNA damage repair in an effort to expand the role of PARP
inhibitors beyond that in BRCA1/2 mutant or HR deficient cancers. These include combinations with
other cytotoxic chemotherapy, radiation, targeted agents and immunotherapeutic agents (Figure 1,
Table 2).

The combination of PARP inhibitors with cytotoxic chemotherapy has focused largely on drugs
that cause DNA damage repair, in the hope that this will lead to synergistic effects from the
inhibition of HR by PARP inhibitors. The combination of PARP inhibitors with platinum agents
has been tested in recurrent platinum sensitive ovarian cancers with the combination of olaparib
plus paclitaxel and carboplatin followed by maintenance monotherapy demonstrating significantly
improved progression-free survival versus paclitaxel plus carboplatin alone [51]. However, the dose of
olaparib (200 mg twice a day) and carboplatin (area under the curve (AUC) 4 mg/mL per minute) had
to be reduced in the combination arm due to the risk of myelotoxicity and it remains unclear if this
combination strategy confers any significant benefit over standard dose platinum-based chemotherapy
followed by PARP inhibitor maintenance therapy. Besides platinum salts, other DNA alkylating agents
that have been tested extensively include temozolamide, which has been combined with veliparib
and tested in patients with melanoma and glioblastomas (GBM), albeit with limited success [29,52].
However, the results of the combination of temozolamide and olaparib in patients with recurrent small
cell lung cancer (SCLC) was recently presented, and showed promising results, with good tolerance
and response rate of 48% with a median PFS of 5.6 months [53]. Nonetheless, combination strategies
with chemotherapy have been limited by toxicities, predominantly that of myelosuppression, and
strategies to overcome these toxicities have included the use of intermittent dosing schedules of PARP
inhibitors [24].

As with DNA damaging agents, ionizing radiation has direct effects of dsDNA, causing strand
breaks and replicative stress, making it an attractive combination compared to chemotherapy
combinations that have been limited by toxicities requiring multiple dose reductions. Preclinical
studies have demonstrated an improvement in tumor response to radiation when PARP inhibitors
were introduced, possibly through induction of S phase arrest through DDR and delay in dsDNA
processing by PARP inhibition, leading to further sensitisation of cells to radiation [54]. Studies in
several tumor types including head and neck tumors (HNSCC), GBM and pancreatic cancers have
shown that PARP inhibition is a potent radiosensitiser, enhancing the therapeutic ratio of radiation by
disabling DNA replication in HR-deficient tumor cells [55–57]. In GBM, triplet combination of PARP
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inhibition, radiotherapy and temozolamide has shown further synergistic effects compared to doublet
therapy of PARP inhibition and radiotherapy [58].

Table 2. Selected ongoing trials of combination strategies with PARP inhibition.

Drug PARP
Inhibitor Phase Tumor Type NCT

Cytotoxic

Platinums

Carboplatin Olaparib I Solid tumors 02418624
Carboplatin + paclitaxel Talazoparib I Solid tumors 02317874
Carboplatin + paclitaxel Veliparib III Breast 02163694
Carboplatin + etoposide Veliparib II SCLC 02289690

Carboplatin + gemcitabine Veliparib II Germ cell 02860819
Carboplatin + paclitaxel + avastin Olaparib III Ovarian 02477644

Cisplatin Veliparib II Breast 02595905
Cisplatin + gemcitabine Talazoparib I Solid tumors 02537561

Temozolomide-based

Irinotecan +/− temozolomide Talazoparib I Paediatric tumors 02392793
Temozolomide or irinotecan Niraparib I Ewing’s sarcoma 02044120

Temozolomide + capecitabine Veliparib I PNET 02831179
5FU-based
FOLFOX Veliparib I/II Pancreas 0149865
FOLFIRI Veliparib II Pancreas 02890355

Others

Liposomal irinotecan Veliparib I Solid tumors 02631733
Decitabine Talazoparib I AML 02878785

Radiation

RT Olaparib I HNSCC 02229656
RT Olaparib I Breast 02227082
RT Olaparib I Esophagus 01460888
RT Olaparib I Sarcoma 02787642

RT +/− cisplatin Olaparib I NSCLC 01562210
RT + carboplatin + paclitaxel Veliparib I/II NSCLC 01386385

Rd223 Niraparib I Prostate 03076203

Targeted therapy

Cell cycle check point inhibitors

AZD1775 (Wee1) Olaparib I Solid tumors 02511795
Prexasertib (CHK1) Olaparib I Solid tumors 03057145

VX-970 (ATR) + cisplatin Veliparib I Solid tumors 02723864
Dinaciclib (CDK) Veliparib I Solid tumors 01434316

Anti-angiogenics

Cediranib (VEGF) Olaparib II Ovarian; GBM; solid tumors; 02345265; 02974621; 02498613
Ramucirumab (VEGF) Olaparib I/II Gastric 03008278
Bevacizumab (VEGF) Niraparib I/II Ovarian 02354131

PI3K/AKT/mTOR pathway
AZD5363 (PI3K) Olaparib I Solid tumors 02338622

Everolimus (mTOR) Niraparib I Breast, ovarian 03154281

Other targeted therapies

Selumetinib Olaparib I Solid tumors 03162627
AT13387 (Hsp90) Olaparib I Ovarian and breast 02898207
Lapatanib (HER2) Veliparib I Breast 02158507

Hormonal therapy

Abiraterone Olaparib II Prostate 01972217
Enzalutamide Niraparib I Prostate 02500901

Immunotherapy

Anti-PD1
Nivolumab Veliparib I Solid tumors, lymphoma 03061188

Pembrolizumab Niraparib I Breast, ovarian 02657889
Nivolumab + platinum doublet Veliparib II NSCLC 02944396

Anti-PDL1

Durvalumab Olaparib II Breast 03167619
Durvalumab + tremelimumab Olaparib I Ovarian 02953457

Atezolizumab Rucaparib I Gynaecological 03101280
Atezolizumab Veliparib II Breast 02849496
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The combination of PARP inhibition with targeted therapies, especially other drugs involved in the
DDR pathway, has generated much interest, in the hope of further exploiting the concept of synthetic
lethality. Following DNA damage, cellular pathways are initiated that trigger cell cycle delay by
activation of cell cycle checkpoint proteins. This cell cycle arrest represents a survival mechanism that
enables tumor cells to repair their own damaged DNA, and abrogation of cell cycle checkpoints, before
DNA repair is completed, can induce apoptosis and lead to cell death. Thus, inhibitors of cell cycle
checkpoint proteins in cancer cells may lead to circumvention of cell cycle delay resulting in increased
sensitivity to DNA-damage induced apoptosis [59]. Synergistic cytotoxicity has been described when
drugs that inhibit cell cycle regulators are combined with PARP inhibition, and multiple early phase
studies have been initiated where drugs inhibiting cell cycle regulators like Wee1, ATR and CHK
are being combined with PARP inhibitors [60]. The combination of Wee1 and PARP inhibitors to
radiosensitize pancreatic cancer cells has been tested in xenograft models, and shown to produce
significant radiosensitisation with a 13-day delay in tumor volume doubling and complete eradication
of 20% of tumors compared to radiation alone [61]. Similar studies looking at combination of Wee1
and PARP inhibitors in acute myeloid leukemic cells have also shown synergistic inhibition of cell
growth, leading to enhanced DNA damage and induction of apoptosis [62]. Besides Wee1, targeting
the ATR/CHK1 axis has also shown synergistic results in preclinical models. A study in BRCA2
mutant ovarian cancer models showed that combination of olaparib with AZD6738 (ATR inhibitor) or
MK8776 (CHK1 inhibitor) induced greater tumor regression compared to single agent therapy [63].
More recently, a preclinical study investigating the role of CHK1 inhibitor showed that the combination
of LY2606368 and PARP inhibition caused increased DNA damage and cell death, likely due to
impaired G2/M checkpoint inhibition [64]. Similar results have also been shown in SCLC, providing
preclinical proof-of-concept supporting initiation of clinical studies for combination treatment in
patients with platinum sensitive or resistant relapsed SCLC [65].

Inhibition of the PI3K/AKT/mTOR pathways in combination with PARP inhibitors have also
showed synergistic activity in BRCA1/2-mutant breast cancers, with pharmacoydynamic studies
showing corresponding downstream effects [66]. The rationale for combination could be attributed
to observation of increased levels of H2AX, suggesting an accumulation of dsDNA breaks requiring
PARP activity for DNA repair, possibly accounting for the exquisite sensitivity of tumor cells to doublet
therapy of PARP and PI3K inhibition [67]. Besides drugs targeting the DDR pathway, studies have also
suggested potential synergistic effects between PARP inhbitors and the PI3/ATK/mTOR pathways.
In a preclinical study of prostate cancer, PARP inhibition apperars to trigger a p53-dependent cellular
senescence in PTEN-deficient prostate cancer cell lines, and combination of PARP and PI3K inhibitors
had synergistic inhibition of growth in both in vitro and in vivo models [68]. Similar studies in
BRCA-wild type, PI3K-mutant triple negative breast cancer cell lines showed that combination therapy
of PARP and PI3K inhibition with carboplatin blocked tumor growth in mouse xenograft models, with
decrease in tumor cell proliferation and tumor induced angiogenesis [69]. Besides PI3K inhibitors,
combination of PARP inhibitor and everolimus, an mTOR inhibitor, has shown similar efficacy in
BRCA1/2-proficient triple negative breast cancers [70]. The combination is currently under active
investigation in early phase studies (NCT02338622).

Combinations of antiangiogenic agents like cediranib and bevacizumab with PARP inhibitors
have also been tested on the basis of preclinical studies suggesting that hypoxemic states can suppress
HR due to downregulation of HR repair proteins, thus inducing “BRCAness” and sensitizing cells to
PARP inhibition [71]. In ovarian cancer, a phase II study explored the combination of cediranib with
olaparib in patients with recurrent platinum-sensitive ovarian cancers, and found promising data of
improved PFS compared to single agent olaparib (HR 0.42, p = 0.0005), and this is currently being
further explored in a phase III study [72]. Using a similar approach in multiple myeloma, bortezomib
has been shown to induce “BRCAness” through depletion of nuclear ubiquitin and abrogation of
H2AX polyubiquitylation, leading to sensitization of cells to treatment with veliparib [73].
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There has been much interest in the combination of PARP inhibitors and immunotherapy, based
on preclinical data that support the association of BRCA1/2 mutational status with neoantigen load,
tumor infiltrating lymphocytes and the expression of PD/PDL1 or CTLA4, thus forming the rationale
for combination therapy. There have been data indicating that BRCA1/2 deficient cancers express
higher levels of neoantigens and are therefore likely to be more immunogenic, and preclinical studies
showed that a combination of PARP inhibition with a CTLA-4 antibody showed synergistic activity in
BRCA1/2 mutant ovarian cancer [74]. In vitro and in vivo models of breast cancer have also shown
that PARP inhibition inactivates of GSK3β, which in turn upregulate PD-L1 expression, providing
evidence to support combination of PARP inhibitors and immune checkpoint blockade for treatment
of breast cancer [75].

7. Conclusions

Over the past decade, convincing evidence has emerged regarding the role of PARP inhibitors
in BRCA1/2 mutant cancers including ovarian, breast and prostate cancers [3,4,16,19]. There is no
doubt that PARP inhibitors have carved out a niche in the treatment algorithm of ovarian cancers
and their role is being actively investigated in multiple other tumor types. There are continually
emerging signals of efficacy and clinical utility in varying cancer types, and further understanding of
the mechanism(s) of action and resistance has led to exploration of novel therapeutic combinations.
Nonetheless, several outstanding issues still remain to be answered, that may eventually help to better
define the patient populations that will benefit from treatment with PARP inhibitors.

Firstly, there is an urgent need for a consistent predictive biomarker to aid patient selection with
tumors that exhibit a “BRCA syndrome”-like phenotype. Besides germline BRCA1/2-mutant cancers,
there has been increasing evidence that PARP inhibitors may have a role in somatic BRCA1/2-mutant
cancers, or cancers associated with HR deficiency [3,25], and more recently, possibly even tumors
deficient in chromatin regulation like cancers with ARID1A mutations [76]. While we have had hits,
there were also misses like the use of ATM loss as a predictive biomarker for response in gastric
cancer [22], and the availability of a predictive biomarker equivalent to germline/somatic BRCA1/2
mutations that can more consistently or even better predict for tumor responses across a variety of
tumor types remains elusive. Secondly, while multiple combination strategies are currently being
explored, the most effective means of combination in terms of sequencing of drugs and the optimal
timing to introduce PARP inhibitors in a patient’s long journey of cancer treatment is still a controversial
subject. More importantly, there is a need to embrace the use of novel adaptive trial design to allow
for validation of mechanistic hypotheses, and to allow for cohort expansion in tumor types that show
early signs of response [77]. This will allow for investigators to build upon promising combinations in
a swifter fashion without administrative delays of starting up multiple trials, and ultimately improve
cost-effectiveness while giving patients earlier access to drug combinations that will potentially
improve their outcomes. Thirdly, a better understanding of the underlying mechanisms involved
in PARP inhibitor resistance will also facilitate the development of novel therapeutic strategies to
address this issue. Ultimately, by bridging these gaps in our knowledge, we envisage that the utility
of PARP inhibitors will continue to expand as a therapeutic staple in our armamentarium of drugs
against cancer.
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